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Abstract—The joint task of detecting attacks and securely mon-
itoring the state of a cyber-physical system is addressed over a
cluster-based network wherein multiple fusion nodes collect data
from sensors and cooperate in a neighborwise fashion in order
to accomplish the task. The attack detection-state estimation
problem is formulated in the context of random set theory by
representing joint information on the attack presence/absence,
on the system state and on the attack signal in terms of a Hybrid
Bernoulli Random Set (HBRS) density. Then, combining previous
results on HBRS recursive Bayesian filtering with novel results on
Kullback-Leibler averaging of HBRSs, a novel distributed HBRS
filter is developed and its effectiveness is tested on a case-study
concerning wide-area monitoring of a power network.

Index Terms—Cyber-physical systems; distributed detection
and estimation; signal attack; Bayesian state estimation;
Bernoulli filter.

I. INTRODUCTION

CYBER-physical systems (CPSs) arise from the inte-
gration of computational and physical resources, inter-

connected via a communication network. Typical examples
of CPSs include next-generation systems in electric power
grids, transportation and mobility, building and environmental
monitoring/control, health-care, and industrial process control.
While on one hand, advances in CPS technology will enable
growing autonomy, efficiency, seamless interoperability and
cooperation, on the other hand the increased interaction be-
tween cyber and physical realms is unavoidably introducing
novel security vulnerabilities, which make CPSs subject to
non-standard malicious threats. Recent real-world attacks such
as the Maroochy Shire sewage spill, the Stuxnet worm sab-
otaging an industrial control system, and the lately reported
massive power outage against Ukrainian electric grid [1], have
brought into particularly sharp focus the urgency of designing
secure CPSs. In presence of malicious threats against CPSs,
standard approaches extensively used for systems subject to
benign faults and failures need to be rethought. This is why
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recent advances on the design of secure systems have explored
different paths, e.g., [2]–[10]. Recent work on attack detection
and secure state estimation for CPSs [11], [12] has posed the
problem in a Bayesian framework [13] and has exploited the
powerful tools of random set theory [14], [15] for modelling
various types of cyber-attacks, specifically: (i) signal attack,
i.e. signal of arbitrary magnitude and location injected (with
known structure) to corrupt sensor/actuator data, (ii) packet
substitution attack, i.e., an intruder possibly intercepts and
then replaces the system-generated measurement with a fake
(unstructured) one, and (iii) extra packet injection [16], [17])
in which multiple counterfeit observations (junk packets)
are possibly added to the system-generated measurement. In
particular, the signal attack presence/absence is modelled by
means of a Bernoulli random set (i.e., a set that can be either
empty or a singleton depending on the presence or not of the
attack) while the possible injection of fake measurements is
modelled by a Bernoulli or Poisson random set for the packet
substitution or, respectively, extra packet injection attack.
Accordingly, joint attack detection-state estimation has been
formulated as a recursive Bayesian filtering problem wherein
the joint posterior density of the signal attack Bernoulli set
and of the state vector, called Hybrid Bernoulli Random Set
(HBRS) density in [11], is updated in time and whenever
new data become available. The resulting centralized HBRS
filter developed in [11] can timely detect signal attacks as
well as reliably estimate the system state even in presence
of the aforementioned (signal, packet substitution and extra
packet injection) cyber-attacks provided that a fusion center
receives all sensor data and stores/processes the aggregated
data. Due to the geographically dispersed nature of CPSs, a
distributed approach, wherein multiple fusion nodes commu-
nicate and cooperate to perform the joint attack detection and
state estimation task, is by far preferable. However, devising
distributed solutions becomes particularly challenging when
the correlations between estimates from different fusion nodes
are not known. The optimal solution to this problem was
developed in [18], but the computational cost of calculating
the common information can make the solution intractable
in many real-world applications. A number of suboptimal
solutions with demonstrated tractability have been formulated
based on the Kullback-Leibler average (KLA) or generalized
Covariance Intersection rule proposed by Mahler [19]. KLA
is the generalization of Covariance Intersection [20] which
only utilizes the mean and covariance and is limited to
Gaussian posteriors. The KLA fusion rule relaxes the Gaussian
constraint, and can be used to fuse multi-object distributions
with completely unknown correlations, since it intrinsically
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avoids any double counting of common information [21].
In this respect, a novel distributed HBRS filter is developed

in the present paper to cope with a sensor network with cluster-
based configuration. More precisely, the considered network
consists of multiple fusion nodes (cluster heads or system
monitors) each receiving measurements from multiple remote
sensors via non-secure links and exchanging information with
a subset of neighbors via secure links. The main contributions
of this paper can be summarized as follows.

i) The attack detection-state estimation problem is formu-
lated in the context of random set theory by representing
the joint information on the attack presence/absence, on
the system state and on the signal attack in terms of a
HBRS density.

ii) We derive a closed-from solution for the KLA of HBRS
densities. This novel result is provided as a key ingredient
to derive the proposed distributed HBRS filter for joint
attack detection and secure state estimation.

iii) We prove the immunity of the KLA fusion of HBRSs to
double counting of information.

iv) We exploit consensus on the average [22], [23] to perform
the collective KLA computation of HBRS densities over
the whole network.

v) We test the proposed distributed HBRS filter for joint
attack detection & secure state estimation on a benchmark
wide-area monitoring system and we verify the efficiency
of the Gaussian-mixture implementation of the proposed
KLA fusion algorithm.

The rest of the paper is organized as follows. Section II pro-
vides motivations and the problem setup. Section III reviews
HBRSs used to represent information about the CPS. Then
Section IV deals with distributed fusion of HBRSs. Section
V presents the novel distributed HBRS filter for joint attack
detection and secure state estimation. Section VI provides
a simulation case-study concerning wide-area monitoring of
a smart grid to demonstrate the potentials of the proposed
approach. Finally, Section VII ends the paper with concluding
remarks and perspectives for future work.

II. PROBLEM SETUP

A. Motivating example: Wide-area monitoring systems

To motivate the problem of distributed secure state esti-
mation of CPSs we consider a wide-area monitoring system
(WAMS) [24], [25], i.e. a power system with multiple control
areas consisting of local generators and loads, connected by
inter-area tie-lines (see Fig. 1 for the example of the IEEE
14-bus wide-area monitoring system). WAMSs have recently
attracted considerable attention due to the deregulation of
modern power networks which have led to the introduction
of numerous regional transmission organizations (RTOs) con-
ceived to operate smaller portions of a large interconnected
power network. This motivates the interest on decentralized
strategies to monitor the electric grid over large geographical
areas, each requiring the overall interconnection’s state infor-
mation to be available via a regional communication structure.

As illustrated in Fig. 1, WAMSs are partitioned power
systems (on a geographical basis) where each non-overlapping

AREA 3 AREA 4

AREA 1 AREA 2
Fig. 1: IEEE 14-bus wide-area monitoring system (partitioned
into four different areas).

area is assigned to a local fusion node, which only has access
to its own local measurements and is dedicated to the recon-
struction of the overall state by exchanging data with a small
number of neighboring areas through wireless communication
channels. The considered communication scheme is shown in
Fig. 2. Due to both power and bandwidth constraints imposed
by such communication systems, a centralized setup collecting
multi-area measurements may not be practically feasible in
wide-area monitoring operations. All these reasons call for a
distributed approach in order to minimize the communication
overhead and better manage coordination across geographi-
cally separated areas.

B. System description and attack model

Let the discrete-time cyber-physical system of interest be
modeled by

xt+1 =


f0t (xt) + wt, under no attack

f1t (xt, at) + wt, under attack

(1)

where: t is the time index; xt ∈ Rn is the state vector to
be estimated; at ∈ Rm, called attack vector, is an unknown
input affecting the system only when it is under attack; f0t (·)
and f1t (·, ·) are known state transition functions that describe
the system evolution in the no attack and, respectively, attack
cases; wt is a random process disturbance also affecting the
system, independent identically distributed (IID) according to
the probability density function (PDF) pw(·).

The attack modeled in (1)-(2) via the attack vector at
is usually referred to as signal attack. While for ease of
presentation only the case of a single attack model is taken
into account, multiple attack models [10], [12] could be
accommodated in the considered framework by letting (1)-
(2) depend on a discrete variable, say νt, which specifies the
particular attack model and has to be estimated together with
at.
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For monitoring purposes, a sensor network with cluster-
based configuration is taken into account. More specifically,
it is supposed that the state of the above system is observed
through a set of Ns remote sensors, each one characterized by
a measurement equation of the form

yit =


h0,it (xt) + vit, under no attack

h1,it (xt, at) + vit, under attack

(2)

for i = 1, . . . , Ns, where h0,it (·) and h1,it (·, ·) are the known
measurement functions of sensor i that refer to the no at-
tack and, respectively, attack cases; the random measurement
noises vit, mutually independent as well as independent of the
process disturbance wt, are also IID with PDFs piv(·).

Besides the Ns remote sensors, the network consists of a set
N = {1, . . . , Nf} of Nf fusion nodes (cluster heads or system
monitors). Each fusion node j ∈ N receives the measurements
yit of a subset Sj of the sensor set S = {1 . . . , Ns} and
exchanges information with a subset Nj ⊆ N of fusion
nodes. The set Nj is called the set of in-neighbors of fusion
node j. Hence, the set of fusion nodes define a (possibly
directed) network (or graph) with node set N and link set
L ⊆ N × N given by L = {(`, j) : ` ∈ Nj}. For the
reader’s convenience, an example of a sensor network with
cluster-based configuration is depicted in Fig. 2. Clearly, it is
supposed that

⋃
j∈N Sj = S, i.e. each sensor sends its local

measurements to at least one fusion node. On the other hand, in
order to allow for redundancy in the communication topology,
the sets Sj , j ∈ N , need not be mutually disjoint.

In accordance with the considered hierarchical topology, the
network nodes are supposed to be characterized by different
levels of security. More specifically, the fusion nodes are
considered as trusted nodes, i.e. they cannot be compromised
by adversarial attacks, and the communication between them
is supposed to be secure, for instance because it is carried out
through dedicated wired communication channels. On the con-
trary, the communication between the sensors and the fusion
nodes is supposed to be non-secure. This scenario reflects the
practical situation in which several low-cost remote sensors are
deployed in the area of interest and data exchange occurs via
a non-secure wireless channel, or when a malicious agent can
take control of some of the remote sensors. Accordingly, it is
assumed that the measurement yit, i ∈ Sj , is actually delivered
to the fusion node j ∈ N with probability pi,jd ∈ (0, 1],
where the non-unit probability might be due to a number of
reasons (e.g., temporary denial of service, packet loss, sensor
inability to detect or sense the system, etc.). Further, besides
the system-originated measurement yit in (2), it is assumed that
the fusion node might receive fake measurements from some
cyber-attacker. In this respect, the following two cases will be
considered.

1) Packet substitution - With some probability pi,jf ∈ [0, 1),
the attacker replaces the system-originated measurement
yit with a fake one ỹi,jt .

2) Extra packet injection - The attacker sends to the fusion
node one or multiple fake measurements indistinguishable
from the system-originated one.
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Fig. 2: Cluster-based configuration of a sensor network with
local fusion nodes and sensors, secure and non-secure links.

For the subsequent developments, it is also convenient to
define the set Zi,jt representing the set of measurements (either
true or false) received by fusion node j from sensor i at time
t. For the packet substitution attack:

Zi,jt =


∅, with probability 1− pi,jd

{yit}, with probability pi,jd (1− pi,jf )

{ỹi,jt }, with probability pi,jd pi,jf

(3)

where yit is given by (2) and ỹi,jt is a fake measurement
provided by the attacker in place of yit. Conversely, for the
extra packet injection attack the definition (3) is replaced by

Zi,jt = Yi,jt ∪ F
i,j
t (4)

where

Yi,jt =

 ∅, with probability 1− pi,jd

{yi,jt }, with probability pi,jd

(5)

is the set of system-originated measurements and F i,jt the
finite set of fake measurements.

Then, the aim of this paper is to address the problem of
distributed joint attack detection and state estimation, which
amounts to jointly estimating, at each time t and in each fusion
node j ∈ N , the state xt and, when present, the attack signal
at only on the basis of: the measurement sets Zi,j1 . . . ,Zi,jt
received up to time t from the sensor nodes i belonging to
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cluster Sj ; the data received from all adjacent fusion nodes
` ∈ Nj .

III. HYBRID BERNOULLI RANDOM SET FOR JOINT ATTACK
DETECTION AND STATE ESTIMATION

In order to address the joint state/attack estimation problem,
it is convenient to introduce the attack set at time t, At, which
is either equal to the empty set if the system is not under signal
attack at time t or to the singleton {at} otherwise, i.e.

At =

 ∅, if the system is not under signal attack

{at}, otherwise.
(6)

In this paper, the estimation problem is addressed in a
Bayesian framework by exploiting the concept of Random
Finite Sets (RFSs), i.e. variables which are random in both
the number of elements and the values of the elements. In
fact, as shown hereafter, RFSs represent a convenient way to
model both the attack set At and the measurement sets Zi,jt
within a common framework.

A. Random set estimation

An RFS X over X is a random variable taking values in
F(X), the collection of all finite subsets of X. The mathemat-
ical background needed for Bayesian random set estimation
can be found in [14]; here, the basic concepts needed for
the subsequent developments are briefly reviewed. From a
probabilistic viewpoint, an RFS X is completely characterized
by its set density f(X ), also called FISST (FInite Set STatis-
tics) probability density. In fact, given f(X ), the cardinality
probability mass function ρ(n) that X have n ≥ 0 elements
and the joint PDFs f (x1, x2, . . . , xn|n) over Xn given that X
have n elements, are obtained as follows:

ρ(n) =
1

n!

∫
Xn

f({x1, . . . , xn}) dx1 · · · dxn

f (x1, x2, . . . , xn|n) =
1

n! ρ(n)
f({x1, . . . , xn})

where f(X ) = f({x1, . . . , xn}) = n! f(x1, . . . , xn) denotes,
using the set and, respectively, vector notation, the FISST
probability density of RFS X . In fact, the multi-object distri-
bution f({x1, . . . , xn}) (in set notation) can also be expressed
in vector notation, noting that the probability assigned to the
finite set {x1, . . . , xn} must be equally distributed among the
n! possible permutations of the same elements. In order to
measure probability over subsets of X or compute expectations
of random set variables, Mahler [14] introduced the notion of
set integral for a generic real-valued function g(X ) of an RFS
X as∫

g(X ) δX = g(∅) +
∞∑
n=1

1

n!

∫
g({x1, . . . , xn}) dx1 · · · dxn.

(7)
Two specific types of RFSs, i.e. Bernoulli and Poisson RFSs,
will be considered in this work.

1) Bernoulli RFS: A Bernoulli RFS is a random set which
can be either empty or, with some probability r ∈ [0, 1], a
singleton {x} distributed over X according to the PDF p(x).
Accordingly, its set density is defined as follows:

f(X ) =

{
1− r, if X = ∅
r · p(x), if X = {x}.

(8)

2) Poisson RFS: A Poisson RFS is a random finite set with
Poisson-distributed cardinality, i.e.

ρ(n) =
e−µµn

n!
, n = 0, 1, 2, . . . (9)

and elements independently distributed over X according to
a given spatial density p(·). Accordingly, its set density is
defined as follows:

f(X ) = e−µ
∏
x∈X

µ p(x). (10)

B. Hybrid Bernoulli random set

We now consider the problem of simultaneous detection
and estimation of the signal attack and of the state of the
system under monitoring, given a set of observations. The
key idea is to use the random set paradigm to model the
switching nature of the signal attack (presence/absence) by
means of a Bernoulli random set A defined in (6) (i.e. a
set that, with some probability r, can be either empty or a
singleton depending on the presence or not of the attack)
and the possible injection of fake measurements by means
of a random measurement set Z defined in (3) and (4) as
a Bernoulli or Poisson RFS for the packet substitution or,
respectively, extra packet injection attack. It is worth pointing
out that the posed Bayesian estimation problem is neither
standard [13] nor Bernoulli filtering [14], [15], [26] but is
rather a hybrid Bayesian filtering problem that aims to jointly
estimate a Bernoulli random set A for the signal attack and a
random vector x for the system state. An analytical solution
of the hybrid filtering problem has been found in [11] in terms
of integral equations that generalize the Bayes and Chapman-
Kolmogorov equations of the Bernoulli filter [26]. The key
feature of this hybrid Bernoulli filter is that it jointly estimates
the posterior PDF of the system state and of the signal attack
(when the system is assumed under attack) as well as the
probability of attack existence. This is made possible thanks
to the following definition of hybrid Bernoulli random set. Let
the signal attack input be modeled as a Bernoulli random set
A ∈ B(A), where B(A) = ∅∪ S(A) is a set of all finite subsets
of the attack probability space A ⊆ Rm, and S denotes the
set of all singletons (i.e., sets with cardinality 1) {a} such that
a ∈ A. Further, let X ⊆ Rn denote the Euclidean space for the
system state vector x. Then, we can define the HBRS (A, x),
as a new state variable which incorporates the Bernoulli attack
random set A and the random state vector x, taking values in
the hybrid space B(A)×X. A HBRS is fully specified by the
(signal attack) probability r of A being a singleton, the PDF
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p0(x) defined on the state space X, and the joint PDF p1(a, x)
defined on the joint attack input-state space A× X, i.e.

p(A, x) =


(1− r) p0(x), if A = ∅

r · p1(a, x), if A = {a}.
(11)

Moreover, since integration over B(A)× X takes the form∫
B(A)×X

p(A, x) δA dx =

∫
p(∅, x) dx+

∫∫
p({a}, x) da dx

(12)
where the set integration with respect to A is defined
according to (7) while the integration with respect to x is
an ordinary one, it is easy to see that p(A, x) integrates to
one by substituting (11) into (12), and noting that p0(x)
and p1(a, x) are conventional probability density functions
on X and A × X, respectively. This, in turn, guarantees that
(11) is a FISST probability density for the HBRS (A, x),
which will be referred to as HBRS density throughout the
rest of the paper. Note that, in order to model the signal
attack presence/absence, it is convenient to introduce a binary
random variable εt ∈ {0, 1}, referred to as the attack existence.
By convention, εt = 1 means that the system is under signal
attack at time t, i.e. At 6= ∅. By contrast, if εt = 0 the system
is not under signal attack at time t, i.e. At = ∅. Thus, the
signal attack is effectively modeled by a Bernoulli random set
At which is either empty (if εt = 0) or a singleton At = {at}
when εt = 1. The notion of attack existence is used to
detect the presence (existence) of a signal attack and thus
initiate its estimation by means of the posterior probability
of attack existence rt = Prob(At 6= ∅|Zt). In particular,
the centralized hybrid Bernoulli Bayesian filter proposed in
[11] for joint attack detection-state estimation propagates
in time, via a two-step prediction-correction procedure, a
joint posterior density completely characterized by a triplet
consisting of: (1) the probability of existence of the signal
attack r; (2) the PDF p0(x) in the state space for the system
under no signal attack; (3) the PDF p1(a, x) in the joint
attack input-state space for the system under signal attack.
The triplet (r, p0(·), p1(·, ·)) provides useful information for
attack detection, state estimation and attack reconstruction.
Specifically, the estimated probability of attack existence is
used to take a decision about attack existence. Decision rules
can be based on different criteria, such as the Maximum A
posteriori Probability (MAP) which compares the a posteriori
probabilities Prob(A 6= ∅|Z) and Prob(A = ∅|Z) of the
two hypotheses on attack existence Â 6= ∅ and Â = ∅ (the
system is under signal attack or not) via a simple binary
hypothesis test [27]. Given the decision about signal attack
existence, then secure state estimation can be performed on
the basis of the available posteriors, either p0(·) or p1(·, ·).
In fact, optimal point estimates of the state of the system
under nominal operation or, respectively, of the attack input
and of the state of the system under attack can be obtained
from p0(·) or p1(·, ·) according to some criterion, e.g., MAP
or Minimum Mean Squared Error (MMSE). The resulting
HBRS filter, as a sequential Bayesian estimator, recursively
estimates the triplet (r, p0(·), p1(·, ·)) through the prediction

and correction steps, by using the received observation set as
well as the measurement and dynamic models described below.

C. Measurement models and likelihood functions

1) Packet substitution: Let us consider the packet substi-
tution attack model introduced in Section II-A and denote by
λ(Zi,jt |At, xt) the likelihood function of the measurement set
defined in (3), which has obviously two possible forms, At
being a Bernoulli random set. In particular, for At = ∅:

λ(Zi,jt |∅, xt) = (13)
1− pi,jd , if Zi,jt = ∅

pi,jd
[
(1− pi,jf ) `i(z|xt) + pi,jf κi,j(z)

]
, if Zi,jt = {z}

where {z} denotes the singleton whose element represents a
delivered measurement, i.e. λ({z}|At, xt) is the likelihood
that a single measurement z will be collected. Furthermore,
`i(z|xt) is the standard likelihood function of the system-
generated measurement z when no signal attack is present,
whereas κi,j(·) is a PDF modeling the fake measurement ỹi,jt ,
assumed to be independent of the system state. Conversely,
for At = {at}:

λ(Zi,jt |{at}, xt) = (14)
1− pi,jd , if Zi,jt = ∅

pi,jd
[
(1− pi,jf ) `i(z|at, xt) + pi,jf κi,j(z)

]
, if Zi,jt = {z}

where `i(z|at, xt) denotes the conventional likelihood of mea-
surement z, due to the system under attack at in state xt.
Notice that, by using the definition of set integral (7), it is
easy to check that both forms (13) and (14) of the likelihood
function λ(Zi,jt |At, xt) integrate to one.

2) Extra packet injection: Let us now consider the extra
packet injection attack model introduced in Section II-A, for
which the measurement set defined in (4) is given by the union
of two independent random sets. As it is clear from (5), Yi,jt
is a Bernoulli random set (with cardinality |Yi,jt | at most 1)
which depends on whether the sensor-originated measurement
yit is delivered or not. Conversely, F i,jt is the random set of
fake measurements that will be modeled hereafter as a Poisson
random set, such that the number of counterfeit measurements
is Poisson-distributed according to (9) and the FISST PDF of
fake-only measurements γ(F i,jt ) is given by (10) with spatial
distribution κi,j(·) in place of p(·). For the measurement set
(4), the aim is to find the expression of the likelihood function
λ(Zi,jt |At, xt). To this end, let us first introduce the following
FISST PDF for At = ∅:

η(Yi,jt |∅, xt) =


1− pi,jd , if Yi,jt = ∅

pi,jd `i(z|xt), if Yi,jt = {z}
(15)
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and for At = {at}:

η(Yi,jt |{at}, xt) =


1− pi,jd , if Yi,jt = ∅

pi,jd `i(z|at, xt), if Yi,jt = {z}
.

(16)
Then, using the convolution formula [14, p. 385], it follows
that

λ(Zi,jt |At, xt) =
∑

Yi,j
t ⊆Z

i,j
t

η(Yi,jt |At, xt) γ(Zi,jt \Y
i,j
t ). (17)

Hence, the likelihood corresponding to At = ∅ is given by

λ(Zi,jt |∅, xt) (18)

= η(∅|∅, xt) γ(F i,jt ) +
∑
z∈Zi,j

t

η({z}|∅, xt) γ(Zi,jt \ {z})

= γ(F i,jt )

[
1− pi,jd + pi,jd

∑
z∈Zi,j

t

`i(z|xt)
µκi,j(z)

]

where (15) and (10) have been used, while for At = {at} we
have

λ(Zi,jt |{at}, xt) (19)

= η(∅|{at}, xt) γ(F i,jt ) +
∑
z∈Zi,j

t

η({z}|{at}, xt) γ(Zi,jt \ {z})

= γ(F i,jt )

[
1− pi,jd + pi,jd

∑
z∈Zi,j

t

`i(z|at, xt)
µκi,j(z)

]
.

D. Dynamic model

Let us finally introduce the dynamic model of the HBRS
(A, x). First, it is assumed that, in the case of a system under
normal operation at time t, an attack at+1 will be launched
to the system by an adversary during the sampling interval
with probability (of attack-birth) pb. On the other hand, if the
system is under attack (i.e., At is a singleton), it is supposed
that the adversarial action will endure from time step t to time
step t+ 1 with probability (of attack-survival) ps. It is further
assumed that (A, x) is a Markov process with joint transitional
density

m(At+1, xt+1|At, xt) = m(xt+1|At, xt)m(At+1|At) (20)

which ensues from considering the attack as a stochastic
process independent of the system state. Such an assumption
is motivated by the fact that (i) at may assume all possible
values, being completely unknown (we consider the most
general model for signal attacks where any value can be
injected via the compromised actuators/sensors), and (ii) the
knowledge of at adds no information on as, if s 6= t. In
addition, note that

m(xt+1|At, xt) =


m(xt+1|xt), if At = ∅

m(xt+1|at, xt), if At = {at}
(21)

are known Markov transition PDFs, while the dynamics of the
Markov process At resulting from the aforestated assumptions
is Bernoulli, described by the following densities:

m(At+1|∅) =


1− pb, if At+1 = ∅

pb p(at+1), if At+1 = {at+1}

m(At+1|{at}) =


1− ps, if At+1 = ∅

ps p(at+1), if At+1 = {at+1}

where p(at+1) is the PDF of the attack input vector. Clearly,
when the attack vector is completely unknown, a non-
informative PDF (e.g., uniform in the attack space) can be
used as p(at+1).

In [11], it was shown that, when the above-described
measurement and dynamic models are used and a centralized
setting is taken into account, HBRSs are closed with respect
to both the prediction and correction steps of the Bayes filter
recursion and the resulting filter can be derived in closed-
form. In order to make it possible to extend such results to
the considered distributed setting, the problem of how to fuse
HBRSs needs to be addressed in the next section.

IV. DISTRIBUTED FUSION OF HYBRID BERNOULLI
RANDOM SETS

The focus of this section is on how to fuse local HBRS
densities coming from multiple fusion nodes. A key issue is
how to consistently fuse such densities taking into account
that the agents may share common information and that
such common information is impossible to single out. Hence,
optimal (Bayes) fusion [18], [19] has to be ruled out and some
robust suboptimal fusion approach has to be undertaken. In this
respect, the paradigm of Kullback-Leibler fusion (average) has
been successfully introduced in [28] for single-object PDFs
and has been extended to FISST densities in [29]. From a
notational point of view, please notice that in this section the
fusion agent j is indicated as subscript while in the other parts
of the paper where also the time t appears, j is indicated as
superscript (and t as subscript).

A. Kullback-Leibler fusion

Given two FISST probability densities f(X ) and g(X ), let
us first define the Kullback-Leibler divergence (KLD) from
g(·) to f(·) as

DKL (f ‖ g)
4
=

∫
f (X ) log

f(X )

g(X )
δX (22)

where the integral in (22) must be interpreted as a set integral
according to the definition (7). Then, the weighted KLA f
of the agent multi-object densities fj , j ∈ N , is defined as
follows

f = arg inf
f

∑
j∈N

ωj DKL (f ‖ fj) (23)

6
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with weights ωj satisfying

ωj ≥ 0,
∑
j∈N

ωj = 1. (24)

Notice from (23) that the weighted KLA of the agent densities
is the one that minimizes the weighted sum of distances
from such densities. In particular, the choice ωj = 1/|N | for
any j ∈ N in (23) provides the (uniformly weighted) KLA
which averages the agent densities giving to all of them the
same level of confidence. An interesting interpretation of such
a notion can be given recalling that, in Bayesian statistics,
the KLD (22) can be seen as the information gain achieved
when moving from a prior g(X ) to a posterior f(X ). Thus,
according to (23), the average PDF is the one that minimizes
the sum of the information gains from the initial multi-object
densities. This choice is also coherent with the Principle of
Minimum Discrimination Information (PMDI) according to
which the probability density which best represents the current
state of knowledge is the one which produces an information
gain as small as possible (see [30], [31]). The adherence to
the PMDI is important in order to counteract the so-called
data incest phenomenon, i.e. the unaware reuse of the same
piece of information due to the presence of loops within the
network.

The following fundamental result holds.
Theorem 1: (Kullback-Leibler fusion of general multi-object

densities [29]) - The weighted KLA defined in (23) turns out
to be given by

f (X ) =

∏
j∈N

[fj (X )]
ωj

∫ ∏
j∈N

[fj (X )]
ωj δX

. (25)

Notice that (25) states that the fused density f is nothing
but the normalized weighted geometric mean of the agent
densities. It must be pointed out that the fusion rule (25), which
has been derived as KLA of the local multi-object densities,
coincides with the Generalized Covariance Intersection for
multi-object fusion first proposed by Mahler [19] and also
known as Exponential Mixture Density [21].

When the agent densities are HBRS densities, the following
result holds.

Theorem 2: The weighted KLA of agent HBRSs, with
densities

pj(A, x) =

 (1− rj) p0j (x), if A = ∅

rj p
1
j (a, x), if A = {a}

, j ∈ N

(26)
and fusion weights ωj satisfying (24), is a HBRS with density
given by

p(A, x) =

 (1− r) p0(x), if A = ∅

r p1(a, x), if A = {a}
(27)

where

r =

∏
j∈N

[rj ]
ωjη1∏

j∈N [rj ]ωjη1 +
∏
j∈N [1− rj ]ωjη0

(28)

p0(x) =

∏
j∈N [p0j (x)]ωj

η0
(29)

p1(a, x) =

∏
j∈N [p1j (a, x)]ωj

η1
(30)

with

η0 =

∫ ∏
j∈N

[p0j (x)]ωjdx (31)

η1 =

∫ ∏
j∈N

[p1j (a, x)]ωjda dx. (32)

Proof: First, we compute the numerator of the KLA
fusion in (25), i.e.,

∏
j∈N [fj(X )]ωj . Substitution of the hybrid

Bernoulli densities (26) of each node into this term yields, if
A = ∅, ∏

j∈N
[pj(A, x)]ωj

=
∏
j∈N

[(1− rj)p0j (x)]ωj

=
∏
j∈N

[1− rj ]ωj

∏
j∈N

[p0j (x)]ωj ,

(33)

otherwise if A = {a},∏
j∈N

[pj(A, x)]ωj

=
∏
j∈N

[rj p
1
j (a, x)]ωj

=
∏
j∈N

[rj ]
ωj

∏
j∈N

[p1j (a, x)]ωj .

(34)

Then, we compute the denominator of (25), i.e.,∫ ∏
j∈N [fj(X )]ωjδX . According to the integral of hybrid

Bernoulli densities (12), we have∫ ∏
j∈N

[pj(A, x)]ωjδA dx

=
∏
j∈N

[1− rj ]ωj

∫ ∏
j∈N

[p0j (x)]ωjdx

+
∏
j∈N

[rj ]
ωj

∫ ∏
j∈N

[p1j (a, x)]ωjda dx

=
∏
j∈N

[1− rj ]ωjη0 +
∏
j∈N

[rj ]
ωjη1

(35)

where η0 and η1 are given by (31) and (32) respectively.

7
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Hence, if A = ∅, we can obtain the weighted KLA p(A, x)
by combining (33) and (35), i.e.,

p(A, x)

=

∏
j∈N [1− rj ]ωj

∏
j∈N [p0j (x)]ωj∏

j∈N [1− rj ]ωjη0 +
∏
j∈N [rj ]ωjη1

=

∏
j∈N [1− rj ]ωjη0∏

j∈N [1− rj ]ωjη0 +
∏
j∈N [rj ]ωjη1

·
∏
j∈N [p0j (x)]ωj

η0

=

(
1−

∏
j∈N [rj ]

ωjη1∏
j [1− rj ]ωjη0 +

∏
j∈N [rj ]ωjη1

)
·
∏
j∈N [p0j (x)]ωj

η0

=(1− r)p0(x)
(36)

where r and p0(x) are given in (28) and (29) respectively.
Similarly, we can also get the weighted KLA p(A, x) when
A = {a} by combining (34) and (35), i.e.,

p(A, x)

=

∏
j∈N [rj ]

ωj
∏
j∈N [p1j (a, x)]ωj∏

j∈N [1− rj ]ωjη0 +
∏
j∈N [rj ]ωjη1

=

∏
j∈N [rj ]

ωjη1∏
j∈N [1− rj ]ωjη0 +

∏
j∈N [rj ]ωjη1

·
∏
j∈N [p1j (a, x)]ωj

η1

=r p1(a, x)
(37)

where p1(a, x) is given in (30).
As a result, the weighted KLA of agent HBRS densities is

still a HBRS density characterized by the quantities r, p0(x)
and p1(a, x) in (28)-30).

B. Immunity to data incest

The KLA fusion guarantees immunity to double counting of
information [32] and, further, the consensus approach always
gives rise to densities which avoid data incest irrespectively
of the number of consensus iterations being carried out. In
this section, we illustrate this property of KLA fusion in the
specific case of HBRS densities.

Example: Consider only two fusion nodes with associated
conditional HBRS densities pj (A, x|Zj) for j = 1, 2, where
Zj = ∪i∈SjZi,j denotes the set of measurements received
by node j. The collective information set Z1 ∪ Z2 can be
decomposed into the union of the three disjoint information
sets as follows Z1 ∪ Z2 = (Z1 \ Z2) ∪ (Z2 \ Z1) ∪ (Z1 ∩
Z2). Hence, the optimal fusion of p1(·, ·) and p2(·, ·) could be
obtained as

po(A, x)

∝ p(A, x|Z1 ∪ Z2)

∝ p(A, x|Z1 \ Z2) p(A, x|Z2 \ Z1) p(A, x|Z1 ∩ Z2)

∝ p1(A, x) p2(A, x)

p(A, x|Z1 ∩ Z2)

(38)

if the HBRS densities p(A, x|Z1 ∩ Z2) conditioned to the
common information Z1 ∩ Z2 were known (the symbol ∝
stands for “proportional to” and the proportionality factor is
determined by imposing that po(·, ·) has unit integral over

B(A) × X). However, in the considered framework wherein
nodes repeatedly fuse information from their neighbors with-
out any knowledge about the network topology, it is impossible
to single out the common information and thus apply (38).

Hence, some robust suboptimal fusion strategy has to be
adopted. The simplest distributed averaging algorithm obtained
via convex combination [22], [23] of the posteriors is the so-
called “naive” distributed fusion and is given by

pnaive(A, x)
4
=

p1(A, x) p2(A, x)∫
p1(·) p2(·) δA dx

∝ p(A, x|Z1 \ Z2) p(A, x|Z2 \ Z1)[p(A, x|Z1 ∩ Z2)]2.
(39)

It can be observed from (39) that the naive distributed fusion
involves double counting of common information compared
with the optimal fusion in (38).

Another alternative is the KLA fusion of HBRS densities,
adopted in this paper, which provides

p(A, x)
4
=

[p1(A, x)]ω1 [p2(A, x)]ω2∫
[p1(A, x)]ω1 [p2(A, x)]ω2δA dx

∝ [p(A, x|Z1 \ Z2)]ω1 [p(A, x|Z2 \ Z1)]ω2p(A, x|Z2 ∩ Z1)
(40)

where it can be seen that no double counting of common
information occurs. The price to be paid is a conservative
flattening [p(Z1 \Z2|A, x)]ω1 [p(Z2 \Z1|A, x)]ω2 of exclusive
information. Hence the fusion (27) under (24), turns out to
be robust with respect to data incest. The interested reader
is referred to [33] for a comparison between optimal and
suboptimal distributed fusion rules (including naive and KLA)
in terms of state estimation performance for a general linear-
Gaussian model with two fusion nodes.

For the subsequent developments, it is convenient to intro-
duce the operators ⊕ and � defined as follows:

p (A, x)⊕ q (A, x)
4
=

p (A, x) q (A, x)∫
p(A, x) q(A, x) δA dx

ω � p (A, x)
4
=

[p(A, x)]
ω∫

[p(A, x)]
ω
δA dx

,

the above integrals being HBRS integrals as in (12).
The previous example shows that no double counting occurs

in the distributed KLA fusion in the case of two fusion nodes.
Hereafter, it is mathematically proved that, in the general
case with an arbitrary number of fusing nodes, the KLA
distributed fusion ensures immunity to the double counting of
information irrespective of the unknown common information
in the densities pj . To this end, for each I ∈ F(N ), let
YI denote the information (i.e. measurements and/or prior
information) which is available to all, and only, the nodes be-
longing to I. Thus, Y{j} is the information available uniquely
to node j. Accordingly, YN represents the information shared
by the entire network. For instance, if the number of fusing
nodes is Nf = 3, we have Y{1,2} = (Z1 ∩ Z2) \ Z3 and
Y{1} = Z1 \ (Z2 ∪ Z3).

By construction, the pieces of information YI are taken as
mutually independent so that YI ∩ YI′ = ∅ for any I, I ′ ∈

8
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F(N ) with I 6= I ′. In other words, {YI}I∈F(N ) provides
a (non-overlapping) partition of the collective information.
Let p (A, x|YI) now be the HBRS density conditioned to the
information YI . Then, in each node i ∈ N , the HBRS density
pi(A, x) can be factorized as

pi (A, x) =
⊕

I∈F(N ): i∈I

p(A, x|YI) (41)

Theorem 3: Let all the HBRS densities in (26) be factorized
as in (41). Then, the distributed KLA fusion p in (27) turns
out to be equal to

p(A, x) =
⊕
I∈F(N )

[(∑
i∈I

ωi

)
� p(A, x|YI)

]
. (42)

Proof: By substituting (41) into (25), and thanks to the
properties of the operators ⊕ and � in [29], we have

p(A, x) =
⊕
i∈N

[ωi � pi (A, x)]

=
⊕
i∈N

ωi �
 ⊕
I∈F(N ): i∈I

p(A, x|YI)


=

⊕
i∈N

 ⊕
I∈F(N ): i∈I

(
ωi � p(A, x|YI)

)
=

⊕
I∈F(N )

[⊕
i∈I

(
ωi � p(A, x|YI)

)]

=
⊕
I∈F(N )

[(∑
i∈I

ωi

)
� p(A, x|YI)

]
.

It can be seen from (42) that each independent piece of
information YI is counted only once with weight

∑
i∈I ωi.

Since by construction 0 ≤
∑
i∈I ωi ≤ 1, one can conclude that

no double counting of common information occurs. In other
words, the KLA fusion turns out to be inherently robust with
respect to data incest. The price to be paid is a conservative
flattening of independent information which occurs whenever∑
i∈I ωi < 1.
Remark 1: Similar to the case of two fusion nodes, the

optimal Bayesian fusion of all HBRS densities pi, i ∈ N ,
could be obtained as

po(A, x) =
⊕
I∈F(N )

p(A, x|YI) (43)

where each independent piece of information YI is counted
only once with unitary weight. However, the optimal fusion
rule requires to single out the common information in order
to compute po, and hence it cannot be implemented in the
considered framework as we analyzed in the previous example.
When this is not possible, the KLA provides an effective
solution to the HBRS density fusion problem in view of
Theorem 3.

C. Consensus hybrid Bernoulli filter

Consensus [22], [23] has emerged as a powerful tool
for distributed computation (e.g., averaging, minimization,
maximization, . . . ) over networks and has found widespread
application in distributed parameter/state estimation [22], [28],
[34]–[39]. In essence, consensus aims to perform a collective
computation over a whole network by iterating, in each node
j of the network, a sequence of regional computations of the
same type involving the subnetwork Nj of its in-neighbors. In
the context of this work, it is assumed that each fusion node
j ∈ N is provided with an agent HBRS density pj(A, x)
of form (26) and attempts to compute, in a distributed and
scalable way, the collective Kullback-Leibler fusion

p =
⊕
j∈N

(
1

|N |
� pj

)
=

1

|N |
�

⊕
j∈N

pj

 . (44)

To this end, let pj,0 = pj , then a consensus algorithm for the
computation of (44) takes the iterative form

pj,k+1(A, x) =
⊕
h∈Nj

( ωj,h � ph,k(A, x)) , ∀j ∈ N

(45)
where the consensus weights must satisfy the conditions

ωj,h ≥ 0 ∀j, h ∈ N ;
∑
h∈Nj

ωj,h = 1 ∀j ∈ N . (46)

In fact, thanks to the properties of the operators ⊕ and � listed
in [29, p. 513], it can be seen that

pj,k(A, x) =
⊕
h∈N

(
ω
(k)
j,h � ph(A, x)

)
, ∀j ∈ N (47)

where ω(k)
j,h is defined as the element (j, h) of the matrix Ωk

and Ω is the consensus matrix whose generic (j, h)-element
coincides with the consensus weight ωj,h (if h /∈ Nj then
ωj,h is taken as 0). In this respect, it is well known that if Ω
is primitive (i.e. there exists an integer m such that all entries
of Ωm are strictly positive) and doubly stochastic (i.e. all its
rows and columns sum up to one), one has

lim
k→+∞

ω
(k)
j,h =

1

|N |
, ∀j, h ∈ N .

Hence, as the number of consensus steps increases, each local
density “tends” to the collective KLA (44).

A necessary condition for the matrix Ω to be primitive is
that the graph G associated with the sensor network be strongly
connected [37]. In this case, a possible choice ensuring conver-
gence to the collective average for undirected graphs is given
by the so-called Metropolis weights [23], [37]

ωj,h =
1

max{|Nj |, |Nh|}
, j ∈ N , h ∈ Nj , j 6= h

ωj,j = 1−
∑

h∈Nj ,h6=j

ωj,h .

In Theorem 3 it has been proved that the Kullback-Leibler
fusion guarantees immunity to double counting of information
and that, further, the consensus approach always gives rise to
densities which avoid double counting irrespectively of the
number of consensus iterations being carried out.
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V. DISTRIBUTED BAYESIAN FILTER FOR JOINT ATTACK
DETECTION AND STATE ESTIMATION

Exploiting Theorem 2 on the Kullback-Leibler fusion of
HBRSs and the HBRS filtering algorithm of [11, Section
III], it is possible to derive a distributed joint attack and
secure state estimation algorithm to be described hereinafter.
Let at time t each fusion node j ∈ N have a HBRS
density pjt−1(A, x) summarizing the available information
on (At−1, xt−1), obtained by processing the measurements
Zj1:t−1

4
= ∪t−1s=1 ∪i∈Sj Zi,js as well as by fusing information

with the neighbors (i.e. fusion nodes belonging to Nj). Then,
the local HBRS pjt (·, ·) can be updated by means of the
following steps to be carried out at each time t in fusion node
j.

Distributed HBRS (DHBRS) filter (in node j at time t)
1) Prediction - Obtain pjt|t−1(A, x) from pjt−1(A, x) ex-

ploiting the dynamic model according to the results of
Theorem 3 in reference [11].

2) Correction - Obtain pjt|t(A, x) from pjt|t−1(A, x) exploit-

ing the measurements Zjt
4
= ∪i∈SjZ

i,j
t according to the

results of either Theorem 1 (for packet substitution) or of
Theorem 2 (for packet injection) in reference [11].

3) Fusion - Initialize consensus by setting pj,0(A, x) =
pjt|t(A, x). Then perform L consensus iterations, i.e. (45)
for k = 0, . . . , L− 1, to finally get pj,L(A, x). Then, set
pjt (A, x) = pj,L(A, x).

4) Attack detection & state estimation - Perform attack
detection using rjt from the available current HBRS
pjt (·, ·). Based on the MAP decision rule, given Zjt ,
assign Âjt 6= ∅ (the system is under signal attack) if and
only if Prob(At 6= ∅|Zjt ) > Prob(At = ∅|Zjt ), where
Prob(At 6= ∅|Zjt ) = rjt and Prob(At = ∅|Zjt ) = 1 − rjt ,
i.e. iff rjt > 1/2. Finally, perform secure state estimation
by extracting the estimates x̂0jt from p0jt (x) (if Âjt = ∅)
or x̂1jt and âjt from p1jt (a, x) (if Âjt 6= ∅) according to
some criterion (e.g., MAP or MMSE).

Notice that the first two steps (i.e. prediction and correction)
together make up a local HBRS filtering cycle that allows to
update information in node j on the basis of local measure-
ments from Sj and the system model, while the third (fusion)
step allows to diffuse information throughout the network.
Recall that the HBRS density pjt (A, x) is characterized by
the triplet

(
rjt , p

0j
t (x), p1jt (a, x)

)
where the attack existence

probability rjt can be used in the fourth step, e.g. by a MAP
detector, to ascertain whether the system is under attack or not.
Based on this decision about attack existence, a secure state es-
timate can be finally extracted from either p0jt (x) or p1jt (a, x)
according to some criterion (e.g., MAP or MMSE). Note that
whenever Âjt 6= ∅, an optimal estimate of the unknown attack
input can also be obtained from p1jt (a, x). This means that,
differently from previous work on secure state estimation of
CPSs where the corrupted information is usually discarded,
here we seek to guarantee not only robustness against attacks,
but also performance restoration after the adversary-induced
degradation by means of signal attack reconstruction using
all the available information. For practical implementation of

the HBRS filter, the infinite-dimensional PDFs p0jt (x) and
p1jt (a, x) need to be approximated with finite-dimensional
parametrizations, e.g., as Gaussian-mixtures. In [40] it has
been shown that Gaussian-mixture HBRSs are closed under
prediction and correction although both steps imply a growth
of the number of Gaussian components that needs to be
contrasted by suitable merging and/or pruning procedures. As
far as the fusion step is concerned, this does not preserve
the Gaussian-mixture form; however, good Gaussian-mixture
approximations of the KLA of Gaussian-mixtures can be
obtained using the techniques presented in [29] and [41].

Details on the Gaussian-mixture implementation can be
found in [40] for the HBRS filter prediction and correction
steps and in [29] for the fusion of Gaussian-mixtures.

Before ending this section, the following remarks are in
order.

Remark 2: The proposed approach to resilient distributed
state estimation in the presence of malicious attacks relies
on the assumption that the communication between fusion
nodes is secure. In fact, the deployment in the network of
trusted nodes with higher security has been proposed as a
possible way of ensuring resilience to adversarial attacks
in distributed computation (see [42]–[44] and the references
therein). In cases wherein the employment of secured nodes
is ruled out, an alternative approach consists of introducing a
redundancy in the communication topology of the network (for
instance by increasing the connectivity degree of each fusion
node) and then applying some outlier detection technique in
order to detect data falsification attacks [45]. In this respect,
since the proposed distributed information fusion algorithm
is consensus-based, it is well-suited to be modified so as
to include some data falsification attack mitigation technique
following, for example, the ideas of [46]–[48]. For instance,
each node j can flag as suspicious a neighbor ` for which the
distance DKL(pjt (A, x)||p`t(A, x)) between its local density
and the one received from the neighbor exceeds a certain
threshold τ jt . Then, using the flags received from neighboring
nodes, a majority rule can be used to convert the status of
neighbor ` from suspicious to attacker [48], [49]. Such flags
can be used to modify the consensus weights, which are
reduced for suspicious nodes and set to zero for nodes flagged
as attacker. Since a full treatment of this issue would go
beyond the scope of this manuscript, we refer the reader to
[46]–[48] for in-depth studies on how to modify the consensus
weights and how to adapt the time-varying thresholds τ jt so
that the attackers are eventually filtered out.

Remark 3: As pointed out in Section IV, the proposed
distributed information fusion algorithm is inherently immune
to the data incest phenomenon. Hence, in accordance with the
setting of Section II-B, it is admitted that each sensor node
sends its measurements to more than one fusion center (as it
can happen in the case of broadcast communication), in that
the fusion rule prevents double counting of such information.

VI. NUMERICAL EXAMPLE: WIDE-AREA MONITORING
SYSTEM

In this section, the performance of the proposed distributed
random-set approach for joint attack detection and secure

10



2373-776X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2017.2760804, IEEE
Transactions on Signal and Information Processing over Networks

CPS state estimation is analyzed in the presence of both
signal and extra packet injection attacks as well as uncertainty
on measurement delivery. Let us consider the motivating
example of a 4-area IEEE 14-bus system (Fig. 1) introduced
in Section II-A, consisting of 5 synchronous generators and
11 load buses. The parameters relative to transmission lines,
generators’ inertia and damping, nominal power injections and
demands are the same considered in the 14-bus case of [50].
As shown in Fig. 1, the IEEE 14-bus system is partitioned into
Nf = 4 distinct clusters containing b1 = 3, b2 = 4, b3 = 4,
and b4 = 3 buses, respectively. The dynamics of the system
can be described by the linearized swing equation [51] derived
through the Kron reduction [52] of the linear small-signal
power network model. The DC state estimation model assumes
1 p.u. (per unit) voltage magnitudes in all buses and j1
p.u. branch impedance, with j denoting imaginary unit. The
system dynamics is thus represented by the evolution of
n = 10 states comprising both the rotor angles δi and the
frequencies ψi of each generator i in the 4-cluster network.
After discretization (with sampling interval T = 0.01s), the
model of the considered wide-area monitoring system takes
the form (1)–(2), where the whole state and the phase angles
in all buses of each cluster are measured by a network Sj
of local sensors. The inter-area communication network is
shown in Fig. 2. The system is assumed to be corrupted by
additive zero mean Gaussian white process and measurement
noises with variances σ2

w = 10−5 and σ2
vi = 10−2. At time

step t = 50 a signal attack vector at = [0.7, 0.2]T p.u. is
injected into the system to abruptly increase the real power
demand of the two victim load buses 3 and 9 with an additional
loading of 74% and, respectively, 68%. This type of attack,
referred to as load altering attack in [53], can provoke a loss
of synchrony of the rotor angles and hence a deviation of the
rotor speeds of all generators from the nominal value. In this
test case, the probabilities of attack-birth and attack-survival
are fixed, respectively, at pb = 0.05 and ps = 0.95. In each
cluster, the system-generated measurement vector is supposed
to be delivered at the local fusion node with probability
pd = 0.99. The extra fake measurements injected into the local
sensor channels are modeled as a Poisson RFS with average
number ξ = 30 and probability density uniformly distributed
over the interval [−10, 5], suitably chosen to emulate system-
originated observations. Fig. 3 shows the resulting number of
fake measurements maliciously injected at each time step.

The Gaussian-mixture implementation of the proposed
Kullback-Leibler fusion with HBRSs in (27) is realized by
sequentially applying the pairwise fusion rule (28)–(30) for
two fusing nodes |N | − 1 times, where the ordering of
the pairwise fusions is irrelevant. A similar approach has
been widely used in distributed fusion with other RFS based
filters [29], [54]. The parameters of the Gaussian-mixture
implementation are chosen as follows: the pruning threshold
is γp = 10−5; the merging threshold is γm = 4; the maximum
number of Gaussian components is Nmax = 15.

In this paper the problem of security in CPSs is addressed
by considering, in a unified and general framework, the
two fundamental aspects of attack detection and secure state
estimation. In this context, the performance of the proposed

Fig. 3: Number of extra fake measurements injected vs. time.

Fig. 4: Estimated probability of attack existence rt compared
to true attack existence εt. The signal attack gets into action
at time step t = 50 (εt = 1 for t = 50, . . . , 100).

Estimated attack set

Â 6= ∅ Â = ∅

True attack set
A 6= ∅ 98.04 1.96

A = ∅ 0 100

TABLE I: Confusion matrix (in %) of the MAP detector.
The false alarm and misdetection rates appear as off-diagonal
entries.

DHBRS filter is evaluated in terms of both attack detection
and secure state estimation. Figs. 4–9 show the performance
of the distributed HBRS filter with L = 10 consensus steps.
Specifically, Fig. 4 displays the performance in terms of attack
detection by comparing the estimated probability of attack
existence rt (averaged over 100 independent Monte Carlo
trials and all the fusion nodes) with the true binary random
variable of attack existence εt. As it can be seen, while the
proposed DHBRS filter demonstrates reliable detection of the
signal attack, the filter implementing naive instead of KLA
fusion (see Section IV-B) erroneously estimates the presence
of a signal attack for the entire duration of the simulation,
even when εt = 0. The error matrix of the MAP detector,
described in step 4) of the DHBRS filter, is reported in Table
I to evaluate the attack detection accuracy. The percentage
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Fig. 5: True δi and estimated rotor angles δj,it , for node j = 1
and generators i = 1, . . . , 5.

Fig. 6: Comparison of performance between centralized and
distributed (L = 1 and L = 10) HBRS filters in terms of
frequency RMSE.

Fig. 7: Comparison of performance between distributed HBRS
filters using KLA vs. naive fusion (L = 10) in terms of
frequency RMSE.

errors, averaged over the number of Monte Carlo runs, show
that the MAP decision rule is characterized by null false alarm
rate and low misdetection rate (1.96%) due to a slight delay
in attack detection. Figs. 5–9 evaluate the performance of
the DHBRS filter in terms of secure state estimation. Fig. 5
provides a comparison between the true and the estimated
values of rotor angles of each generator and clearly shows

Fig. 8: Consistency check for the DHBRS filter implementing
KLA vs. naive fusion step. The trace of the error covariance
matrix P̂ is compared to the actual mean squared error P ∗ to
check if the two distributed filters guarantee consistent secure
state estimation.

Fig. 9: True and estimated components of the attack vector.

Fig. 10: Comparison between DHBRS (using KLA) and naive
filter in terms of OSPA metric (p = 1, c = 30) of the attack
random set At.

how δ1 and δ3 lose synchrony once the load altering attack
gets into action. The centralized algorithm provides a perfor-
mance benchmark for the proposed distributed strategy. Fig. 6
compares the Root Mean Square Error (RMSE), averaged
over all fusion nodes and Monte Carlo runs, of the frequency
estimates obtained with the DHBRS filter and, respectively,
a centralized HBRS filter that processes measurements from
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Fig. 11: Convergence rate of KLA fusion of HBRS densities.
Each local estimate of rotor angle δ1j,k in node j = 1, . . . , 4

tends to the collective KLA δ
1

for k = 1, . . . , L and L = 10.

all sensors. It can be observed that the performance of the
DHBRS filters (performing L = 1 and, respectively, L = 10
consensus steps) is comparable to the one of the centralized
algorithm which, in this linear-Gaussian case, is equivalent
to what would be obtained using the optimal fusion (38). In
particular, the error is almost identical for the two filters when
the system is not under attack, while the gap in accuracy
becomes more evident when the signal attack is active. Despite
the short diameter of the considered communication network,
the number of consensus steps affects the accuracy of state
estimation when the system is under attack; though accuracy
is already satisfactory with a single consensus step, it improves
with L = 10. We also present the performance gain in terms
of state estimation provided by KLA fusion with respect to
the naive approach in Fig. 7, which clearly shows that the
distributed naive filter provides unreliable estimates of the
state. This is due to the fact that naive fusion combines the
information from different nodes under the assumption that the
local HBRS densities are independent when they are actually
correlated via previous information flows propagated among
neighbors. As shown in Fig. 8, this can lead to inconstistent
estimates, i.e. estimates that do not satisfy the consistency
condition [55] P̂ > P ∗, where P̂ is the error covariance
matrix expressing the uncertainty associated with the estimate
of the state vector and P ∗ is the actual mean squared error
calculated by averaging the squared estimation error over the
Monte Carlo trials. It can be noticed from Fig. 8 that the above
consistency condition holds for the DHBRS filter performing
KLA fusion, while inconsistent (i.e overconfident) estimates
are obtained when the naive fusion rule is used. Fig. 9
evaluates the performance in terms of attack reconstruction by
comparing the true and estimated components, extracted from
p11t (a, x), of the malicious signal attack for a single Monte
Carlo realization. To provide an unique metric evaluating
both attack detection and attack reconstruction performance,
we also consider the well known OSPA (Optimal SubPattern
Assignment) distance [56] for random sets, to measure the
error between the true and estimated attack set also taking into
account misdetections/false detections. A comparison between

the DHBRS filter using KLA vs. naive fusion in terms of
OSPA metric of order p = 1 and cut-off value c = 30 is
shown in Fig. 10. The OSPA distance highlights how the
use of naive fusion, which is not immune to data incest,
leads to false detections before time step t = 50 and less
accurate state estimation with respect to the proposed DHBRS
filter when the system is under signal attack. Finally, the
performance of the distributed HBRS filter is assessed in
terms of convergence rate of the proposed consensus algorithm
based on the Kullback-Leibler fusion of HBRSs (step 3 of
the DHBRS filter described in Section V). Fig. 11 shows
the behavior of the distance |δ̄1j − δ1j,k| for fusion nodes
j = 1, . . . , 4 concerning the estimated rotor angle of generator
1 as a function of the number of consensus steps. We can
see how each local estimate δ1j,k, averaged over all Monte

Carlo trials and time steps, tends to the collective KLA δ
1

for
k = 1, . . . , L, i.e. as the number of consensus steps increases.
Analogous results are achieved for the remaining generators
of the power network.

VII. CONCLUSIONS

The paper has addressed a fundamental issue in the oper-
ation of networked cyber-physical systems (CPSs), i.e. how
to detect incoming cyber-attacks and securely estimate the
system state by means of distributed processing techniques.
Different types of cyber-attacks (i.e. sensor/actuator data cor-
ruption, packet substitution and extra packet injection) and a
cluster-based network configuration, wherein multiple cluster-
heads receive data from remote sensors via non-secure links
and exchange processed information neighborwise via secure
links, have been considered. The joint attack-detection &
state estimation problem has been cast in a Bayesian random
set framework using Hybrid Bernoulli Random Set (HBRS)
densities to summarize the available information on the signal
attack and system state as well as appropriate filtering algo-
rithms to update such densities. Then, distributed fusion of
locally computed HBRSs has been exploited in order to spread
information over the network thus deriving a novel distributed
HBRS filter for secure monitoring of CPSs. A simulation case-
study concerning a wide-area monitoring power system has
been fully investigated in order to both motivate the proposed
approach and demonstrate its practical effectiveness. Future
work will concern: (i) extension to the case of non-secure links
among cluster-heads; (ii) application to distributed detection &
localization of malicious sources.
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