
Received April 2, 2019, accepted May 15, 2019, date of publication May 20, 2019, date of current version June 4, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2917950

An Approximate Regularized ML Approach to
Censor Outliers in Gaussian Radar Data
SUDAN HAN 1, (Student Member, IEEE), LUCA PALLOTTA 2, (Senior Member, IEEE),
VINCENZO CAROTENUTO 2, (Senior Member, IEEE), ANTONIO DE MAIO 3, (Fellow, IEEE),
AND XIAOTAO HUANG1, (Member, IEEE)
1College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
2CNIT udr Università degli Studi di Napoli ‘FedericoII’, I-80125 Napoli, Italy
3Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli ‘Federico II’, I-80125 Napoli, Italy

Corresponding author: Sudan Han (xiaoxiaosu0626@163.com)

ABSTRACT This paper considers the problem of censoring outliers from the secondary dataset in a
radar scenario where the sample support is limited. To this end, the generalized regularized likelihood
function (GRLF) criterion is used and the corresponding regularized maximum likelihood (RML) estimate
of the outlier subset is derived. Since the exact RML estimate involves the solution of a combinatorial
optimization problem, a reduced complexity but approximate RML (ARML) procedure is also designed.
As to the selection of the regularization parameter, both the expected likelihood (EL) principle and the
cross-validation (CV) technique are exploited. At the analysis stage, the performance of the RML andARML
procedure is evaluated based on simulated data in comparison with some previously proposed methods.
The results highlight that the RML and ARML algorithm achieves, in general, a satisfactory performance
level whereas the previously proposed techniques often experience some performance degradation when the
volume of training data is dramatically limited.

INDEX TERMS Outlier removal, regularized ML, limited training data, expected likelihood,
cross-validation.

I. INTRODUCTION
Adaptive radar processing techniques are based on the accu-
rate estimate of the interference covariance matrix usually
performed the sample covariance matrix (SCM) [1]–[8].
However, SCM presents a serious disadvantage requiring
a sample support large enough (usually more than twice
the system degrees of freedom (DOFs)) in order for the
estimate to achieve convergence. Besides, the underlying
independent and identically distributed (iid) assumption for
training data is commonly infringed in practical scenarios
due to clutter power variations, clutter discretes, undesired
outlier signals of different types, and so on [9] (heterogeneous
environment). A possible way to overcome the deleterious
effects of heterogeneous environments relies on the use of
structured covariance matrix estimators which needs less
training data than the SCM to achieve convergence [10]–[17].
Besides, an alternative approach consists in the selec-
tion of homogeneous training data before the SCM
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computation [18]–[22, and references therein].1 As an
example, in [26], a de-emphasis weighting approach is
devised to suppress the effect of outliers during the process
of SCM computation. Moreover, in [27] forward methods are
utilized for joint CFAR testing to discern among the absence
or presence of outliers in noise data. In [28], data selection
is performed exploiting the generalized inner product (GIP)
metric in conjunction with a covariance estimate based on
diagonal loading. The authors of [29] have interpreted the
training data selection as a parameter estimation problem
and have exploited a sparsity-based approach to solve it.
Finally, in [30] training data for covariance estimation are
selected as those having a spectrum close to that of the cell
under test. Other possible criteria that could inspire sec-
ondary data selection could be borrowed from the Machine
Learning domain. A first approach, referred to as ‘‘transfer
learning’’ [31], consists in applying some previously learned
knowledge from a specific source to a different context.
In addition the ‘‘adversarial learning’’ philosophy can be

1As amatter of fact, censoring outliers is also a hot topic in statistical field,
as for instance in [23]–[25].
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directly utilized to classify deviant behaviors as possible
outliers to excise from data, as extensively done in the field
of Internet of things (IoT) [32].

In [33], [34], the authors considered the maximum likeli-
hood (ML) estimate of the outlier subset according to the
generalized likelihood function (GLF) criterion and devised
an approximate ML (AML) procedure to improve the com-
putational efficiency. The ML (AML) procedure can often
completely eliminate the outlier masking effect and usu-
ally can outperform the GIP and reiterative censored GIP
(RCGIP). However, the ML (AML) algorithm imposes a
strict requirement on the number of selected homogeneous
training data (sample support). Specifically, it is necessary
that the sample support is at least equal to the system DOFs
in order to ensure the non-singularity of the estimated covari-
ance matrix. Unfortunately, in the real world, the number
of homogeneous secondary data is often limited, which may
lead to a performance degradation or failure of theML (AML)
method. To circumvent this drawback, in this paper the
generalized regularized likelihood function (GRLF) crite-
rion is introduced to estimate the outlier subset. In partic-
ular, a suitable regularization function necessary to ensure
well conditioned estimates is used. Moreover, like the
AML technique, an approximate regularized ML (ARML)
procedure is also devised to reduce the computational
burden.

With reference to the selection of the regularization
parameter, two distinct techniques are employed: the
expected likelihood (EL) [35], [36] and the cross-validation
(CV) [37], [38]. The EL procedure seeks for the specified
regularized covariance matrix which provides the likelihood
ratio (LR) value consistent with what is expected from the
true covariance matrix. The CV approach starts with parti-
tioning the secondary dataset into two subsets. The former is
used as training to derive the outlier subset estimate and the
corresponding regularized ML (RML) interference covari-
ance estimate whereas the latter plays the role of a validation
set to assess the risk associated with the obtained covariance
value.

Summarizing, the main contributions of this paper are:
• the introduction of a novel technique to estimate the
outlier subset based on the generalized regularized like-
lihood function (GRLF) criterion in order to circumvent
the lack of a conspicuous amount of secondary data;

• the exploitation of two techniques for the selection
of the regularization parameter for the specific problem,
i.e., EL and CV;

• the evidence of interesting performance gains of the
new procedures over some counterparts available in the
open literature in terms of capability of correctly excise
outliers.

The remainder of the paper is organized as follows.
Section II is devoted to the design of the regularized outlier
censoring scheme while Section III focuses on the choice of
the regularization parameter. In Section IV, the property of
the proposed algorithm is investigated whereas in Section V

the performance assessment is conducted. Finally, concluding
remarks and future research are discussed in Section VI.
Notation: In the sequel, vectors and matrices are denoted

by boldface lower-case and upper-case letters, respectively.
Symbols det(·), Tr (·), (·)†, (·)−1 denote the determinant,
trace, conjugate transpose, and inverse, respectively. Given
a vector a, diag (a) indicates the diagonal matrix whose ith
diagonal element is the ith entry of a. Given a matrix R of
size N × N , λi(R), i = 1, · · · ,N , denotes the eigenvalues
of R. For a finite set A, |A| stands for its cardinality. Finally,
the symbol E[·] denotes the statistical expectation.

II. DESIGN OF THE REGULARIZED OUTLIER
CENSORING SCHEME
The aim of this section is to design an outlier censoring
scheme resorting to the GRLF criterion. To this end, assume
the same model as [33]: a radar system collects data from
N channels (spatial and/or temporal) and the returns from
K range cells are sampled. Denote by xi, i = 1, · · · ,K , the
N -dimensional vector of the samples from the ith range cell
and suppose that{

xi = ci, ∀i ∈ �−�0

xi = ci + pi, ∀i ∈ �0
(1)

where c1, · · · , cK , are independent, circular, zero-mean,
complex Gaussian random vectors sharing the same covari-
ance matrix R (assumed to be positive definite and modeled
as an unknown deterministic parameter), representing the
homogeneous interference components;� = {1, · · · ,K } is a
set of size K which contains the indices of all the considered
range cells; �0 = {i1, · · · , iM } is a subset of � with distinct
elements and of sizeM (M < K ), which contains the indices
of the non-homogeneous range cells (see Fig. 1, the range
cells in red represent the non-homogeneous samples), and pis
are non-homogeneous interference components, representing
outliers, and modeled at design stage as deterministic and
unknown vectors,2 which are introduced by varying terrain,
clutter discretes, moving targets and so forth.

The goal of the outlier censoring procedure is to estimate
the subset �0 and to excise from the data xi, i = 1, · · · ,K ,
the vectors whose indices belong to the estimated outlier
subset. Toward this goal, exploiting the statistical indepen-
dence of c1, · · · , cK , in conjunctionwith the circular complex
Gaussian property, the regularized negative log-likelihood
function (NLLF) of x1, · · · , xK can be expressed as

g(x1, · · · , xK ) = ln [det(R)]

+
1
K

∑
i∈�0

[
(xi − pi)

†R−1(xi − pi)
]

+
1
K

∑
i∈�−�0

x†i R
−1xi + αTr (R−1) (2)

2Notice that, the adopted model does not preclude to simulate the outliers
at the analysis stage either as deterministic or as random vectors with specific
covariance properties different from those of the other homogeneous data.
By doing so a variety of covariance non-homogeneities can be accounted
for.
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FIGURE 1. Diagram showing � and �0.

where α > 0 is a regularization (or penalty) parameter
and Tr (R−1) is the chosen regularization function. Since

Tr (R−1) =
∑N

i=1
1

λi(R)
, the adopted regularization function

restricts
1

λi(R)
from becoming unbounded and thus shrinks

the estimate toward a well-conditioned covariance matrix.
According to the GRLF criterion, the regularized maxi-

mum likelihood (RML) estimate of �0 is the solution to the
following problem

�̂0(α) = argmin
�0

[min
R

min
pi1 ,··· ,piM

g(x1, · · · , xK )] (3)

where argmin
�0

(·) denotes a set among the
(K
M

)
=

K !
M !(K −M )!

subsets of � with distinct elements and of size

M which optimizes the argument.
Minimizing (2) over pi, ∀i ∈ �0, yields

min
pi1 ,··· ,piM

g(x1, · · · , xK )

= ln [det(R)]+
1
K

∑
i∈�−�0

x†i R
−1xi + αTr (R−1), (4)

observing that the minimum of each non-negative quadratic
form is achieved for pi = xi.
Optimizing (4) over R yields

min
R

min
pi1 ,··· ,piM

g(x1, · · · , xK ) = ln
[
det(R̃)

]
+ N (5)

where R̃ =
1
K

∑
i∈�−�0

xix
†
i + αI .

As a result, the solution to (3) is tantamount to solving the
following problem

�̂0(β) = argmin
�0

[
det(R̂)

]
(6)

where R̂ =
1

K −M

∑
i∈�−�0

xix
†
i + βI is the regularized sam-

ple covariance matrix (RSCM) with regularization parameter

β =
K

K −M
α > 0. As to the choice of M , we may exploit

some a-priori information to obtain an upper-bound (see [33]
for more details on this issue).

Problem (6) is a combinatorial optimization problem
which requires screening among all the possible

(K
M

)
sub-

sets of size M and selecting the one leading to the lowest
regularized sample covariance determinant. The computa-
tional burden connected with the exhaustive search could
be prohibitive, especially when K is large. It is thus
of interest developing approximate procedures character-
ized by a more affordable computational load and at the
same time ensuring good quality solutions. In this respect,
inspired by [23], [33], [34], we give the following theo-
rem, which represents the theoretical foundation for the
development of an effective regularized outlier censoring
scheme.
Theorem 1. Consider a dataset X = {x1, · · · , xK } con-

taining K random complex vectors of size N . Let H1 ⊂

{1, · · · ,K } with |H1| = h (1 ≤ h ≤ K ) and evaluate the
RSCM S1 = (1/h)

∑
i∈H1

xix
†
i + βI (β > 0). Then compute

the GIP values based on S1 for all the data

d1(i) = x†i S
−1
1 xi, for i = 1, · · · ,K (7)

Now take H2 such that

{d1(i); i ∈ H2} = {(d1)1:K , · · · , (d1)h:K } (8)

where (d1)1:K ≤ (d1)2:K ≤ · · · ≤ (d1)K :K are the ordered
GIP values, and compute the corresponding RSCM S2 =
(1/h)

∑
i∈H2

xix
†
i + βI . Then

det(S2) ≤ det(S1) (9)

with equality if and only if S2 = S1.
The proof is an extention of those given in [23] and [33].
The procedure in Theorem 1 is referred to as concentration-

step (C-step) since it is possible to obtain a more concentrated
RSCM S2 (i.e. sharing a lower determinant than the initial
RSCM S1). Exploiting this C-step iteratively, a sequence
of secondary datasets (with cardinality h) characterized by
a non-increasing regularized sample covariance determinant
can be obtained. More precisely, given the cardinality-h sub-
set Hold and the corresponding RSCM Sold , the generic iter-
ation of the procedure involves three steps:

1. compute the GIP values using Sold for all the data
dold (i) = x†i S

−1
oldxi, i = 1, · · · K ;

2. sort them in ascending order and select the indices
corresponding to the lowest hGIP values to construct the new
cardinality-h subset Hnew;

3. compute the new RSCM Snew = (1/h)
∑

i∈Hnew xix
†
i +

βI .
Since there are only finitely many cardinality-h subsets,

the iterative algorithm must converge, and the stopping cri-
terion can be set as det(Sm) = det(Sm−1) or a maximum
number of C-steps Ncstep is reached.3 It is finally worth
pointing out that there is no guarantee that the algorithm
converges to the global optimum of the minimal regularized

3Simulation examples have highlighted that a quite small number of
C-steps is necessary to achieve det(Sm) = det(Sm−1) and in all the developed
analysis we set Ncstep = 5.
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sample covariance determinant problem. However, if we take
more distinct initial subsets, apply C-steps on each subset
until convergence and select among the output solutions that
leading to the lowest regularized sample covariance determi-
nant, the probability of falling in the global optimum solution
will increase. This is the basic idea behind the proposed
ARMLmethod. As to the selection of initial subsets, we could
choose randomly distinct cardinality-h subsets. Summariz-
ing, the pseudocode of the ARML method is summarized in
Algorithm 1.

Algorithm 1 : Pseudocode of the ARML Method
1: Construct Ninitial distinct cardinality-h subsets and for

each of them carry out C-steps until the stopping criterion
is reached, obtaining Ninitial candidate solutions;

2: Report the subset with the lowest regularized sample
covariance determinant chosen among the Ninitial candi-
dates.

The ARML procedure can allow for a quite signifi-
cant reduction in computational complexity as compared
with the corresponding RML counterpart. Specifically, for
a given regularization parameter, the overall computa-
tional complexity of the ARML procedure is approxi-
mately O(max(K ,N )NinitialNcstepN 2) floating point opera-
tions per seconds (FLOPs) whereas that of the exact RML
procedure isO

(
max(K ,N )

(K
M

)
N 2
)
FLOPs, whereO(n) indi-

cates that an operation requires a number of FLOPs propor-
tional to n.

III. CHOICE OF THE REGULARIZATION PARAMETER
In order to benefit from the RML (ARML) method, it is vital
to choose an appropriate regularization parameter β. A rea-
sonable choice for β could be the value which minimizes the
outlier error selection probability. However, since there is no
a-priori knowledge about the exact outlier subset, it is not
possible in general to exploit the aforementioned criterion.
In order to circumvent this drawback and come up with
practically implementable outlier selectors, in the following
the use of the EL and CV techniques [35]–[38] is suggested
to select the regularization parameter β.

A. EL SELECTION TECHNIQUE
The EL method aims to find a parametric (regularized)
covariance matrix which generates a specific likelihood
ratio (LR) value consistent with what is expected from the
true covariance matrix [35], [36]. The basic principle behind
this technique relies on the invariance property of the LR,
namely, for the true covariance matrix, the probability density
function (pdf) of the LR does not depend on this true matrix.
Precisely, consider T iid N -dimensional circular, zero-mean,
complex Gaussian observations sharing the same positive
definite covariance matrix R, ZT = {z1, · · · , zT }, the LR of

the regularized covariance matrix R(β) is given by4

LR(ZT ,R(β)) =

∏min(T ,N )
j=1 λj

(
R(β)−1R̂T

)
exp(min(T ,N ))

exp
[∑min(T ,N )

j=1 λj
(
R(β)−1R̂T

)]
(10)

where R̂T = (1/T )ZTZ
†
T is the SCM and λj

(
R(β)−1R̂T

)
denotes the jth largest eigenvalue of the matrixR(β)−1R̂T . As
proved in [35], [36], when the regularized covariance matrix
R(β) coincides with the true covariance R, the pdf of the LR
(LR(ZT ,R)) does not depend on R and are specified by the
parameters N and T only (scenario free situation).

In the above formulation, it is required that the observations
ZT should be outlier-free and iid. To this end, we first select
T (1 ≤ T ≤ K ) samples from the secondary dataset
{x1, · · · , xK } using the RML (ARML) procedure with an
initial regularization parameter β0 and denote by 80 =

{i1, · · · , iT } the set of indices for the selected samples. The
regularized covariance matrix is then given by

R(β) =
1
T

∑
i∈80

xix
†
i + βI. (11)

According to the EL principle, the optimal regularization
parameter is the solution to the following problem

β̂ = arg
{
LR
(
xi1 , · · · , xiT ,R(β)

)
= LR0

}
, (12)

where LR0 is selected by referring to the scenario-free pdf.
For example, the mean or median value of that pdf could
be chosen. More precisely, LR0 is a-priori computed as
the value corresponding to the mean, median, or other per-
centiles of the scenario-free pdf. For more details see also
references [35], [36].

To possibly improve the result, we could substitute the
estimated β̂ for the initial β0 and repeat the above proce-
dure iteratively. The motivation behind the iteration is that
we might choose more qualified data with the estimated β̂,
namely, the probability that the selected T samples do not
contain outliers might increase. In addition, the iteration pro-
cedure can be stopped when β̂m = β̂m−1 or when the number
of iterations reach a pre-set value Niter . Simulation results
have highlighted that the performance of the RML (ARML)
procedure based on the EL technique, which is evaluated
in terms of correctly censoring all the outliers, is not very
sensitive to the parameter β0 and approximately achieves
satisfactory performance when K − M ≤ T ≤ K (based
on this observation in the sequel, we set T = K ).

B. CV SELECTION TECHNIQUE
CV technique relies on partitioning the original secondary
dataset into two subsets, one used as training set to estimate
the unknown parameters and the other used as validation
set to establish the risk associated with the training choice.

4Note that this expression can be applied for both the cases T ≥ N [35]
and T < N [36].
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To implement the CV procedure, it is necessary specify-
ing the selection of the risk function and the choice of the
partitioning strategy. The likelihood of the validation data
(evaluated using the training-based interference covariance
estimate) could be selected as the risk function. Moreover,
just for computational reasons, the negative logarithmic of the
mentioned likelihood can be equivalently chosen.

Like the EL method, we require that the validation set is
outlier-free. To this end, we first select L1 (1 < L1 ≤ K−M )
samples from the secondary dataset using the RML (ARML)
method with a fixed regularization parameter β1 and denote
by81 = {i1, · · · , iL1} the set of indices for the corresponding
vectors, which are indeed chosen as representative. As to the
choice of β1, we will discuss it later in subsection III-B.3.

1) CHOICE OF THE PARTITIONING STRATEGY
AND CV PROCEDURE
We adopt the Q1-fold cross-validation strategy [38]. Specifi-
cally, we divide 81 into Q1 (1 < Q1 ≤ L1) nonoverlapping
groups such that 81 =

⋃Q1
q=181q with N1q denoting the

number of indices in the qth group (N1qs, q = 1, · · · ,Q1, are
often selected to be approximately equal. For the qth group,
X1q = [xi, i ∈ 81q ] is used as validation set whereas all the
remaining data X − X1q = [xi, i ∈ �−81q ] are exploited
as training set to estimate the interference covariance matrix,
whose expression is given by

R̂1q (β) =
1

K − N1q −M

∑
i∈�−81q−�̂1q (β)

xix
†
i + βI, (13)

where �̂1q (β) is the estimated outlier subset of sizeM based
on the training set X − X1q for a specific regularization
parameter β. As a consequence, the risk function for the qth
group can be written as

f1q (β)=N1q ln
[
det

(
R̂1q (β)

)]
+Tr

[
R̂−11q (β)X1qX

†
1q

]
. (14)

The cross-validated risk function is defined as the average
over all the Q1 risks

g1(β) =
1
Q1

Q1∑
q=1

f1q (β) (β > 0), (15)

and the optimal regularization parameter β is the solution to
the following optimization problem

β̂ = argmin
β>0

g1(β). (16)

Since we cannot claim neither the existence of the min-
imum nor we can obtain a closed form expression for β̂,
we define a grid of values βp > 0, p = 1, · · · ,P1, evaluate
(15) in correspondence of each βp and select the βp leading to
the lowest value as optimizer. Otherwise stated, for a specific
βp, the interference covariance matrix estimate for the qth
group in (13) is given by

R̂1q (βp)=
1

K − N1q −M

∑
i∈�−81q−�̂1q (βp)

xix
†
i +βpI, (17)

where �̂1q (βp) is the estimated outlier subset for βp and for
the qth group.
Finally, the optimal β is approximated by the value on the

grid corresponding to the lowest cross-validated risk function,

β̂ = β̂p, with p̂ = arg min
p∈[1,··· ,P1]

g1(βp). (18)

The result can be possibly improved replacing β1 with the
estimated β̂ and triggering an iterative procedure. The same
stopping criterion as for the EL technique can be used. In con-
clusion, the pseudocode of the CV method is summarized in
Algorithm 2.

Algorithm 2 : Pseudocode of the CV Method
1: Select L1 (1 < L1 ≤ K − M ) samples from the

secondary dataset using the RML (ARML) method with
a fixed regularization parameter β1 and denote by 81 =

{i1, · · · , iL1} the set of indices for the selected vectors.
2: Divide 81 into Q1 (1 < Q1 ≤ L1) nonoverlapping

groups such that 81 =
⋃Q1

q=181q .
3: For each group, evaluate the risk function (14) for each
βp, p = 1, · · · ,P1.

4: Average all the Q1 risk functions to obtain the
cross-validated risk function (15) for βp, p = 1, · · · ,P1.

5: Obtain the estimated regularization parameter β̂

selecting the specific βp corresponding to the lowest
cross-validated risk function.

6: Replace β1 with β̂ and repeat steps 1-5 until the stopping
criterion is satisfied.

7: Report the final β̂ as the selected regularization
parameter.

2) REDUCED COMPLEXITY CV PROCEDURE
The main drawback of the above CV approach is the heavy
computational burden because the RML (ARML) procedure
should be appliedQ1×P1 times to estimate the outlier subset
for each group and βp value. In order to circumvent this
drawback, we can preliminarily estimate an outlier subset and
use it for all the groups of data and for all the values of β.
By doing so only one RML (ARML) procedure is necessary
to estimate the outlier subset and this leads to a significant
reduction of the overall complexity.

Formalizing, let us denote by �̂2
5 an outlier subset of size

M (M < K ) obtained exploiting the RML (ARML) proce-
dure with a fixed regularization parameter β2. 6 In addition,
we select L2 (1 < L2 ≤ K −M ) samples from the remaining
data to form the outlier-free validation set also based on
the RML (ARML) procedure with the same regularization
parameter β2 and denote by 82 = {i1, · · · , iL2} the set of
indices for the selected validation set. After that, like the
CV method, we partition 82 into Q2 (1 < Q2 ≤ L2)

5It is worth noting that when the outlier power is low or when the value
ofM is smaller than the true number of the outliers, the remaining data (i.e.,
data whose indices belong to �− �̂2) might still contain some outliers.

6The discussions on the selection of β2 is provided in subsection III-B.3.
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nonoverlapping groups such that 82 =
⋃Q2

q=182q , with N2q
denoting the number of indices in the qth group. For the qth
group, X2q = [xi, i ∈ 82q ] is used as validation set and the
remaining dataX−X2q = [xi, i ∈ �−82q ] are exploited for
training. The distinction between the modified and original
CV method relies in the fact that the same �̂2 is used for
all the groups. As a consequence, the interference covariance
matrix estimate for the qth group can be written as

R̂2q (β) =
1

K − N2q −M

∑
i∈�−�̂2−82q

xix
†
i + βI. (19)

The corresponding risk function for the qth group and the
cross-validated risk function are given by

f2q (β) = N2q ln
[
det

(
R̂2q (β)

)]
+ Tr

[
R̂−12q (β)X2qX

†
2q

]
,

(20)

g2(β) =
1
Q2

Q2∑
q=1

f2q (β), (21)

respectively, and the optimal β is the solution to the optimiza-
tion problem

β̂ = argmin
β>0

g2(β). (22)

In order to get some insights toward the solution of (22),
let us denote by

S2q =
1

K − N2q −M

∑
i∈�−�̂2−82q

xix
†
i (23)

the SCM for the qth group and S2q = U2q32qU
†
2q

its
eigenvalue decomposition, where U2q = [u2q,1, · · · ,u2q,N ]
is a unitary matrix of the eigenvectors, 32q = diag (r2q ) is
the diagonal matrix of the corresponding eigenvalues r2q =
[r2q,1, · · · , r2q,N ]. Thus, the objective function of (22) can be
recast as

g3(β) =
1
Q2

Q2∑
q=1

N2q ln
[
det(S2q + βI)

]
+Tr

[
(S2q + βI)

−1X2qX
†
2q

]
=

1
Q2

Q2∑
q=1

N2q

{
N∑
i=1

[
ln(r2q,i + β)+

(
c2q,i

r2q,i+β

)]}
,

(24)

where c2q,i =
1
N2q

u†2q,iX2qX
†
2q
u2q,i, q = 1, · · · ,Q2, i =

1, · · · ,N .
Now, let us focus on g3(β) and observe that it is continuous

and differentiable on (0,+∞). Its derivative is given by

g4(β) =
dg3(β)
dβ

=
1
Q2

Q2∑
q=1

N2q

N∑
i=1

[
1

r2q,i+β
−

c2q,i
(r2q,i+β)2

]
. (25)

It is clear that limβ→+∞ g3(β) → +∞ and, as a conse-
quence, if the minimum of (22) exists it is achieved for a finite
value of β to be searched among the real positive stationary
points, namely it is a real positive root of g4(β) = 0.
To find the roots of g4(β) = 0, it is necessary to

observe that the equation (25) can be recast as a polyno-
mial equation of degree 2NQ2 − 1. Typically, there are no
closed-form expressions for the roots of the above equa-
tion unless 2NQ2 ≤ 5 (Abel-Ruffini theorem [39]). When
2NQ2 > 5 (which is the practical situation), roots can be
only computed using numerical algorithms. Nevertheless, it is
always possible to provide an upper-bound on the real posi-
tive roots of the equation (which can be helpful in restricting
the search interval for a numerical procedure) resorting to the
following theorem [40]:
Cauchy’s theorem: Denote by p(x) = a0xn + a1xn−1 +
· · ·+ akx(n−k)+ · · ·+ an−1x+ an, (a0 > 0) a polynomial of
degree n > 0. If Nneg is the number of negative coefficients
and is greater than 0, then an upper-bound on the values of
the real positive roots of p(x) is given by

ub = max
1≤k≤n:ak<0

k

√
−
Nnegak
a0

(26)

If Nneg = 0, there are no real positive roots.
According to the above theorem, it is not only possible to

determine whether or not the real positive roots of equation
(25) exist, but one can also estimate an upper-bound on them
as long as they exist. Once the upper-bound is available,
one could also get an approximate solution to problem (22)
resorting to the discretization technique. Specifically, one can
sample uniformly the interval (0,ub] to obtain a grid of P2
points and select that minimizing the function g3. In addition,
when Nneg = 0, the smallest β (β > 0) value on the search
grid would lead to the minimum of g3 on the search grid.
Under this situation, β̂ = 0.01 is set.

To improve the result, the estimated β̂ can also be used to
replace β2 thus triggering an iterative procedure. Moreover,
the same stopping criterion as for the original CVmethod can
be exploited. Summarizing, the pseudocode of the modified
CV technique is reported in Algorithm 3.

3) PERFORMANCE ISSUES
Some considerations are now provided based on extensive
numerical experiments.
• The performance of the CV method is not very sensitive
to the value of the initial regularization parameter β1,
thus it could be selected randomly and the step 6 in
Algorithm 2 is no longer required (in the subsequent
simulations, we set β1 = 1 and Niter = 0);

• As to the selection of L1, the best performance is nor-
mally ensured when L1 is equal to or a bit smaller
than K − M . Furthermore, simulations highlight that
when step 1 in Algorithm 2 is omitted, namely, all
the secondary data (including the data contaminated by
outliers) are exploited as the candidate validation data,
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Algorithm 3 : Pseudocode of the Modified CV Method

1: Estimate an outlier subset �̂2 of size M using the
RML (ARML) procedure with a fixed regularization
parameter β2.

2: Select L2 (1 < L2 ≤ K − M ) samples from the
data whose indices belong to � − �̂2 exploiting the
RML (ARML) procedure with β2 and denote by 82 =

{i1, · · · , iL2} the set of indices for the selected vectors.
3: Partition 82 into Q2 (1 < Q2 ≤ L2) nonoverlapping

groups such that 82 =
⋃Q2

q=182q .
4: For each group, estimate the SCM and perform the eigen-

value decomposition.
5: Construct the polynomial equation corresponding to

equation (25), then expand it and count the number of
negative coefficients Nneg in the polynomial.

6: If Nneg > 0, then estimate an upper-bound on the real
positive roots of equation (25) resorting to Cauchy’s
theorem and evaluate β̂ exploiting the finite grid search
method. Otherwise, β̂ = 0.01.

7: Replace β2 with β̂ and repeat steps 1-6 until the stopping
criterion is satisfied.

8: Report the final β̂ as the selected regularization parame-
ter.

the behavior degrades slightly (in the sequel, we set
L1 = K −M );

• In principle, there is no effective method to determine
an upper-bound or a relatively narrow interval of the
optimal β for the CV method and, hence, to obtain
the approximate global minimum of problem (16), it is
necessary to search among all the possible values of
β in the range (0,+∞), which is a prohibitive task.
Thus, if there is no a-priori knowledge about the range
of the possible β values, the CV method is hardly to
implement. Nevertheless, simulations show that a proper
range of β for the CVmethod is (0,10] for the considered
experiments, which is adopted in the sequel;

• Simulations indicate that P1 = 11 and Q1 = 4 repre-
sent a good compromise between the performance and
computational complexity for the reported experiments.
Precisely, when P1 > 11 and Q1 > 4, the performance
almost keeps the same level;

• Like the CV method, the behavior of the modified CV
method is not too much sensitive to the value of the
initial regularization parameter β2. As a result, we also
set β2 = 1 and Niter = 0;

• Simulations highlight that the best performance of the
modified CV method is often achieved when L2 = K −
M , as a consequence, this value is adopted in the sequel.

• Like the CVmethod, P2 andQ2 should be selected prop-
erly in order to realize a reasonable tradeoff between
performance and computational complexity. According
to simulation results, P2 = 41 and Q2 = 4 are good
choices.

IV. PROPERTY OF THE RML (ARML) PROCEDURE
An interesting property of the above RML (ARML) proce-
dure is the unitary invariance (i.e. invariance with respect to
unitary transformations of the data). Precisely, let Y = BX ,
where Y = [y1, · · · , yK ] is the transformed data matrix and
B is an arbitrary N × N unitary matrix. If �̂0 is the solution
to (6), then it also solves:

�̂0 = argmin
�0

[det(RY )], (27)

where RY =
1

K −M

∑
i∈�−�0

yiy
†
i + βI .

In fact, for a specific�0, denote byX0 = {xi|xi ∈ �−�0},

RX =
1

K −M
X0X

†
0 + βI , Y0 = BX0 = {yi|yi ∈ � − �0},

and RY =
1

K −M
Y0Y

†
0 + βI , then

RY =
1

K −M
Y0Y

†
0 + βI = BRXB†,

det(RY ) = det(BRXB†) = det(RX ). (28)

Therefore, for a given regularization parameter β, an unitary
transformation of the data gives rise to the same RML esti-
mate of the outlier subset.

As to the ARML procedure, let �1 be the initial subset of
size (K −M ), X1 = {xi|xi ∈ �1} and Y1 = {yi|yi ∈ �1} the
corresponding transformed data, then the initial RSCMs are
given by

RX ,1 =
1

K −M
X1X

†
1 + βI,

RY ,1 =
1

K −M
Y1Y

†
1 + βI, (29)

and the corresponding GIP values exhibit the following prop-
erty

y†i R
−1
Y ,1yi = x†i R

−1
X ,1xi, i = 1, · · · ,K . (30)

Combined with (28), it follows that given the regularization
parameter, the ARML is unitary invariant.

As to the selection of the regularization parameter, it can
be proved that using the unitary invariance of the eigenvalues,
the same regularization parameter will be selected after the
unitary transformation of the data for both the EL and the CV
techniques.

V. RESULTS ON SIMULATED DATA
In this section, we evaluate the performance of the RML and
ARML methods, also in comparison with the GIP [18], [21],
RCGIP [22], [41], AML [33], [34], and exact ML [33], [34]
algorithms. For notational simplicity, we refer to the RML
procedure exploiting the EL and unmodified/modified CV
techniques as EL-RML and U-RML/M-RML, respectively.
All the outlier subset estimation procedures involved in the
U-RML and M-RML algorithms are implemented using the
RML technique. The EL-ARML and M-ARML are defined
in a similar way, where the ARML procedure is applied for
all the steps associated with the outlier subset estimation.
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We consider a Doppler processing and exploit the follow-
ing interference covariance matrix model [19], [20]

R = Rc + σ 2
n I (31)

where Rc and I account for the clutter and thermal noise
component, respectively, and σ 2

n is the thermal noise power,
assumed in the following, without loss of generality, equal
to 0 dB. Besides, the clutter covariance matrix is assumed
exponentially-shaped [19], [20],

Rc(i, j) = σ 2
c ρ
|i−j|ej2π fdc (i−j), i, j = 1, · · · ,N (32)

where σ 2
c is the clutter power, ρ is the one-lag correlation

coefficient of the clutter, and fdc is the normalized clutter
Doppler frequency (in the subsequent simulations, σ 2

c = 20
dB, ρ = 0.95, and fdc = 0).

Moreover, M outliers are randomly injected into distinct
vectors of the secondary dataset. The temporal steering vec-
tors of these outliers are given by

pi = αi[1, e
j2π fdo,i , · · · , ej2π (N−1)fdo,i ]T , i = 1, · · · ,M

(33)

where fdo,i is the normalized Doppler frequency of the ith
outlier and α1, · · · , αM are independent, zero-mean, com-
plex Gaussian random variables, representing the complex
amplitudes. In the sequel, the outliers are assumed to share
the same power, namely, σ 2

o . As to the Doppler frequencies,
two situations are considered. The former assumes fdo,i =
0.15, i = 1, · · · ,M , namely, equal Doppler outliers. In fact,
this situation might arise when considering a scenario con-
taining multiple outlying targets moving at the same radial
velocity or considering an outlying target which occupies
more than one range cell, i.e., the range-distributed target. The
latter assumes that the normalized Doppler frequencies of
the outliers are modeled as statistically independent random
variables uniformly distributed within the interval [0.1,0.2]
(random Doppler outliers). Finally, denote by Mo (Mo <

K ) the number of data vectors to be removed from the K
snapshots (thus h = K −Mo).

The performance is assessed using as figure of merit the
probability of correctly removing all the outliers, namely,
�0 ⊆ �̂0, denoted in the following by Pr . Due to the lack
of a closed-form expression for Pr , the analysis is conducted
resorting to standardMonte Carlo (MC) simulations based on
1000 independent trials. Fig. 2 shows Pr versus the number
of initial subsets Ninitial for N = 8, M = 3, Mo = 3,
and equal Doppler outliers under different choices for K and
σ 2
o . Specifically, four cases are considered, whose results are

displayed in subplots (a)-(d), respectively: (a) K = 12 and
σ 2
o = 15 dB, which corresponds to a limited sample support

scenario, namely, the number of homogeneous training data
is less than twice the system DOFs; (b) K = 12 and σ 2

o =

30 dB; (c) K = 20 and σ 2
o = 15 dB, where the number of

homogeneous training data exceeds twice the system DOFs;
(d) K = 20 and σ 2

o = 30 dB. The plots highlight that
the EL-RML, U-RML and M-RML methods almost achieve

FIGURE 2. Pr versus Ninitial of the exact ML (pentagram-marked solid
curve), AML (pentagram-marked dashed curve), EL-RML (circle-marked
solid curve), EL-ARML (circle-marked dashed curve), U-RML
(diamond-marked curve), M-RML (square-marked solid curve), and
M-ARML (square-marked dashed curve) for N = 8, M = 3, Mo = 3, and
equal Doppler outliers. (a) K = 12 and σ2

o = 15 dB. (b) K = 12 and
σ2

o = 30 dB. (c) K = 20 and σ2
o = 15 dB. (d) K = 20 and σ2

o = 30 dB.

the same performance level and generally outperform the
corresponding ML counterpart. Moreover, like the AML pro-
cedure, the performance of the ARML (EL-ARML and M-
ARML) methods improves as Ninitial increases. However, for
the selected parameters, the value of Ninitial required for the
ARML to achieve the limit performance is much less than
that for the AML, especially when the sample size is small
and the outlier power is large.

In Fig. 3, Pr versus Ninitial is plotted for N = 8, M = 6,
Mo = 6, and equal Doppler outliers under different choices
for K and σ 2

o , namely, a relatively outlier dense scenario.
We also consider four cases: (a) K = 20 and σ 2

o = 15
dB; (b) K = 20 and σ 2

o = 30 dB; (c) K = 24 and
σ 2
o = 15 dB; (d) K = 24 and σ 2

o = 30 dB. The curves
show that a larger number of Ninitial than in Fig. 2 is required
for the ARMLmethods to achieve a satisfactory performance
level, especially when the outlier power is relatively low.
Specifically, for σ 2

o = 15 dB, 80 initial subsets are not ade-
quate for the ARML methods to ensure the best performance
when M = 6 whereas 40 initial subsets are sufficient when
M = 3. Usually, the EL-ARML method slightly outperforms
the M-ARML method for the same value of Ninitial .

Fig. 4 shows Pr versus Ninitial for K = 20, N = 8,M = 6,
Mo = 8, equal Doppler outliers and some different values
for σ 2

o . The plots highlight that the requirement for Ninitial
to achieve a good performance level can be reduced increas-
ing Mo. Nevertheless, even if Pr improves as Mo increases,
the reduction on the number of selected training data might
impose a deleterious impact on the estimation accuracy of
the interference covariance matrix. In addition, the plots of
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FIGURE 3. Pr versus Ninitial of the exact ML (pentagram-marked solid
curve), AML (pentagram-marked dashed curve), EL-RML (circle-marked
solid curve), EL-ARML (circle-marked dashed curve), U-RML
(diamond-marked curve), M-RML (square-marked solid curve), and
M-ARML (square-marked dashed curve) for N = 8, M = 6, Mo = 6, and
equal Doppler outliers. (a) K = 20 and σ2

o = 15 dB. (b) K = 20 and
σ2

o = 30 dB. (c) K = 24 and σ2
o = 15 dB. (d) K = 24 and σ2

o = 30 dB.

FIGURE 4. Pr versus Ninitial of the exact ML (pentagram-marked solid
curve), AML (pentagram-marked dashed curve), EL-RML (circle-marked
solid curve), EL-ARML (circle-marked dashed curve), U-RML
(diamond-marked curve), M-RML (square-marked solid curve), and
M-ARML (square-marked dashed curve) for K = 20, N = 8, M = 6,
Mo = 8, and equal Doppler outliers. (a) σ2

o = 15 dB. (b) σ2
o = 30 dB.

Pr versus Ninitial exhibit a similar behavior when the Doppler
frequencies of the outliers are different: these results are not
reported here for brevity.

Fig. 5 shows Pr versus the outlier power σ 2
o for N = 8,

M = 3, Mo = 3, and Ninitial = 40 for different values of
K and fdo . Specifically, four cases are considered, namely,
(a) K = 12 and equal Doppler outliers; (b) K = 12 and ran-
domDoppler outliers; (c)K = 20 and equal Doppler outliers;
(d)K = 20 and randomDoppler outliers. The performance of
the EL-RML, EL-ARML, U-RML, M-RML and M-ARML
is compared with the GIP, RCGIP, ML and AML methods.
The plots highlight that Pr of all the algorithms improves as
σ 2
o increases. Moreover, the EL-RML, EL-ARML, U-RML,

M-RML, and M-ARML almost share the same behavior and
outperform the other techniques, especially when the sample
size is small. Specifically, for σ 2

o = 20 dB, Prs of the RML

FIGURE 5. Pr versus σ2
o of the GIP (left-triangle-marked curve), RCGIP

(upper-triangle-marked curve), exact ML (pentagram-marked solid curve),
AML (pentagram-marked dashed curve), EL-RML (circle-marked solid
curve), EL-ARML (circle-marked dashed curve), U-RML (diamond-marked
curve), M-RML (square-marked solid curve), and M-ARML
(square-marked dashed curve) for N = 8, M = 3, Mo = 3, and
Ninitial = 40. (a) K = 12 and equal Doppler outliers. (b) K = 12 and
random Doppler outliers. (c) K = 20 and equal Doppler outliers.
(d) K = 20 and random Doppler outliers.

and ARML methods are approximately equal to 1 for all the
studied cases whereas those of the exact ML are about 0.31,
0.33, 0.96 and 0.97, respectively, for cases (a)-(d). In addition,
the behavior of the EL-RML, EL-ARML, U-RML, M-RML,
M-ARML, ML and AML algorithms is robust with respect to
the Doppler frequencies of the outliers.

In Fig. 6, Pr versus σ 2
o is plotted for K = 20, N = 8,

M = 6, and Ninitial = 40 for different values of Mo and fdo .
Four specific cases are considered: (a) Mo = 6 and equal
Doppler outliers; (b) Mo = 6 and random Doppler outliers;
(c) Mo = 8 and equal Doppler outliers; (d) Mo = 8 and
random Doppler outliers. The performance of the EL-RML,
U-RML, M-RML and ML is not evaluated due to the heavy
computational burden connected with their implementation.
The ARML methods (EL-ARML and M-ARML) still ensure
the best performance for all the considered cases. Specifi-
cally, when σ 2

o reaches 20 dB, the ARML can reach aPr value
higher than 0.9. Nevertheless, Prs of the AML are about 0.16,
0.31, 0.42 and 0.6, respectively, for cases (a)-(d).

Fig. 7 shows Pr versus the number of available secondary
data K for N = 8, M = 3, Mo = 3, and Ninitial = 40
for some values of σ 2

o and outlier Doppler frequencies. More
specifically, the following four cases are considered: (a) σ 2

o =

15 dB and equal Doppler outliers; (b) σ 2
o = 15 dB and

random Doppler outliers; (c) σ 2
o = 30 dB and equal Doppler

outliers; (d) σ 2
o = 30 dB and random Doppler outliers. The

plots highlight that the RML and ARML methods ensure the
best performance. Moreover, for the considered parameter
values, 12 secondary data seem sufficient for the performance
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FIGURE 6. Pr versus σ2
o of the GIP (left-triangle-marked curve), RCGIP

(upper-triangle-marked curve), AML (pentagram-marked dashed curve),
EL-ARML (circle-marked dashed curve), and M-ARML (square-marked
dashed curve) for K = 20, N = 8, M = 6, and Ninitial = 40. (a) Mo = 6 and
equal Doppler outliers. (b) Mo = 6 and random Doppler outliers.
(c) Mo = 8 and equal Doppler outliers. (d) Mo = 8 and random Doppler
outliers.

of the regularized algorithms to achieve convergence.7 By
contrast, the GIP, RCGIP, ML and AML normally requires
a larger K to reach convergence, especially when the out-
lier power is relatively low. Precisely, when σ 2

o = 15 dB,
the RCGIP, ML and AML requires about 36 secondary data
whereas the GIP needs more than 40 vectors. Moreover, when
σ 2
o = 30 dB, the required number of secondary data for the

GIP, RCGIP, ML and AML is around 40, 36, 20 and 16, (36,
24, 16 and 16), respectively, for the case of equal (random)
Doppler outliers.

In Fig. 8, Pr versus K is plotted for N = 8, M = 6,
Ninitial = 40, and equal Doppler outliers for different values
of Mo and σ 2

o . The following four specific cases are con-
sidered: (a) Mo = 6 and σ 2

o = 15 dB; (b) Mo = 6 and
σ 2
o = 30 dB; (c) Mo = 8 and σ 2

o = 15 dB; (d) Mo = 8
and σ 2

o = 30 dB. The performance of the EL-RML, U-
RML, M-RML and ML is not evaluated due to the heavy
computational burden connected with their implementation.
The ARML methods still require the smallest number of
secondary data to achieve convergence. Precisely, the ARML
methods only require about 20 secondary data whereas the
other methods need at least 30 training vectors. Moreover,
when Mo = M , the necessary number of secondary data
for the GIP, RCGIP and AML to achieve convergence in
the outlier dense scenario would increase dramatically as

7It is worth noting that a larger number of secondary data might lead to a
slight performance degradation instead of an improvement when the outlier
power is relatively low. This can be explained observing that the increase in
the secondary data number might determine a corresponding increase in the
probability that some homogeneous data possess a larger GIP value than the
data containing outliers.

FIGURE 7. Pr versus K of the GIP (left-triangle-marked curve), RCGIP
(upper-triangle-marked curve), exact ML (pentagram-marked solid curve),
AML (pentagram-marked dashed curve), EL-RML (circle-marked solid
curve), EL-ARML (circle-marked dashed curve), U-RML (diamond-marked
curve), M-RML (square-marked solid curve), and M-ARML
(square-marked dashed curve) for N = 8, M = 3, Mo = 3, and
Ninitial = 40. (a) σ2

o = 15 dB and equal Doppler outliers. (b) σ2
o = 15 dB

and random Doppler outliers. (c) σ2
o = 30 dB and equal Doppler outliers.

(d) σ2
o = 30 dB and random Doppler outliers.

FIGURE 8. Pr versus K of the GIP (left-triangle-marked curve), RCGIP
(upper-triangle-marked curve), AML (pentagram-marked dashed curve),
EL-ARML (circle-marked dashed curve), and M-ARML (square-marked
dashed curve) for N = 8, M = 6, Ninitial = 40, and equal Doppler outliers.
(a) Mo = 6 and σ2

o = 15 dB. (b) Mo = 6 and σ2
o = 30 dB. (c) Mo = 8 and

σ2
o = 15 dB. (d) Mo = 8 and σ2

o = 30 dB.

compared with the outlier sparse situation, especially when
the outlier power is high.

Summarizing, the conducted analysis suggests to recom-
mend the EL-ARML as a viable candidate for a practical
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implementation thanks to the satisfactory performance and
the acceptable computational complexity.

VI. CONCLUSION
In this paper the problem of censoring data vectors con-
taminated by outliers from secondary datasets with small
cardinality has been considered. Specifically, the RML esti-
mate of the outlier subset has been derived resorting to the
GRLF criterion and an ARML procedure has been proposed
to boost the computational efficiency. As to the selection of
the regularization parameter, both the EL and CV criteria
have been exploited. In particular, two different CV schemes
have been devised: the former estimates the outlier subset
independently for each partition, whereas the latter exploits
the same outlier subset estimate for all the partitions. It has
also been proved that the RML (ARML) procedure exhibits
the unitary invariance property, i.e., invariance with respect
to unitary transformations of the data.

The performance of the proposed algorithms has been
analyzed in the presence of simulated data. The illustrative
examples have shown that the EL-ARML method repre-
sents a very good compromise between performance and
complexity. It is thus recommended as a candidate for a
practical implementation in scenarios characterized by a
limited number of secondary data. Possible future research
avenues might concern the application of the EL-ARML
censoring procedure as a pre-processing step to adaptive radar
detectors.
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