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We investigate cluster synchronization in experiments with a multilayer network of electronic Colpitts
oscillators, specifically a network with two interaction layers. We observe and analytically characterize the
appearance of several cluster states as we change coupling in the layers. In this study, we innovatively
combine bifurcation analysis and the computation of transverse Lyapunov exponents. We observe four
kinds of synchronized states, from fully synchronous to a clustered quasiperiodic state—the first
experimental observation of the latter state. Our work is the first to study fundamentally dissimilar kinds
of coupling within an experimental multilayer network.
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Networks with multiple layers of interactions arise in
models for epidemic propagation [1,2], the social world of
the Medicis [3], and the failure of interdependent networks
such as the power grid [4,5], among others. These layers of
interactions can operate in fundamentally different ways.
Neurons communicate by both chemical and electrical
coupling; chemical synapses are probabilistic, delayed,
and unidirectional while electrical synapses are determin-
istic and bidirectional [6]. The interplay between both kinds
of synapses is thought to be essential to normal functioning
of the brain [6–8].
Networkswith a high number of symmetries arise inmany

systems [9]: in biology, the C. elegans metabolic network;
in infrastructure, the U.S. power grid and airport network;
in social networks, the Ph.D. network [10]. Symmetric
multilayer networks have been investigated using quotient
networks for dimensionality reduction [11,12] and
using eigenspectral analysis [11]. Study of synchronization
in multilayer networks was originally presented in
Refs. [13,14] and more recently in Ref. [15]. Recent experi-
ments explored synchronization between identical [16] and
nonidentical [17] layersofamultilayernetwork.Thesepapers
studied complete synchronization (all systems synchronizing
on the same time evolution) with only diffusive coupling.
Clustered patterns arise from network symmetries

[18,19], but few experiments study this causality; most
experimental studies focus solely on the appearance of
interesting clusters and not on the role the network
symmetries play in their presence [20–22]. The studies
that do directly connect network symmetry and clustering
are digitally implemented [18,23,24]; they exclude some
aspects that arise in real systems. No experimental study of
clustering in multilayer networks exists.

In this Letter, we are the first to study cluster synchro-
nization in a fully analog symmetrical multilayer network
with both diffusive and nondiffusive coupling. Despite its
simplicity, this analog electronic system not only represents
the smallest multilayer network with multiple symmetries
but also captures the uncertainties and fluctuations present
in real and more complex physical systems. We describe
the possible cluster synchronizations of the system as we
vary coupling parameters. We experimentally observe and
theoretically characterize clusters of nodes that synchronize
on different time evolutions. The system is fully analog,
where other studies have used a computer interface to
implement coupling [16,17,25].
Electronic circuits are ideal test beds for the study of

nonlinear behavior in networks [26]; we choose to use the
Colpitts oscillator. As shown in the left-hand panel of Fig. 1,

FIG. 1. Left: Colpitts oscillator. The oscillator is coupled to its
two neighbors via resistor Rx and mutual magnetic coupling
between the tank inductors, controlled by the inductor separation
x. Tunable parameters are in red, fixed components of other
oscillators are in gray. Right: Topology of the coupled oscillator
network. Mij ¼ k

ffiffiffiffiffiffiffiffiffiffi
LiLj

p
, where k is roughly proportional

to 1=x2.
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the Colpitts oscillator is a simple electronic oscillator based
on a bipolar junction transistor (BJT) that uses two center-
tapped capacitors in series with a parallel inductor as its
resonance tank circuit. Several studies have explored the
periodic, quasiperiodic, and chaotic behavior of individual
Colpitts oscillators [27–30]. Others have discussed either
magnetically coupled [31] or resistively coupled [30]
Colpitts oscillators. Simplicity, low cost, ease of fabrication,
ability to work in different regimes, availability of a large
volume of previous studies, and the ability to introduce
different kinds of connections make the Colpitts oscillator
particularly suitable for multilayer network studies. We
create the first fully analog multilayer network with four
periodic Colpitts oscillators coupled through two different
kinds of coupling mechanisms, resistive and magnetic.
The right-hand panel of Fig. 1 shows the topology of the

corresponding network; this is the simplest multilayer
network that has multiple symmetries [for an easier net-
work with only one symmetry, see Supplemental Material
(SM), Sec. II [32]]. The four nodes, each a Colpitts
oscillator, form a ring with coupling alternating between
resistive and magnetic. We achieve resistive coupling by
connecting the collectors of transistors in pairs of oscil-
lators through a resistor Rx; we tune the coupling by
connecting resistors of the desired value. To achieve
magnetic coupling, we bring the inductors of two nodes
sufficiently near, such that the mutual inductance Mij

becomes large enough; we tune the coupling by changing
the inductor separation distance x.
The dynamics of the network shown in Fig. 1 is

C1;i
_Vce;i ¼ IL;i − IcðVbe;iÞ

þ 1

Rx

XN
j¼1

Rij½ðVce;j − Vce;iÞ − ðVbe;j − Vbe;iÞ�;

C2;i
_Vbe;i ¼ −ðVee þ Vbe;iÞ=Ree;i − IbðVbe;iÞ − IL;i

−
1

Rx

XN
j¼1

Rij½ðVce;j − Vce;iÞ − ðVbe;j − Vbe;iÞ�;

Li
_IL;i ¼ Vcc − Vce;i þ Vbe;i − IL;iRL;i −

XN
j¼1

MijMij
_IL;j;

ð1Þ

where i ¼ 1;…; 4 is the index of the oscillator, Li is the
inductance, C1;i, C2;i are the capacitances of the circuit
components (see Fig. 1), Vce;i is the voltage drop between
the collector and the emitter of the transistor, and Vbe;i is the
voltage drop between the base and the emitter. Vcc and Vee
are applied voltages, Ib and Ic are the current of the base and
the collector, respectively. These two currents are the non-
linear terms in the system; they are zero below a threshold
voltage and increase linearly above this cutoff. In a BJT these
currents are related through β ¼ ΔIc=ΔIb ≈ Ic=Ib, where β

is the BJT amplification factor, see SM, Sec. I for more
details about the experimental arrangement [32].
The magnitudes of the resistive and magnetic coupling

coefficients are 1=Rx and Mij ¼ k
ffiffiffiffiffiffiffiffiffiffi
LiLj

p
, respectively. k

characterizes the mutual inductance and is roughly propor-
tional to 1=x2 (see SM for a specific relationship [32]); k is
positive if the currents induced by mutual and self-
inductance are in phase and negative if they are antiphase.
Note that the resistive and magnetic couplings are different
in nature and therefore enter the dynamic equations in
different forms [as evident in Eq. (1)]. Resistive coupling is
diffusive and affects the current. Magnetic coupling is
nondiffusive, differential [39], and affects the voltage. The
adjacency matrices R and M describe how the oscillators
are connected to one another by resistive and magnetic
coupling, respectively. In our four-member ring network,R
and M are

R ¼

2
6664
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

3
7775; M ¼

2
6664
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

3
7775: ð2Þ

By inspection of the four-node system (right-hand panel of
Fig. 1),weobserve three symmetries present in themultilayer
network, i.e., three permutations of the nodeswhich leave the
network unchanged: (1) vertical symmetry, permuting 1with
4 and 2 with 3, (2) 180° rotation, permuting 1 with 3 and 2
with 4, and (3) horizontal symmetry, permuting 1 with 2 and
3 with 4. These permutations, along with the identical
permutation (that maps each node to itself), form a math-
ematical group G that we call the symmetry group of the
multilayer network. Subgroups of G define possible cluster
patterns [25].
By assuming the Colpitts oscillators have identical

components (C1;i¼C2;i¼C, Li¼L, Mij¼Mji¼M¼kL),
we can rewrite Eq. (1) as a generic multidimensional
network with N ¼ 4 oscillators coupled through Λ ¼ 2
layers [13–15,40,41] (see SM for derivation [32]):

_xi ¼ FðxiÞ þ
XΛ
λ¼1

σðλÞ
XN
j¼1

AðλÞ
ij H

ðλÞðxjÞ; ð3Þ

where

xi¼

2
64
Vce;i

Vbe;i

IL;i

3
75; F¼

2
664

−IcðVbe;iÞþIL;i
C

−ðVeeþVbe;iÞ=Ree−IbðVbe;iÞ−IL;i
C

Vcc−Vce;iþVbe;i−IL;iRL

Lð1−k2Þ

3
775;

Hð1Þ ¼

2
64
Vce−Vbe

Vbe−Vce

0

3
75; Hð2Þ ¼

2
664

0

0

Vcc−VceþVbe−ILRL

3
775;
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σð1Þ ¼ 1=CRx, σð2Þ ¼ −½k=Lð1 − k2Þ�, Að1Þ ¼ R − I4, and
Að2Þ ¼ M, where I4 is the four-dimensional identity matrix.
Let the clustered motion have C clusters, C1;…; CC, and

let sðtÞ ¼ s1ðtÞ; s2ðtÞ;…; sCðtÞ be a possible clustered
solution. We can linearize Eq. (3) around that solution,
obtaining

δ_x ¼
�XC

n¼1

En ⊗ DFðsnÞ

þ
XΛ
λ¼1

σðλÞðAðλÞ ⊗ I3Þ
XC
n¼1

½En ⊗ DHðλÞðsnÞ�
�
δx; ð4Þ

where En is a 4 × 4 matrix which identifies if node i
belongs to cluster Cn [Enði; iÞ ¼ 1 if i ∈ Cn, 0 otherwise].
D represents the Jacobian operator.
Using the coordinate change δη ¼ ðT ⊗ I3Þδx, we con-

vert Eq. (4) from the node coordinate system to the
irreducible representation coordinate system. The irreduc-
ible representation simultaneously block diagonalizes the
permutation matrices in the symmetry group of the multi-
layer network G; each block is an irreducible representation
of the group [42]. Equation (4) becomes

δ_η ¼
�XC

n¼1

Jn ⊗ DFðsnÞ

þ
XΛ
λ¼1

σðλÞðBðλÞ ⊗ I3Þ
XC
n¼1

½Jn ⊗ DHðλÞðsnÞ�
�
δη; ð5Þ

where Jn ¼ TEnT−1 and BðλÞ ¼ TAðλÞT−1. This change of
coordinates decouples the dynamics of perturbations along
the synchronous manifold from those transverse to it,
allowing us to separately analyze each direction [25].
We perform the cluster synchronization analysis in two

steps. First, we characterize global behavior along the
synchronous manifold by studying the bifurcations of
the nonlinear equations for each quotient network [43].
In the quotient network, all the nodes belonging to the same
cluster (i.e., synchronized) are represented by one node,
since their dynamics and their coupling with other clusters
of the network are identical. We compute all the possible
solutions by starting simulations from many initial con-
ditions, and we characterize the stability of each solution
with a complete bifurcation analysis. We use AUTO07P

[44,45] to locate bifurcations and then MATCONT to
compute their normal form coefficients [46–48].
Second, we analyze the transverse block of Eq. (5); we

compute the Maximum Lyapunov Exponent [49] of the
subsystem, evaluating Eq. (5) at each synchronous stable
solution sn for all the possible parameter pairs. We need the
global analysis to characterize all the possible solutions
along which we compute the variational equation (see SM
for a detailed description of the analysis [32]).

Figure 2 shows the four possible cluster patterns. For
each pattern, the quotient network dynamics is described by
Eq. (3) with a suitable choice of the coupling matrices Að1Þ

and Að2Þ. We also report the matrices T needed for the study
of the stability transverse to each synchronous solution. To
assess the stability of the clustered solutions, we analyze
only the three possible two-cluster quotient networks. The
fully synchronized pattern is a special solution of all three
two-cluster quotient networks, and we can thus obtain its
stability by looking at the stability of each of the other
patterns.
In Fig. 3, we show the combined analysis of the three

clustered solutions, grouped into in-phase (left) and anti-
phase (right) solutions (see the SM for a detailed analysis of
the three clustered solutions, where we present and explain
each bifurcation diagram and transverse stability diagram
[32]). We identify nine regions with qualitatively different
clustered patterns (reported in the bottom boxes of Fig. 3).
We group the cluster patterns to relate them to experimen-
tally observable behavior; this is because some of the
cluster states become indistinguishable in the presence of
experimental noise and heterogeneity. For example, cluster
patterns (a1) and (a2) differ by a small phase offset that
cannot be measured due to experimental noise. Cluster
patterns (a1) and (a3) differ mostly in amplitude, but the
experimental amplitude is sensitive to many details beyond
the scope of the model, such as the resistances of the
capacitors, inductors, and component junctions, and non-
linearity of the transistor gain. We thus create four groups

FIG. 2. Possible cluster synchronization patterns. The left-hand
schematic represents the full network; nodes belonging to the
same cluster synchronization pattern are colored the same. We
indicate symmetry with the red dashed line. The one- or two-node
labeled schematic represents the quotient network. On the right,
we show the AðλÞ and T for each pattern. AðλÞ is the adjacency
matrix for layer λ, with λ ¼ 1 representing the resistive layer and
λ ¼ 2 representing the magnetic layer.
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from the nine theoretical clustered patterns—[(a) gray]
fully in phase, tolerating small mismatches in amplitude
and phase, [(b), turquoise] the vertical two-cluster with a
phase offset up to π=2 rad, [(c), pink] the vertical two-
cluster, tolerating small mismatches in amplitude and
phase, and [(d), magenta] the quasiperiodic vertical two-
cluster, tolerating small mismatches in amplitude.
We performed experiments at five values of Rx (27Ω,

300Ω, 510Ω, 750Ω, and 1000Ω) and varied k from −0.03
to −0.4 for the parallel inductor configuration and from
0.03 to 0.4 for the antiparallel inductor configuration. To
detect the presence of multiple attractors, we first increase
then decrease k, guided by the theoretically predicted
hysteresis between the periodic in-phase and the periodic
antiphase solutions (in the left-hand panel of Fig. 3 no in-
phase solution is present for large negative k, while in the
right-hand panel no antiphase solution is present for large
positive k). The top left-hand panel of Fig. 4 shows the
cluster state observed at each experimental measurement.
Figure 4 shows broad agreement between our exper-

imental and theoretical results (for discussion of the
discrepancies, see the SM [32]). Each of the four cluster
types (reported in the bottom boxes of Fig. 4) observed

experimentally is predicted by the theoretical analysis. The
system exhibits bistability between the fully synchronized
state [(A), gray] and the vertical two-cluster state [(C),
pink] for large ranges of k and Rx. We observe the fully
synchronized solution for large positive magnetic coupling
and small negative coupling; we observe the vertical two-
cluster solution for small positive and large negative
coupling. Near k ¼ 0.12, we see the quasiperiodic vertical
two-cluster state [(D), magenta]. At k ¼ 0.05 and
Rx ¼ 27Ω, we observe the vertical two-cluster with a
phase separation near π=2 rad [(B), turquoise].
This work is the first study on cluster synchronization in

multilayer networks with symmetries. We show that a small
network with well-understood periodic Colpitts oscillators
exhibits rich dynamical behavior such as bistability, hys-
teresis, and quasiperiodicity. This is the first experimental
observation of a clustered quasiperiodic state. The analysis
innovatively combines bifurcation analysis and the com-
putation of transverse Lyapunov exponents, allowing us to
overcome limitations of each individual approach. First,
unlike the bifurcation analysis of the full system, our
approach can handle multiple symmetries using standard
software [44,46]. Second, compared to the computation of
transverse Lyapunov exponents alone, it can find any
possible cluster pattern even in the presence of multiple
attractors of the quotient networks. The interplay of theory

FIG. 3. Possible patterns of Eq. (3). Region coloring indicates
experimentally distinguishable patterns: [(a), gray] in-phase,
tolerating small mismatches in amplitude and phase; [(b),
turquoise] vertical two-cluster with a phase offset up to
π=2 rad; [(c), pink] vertical two-cluster, tolerating small mis-
matches in amplitude and phase; [(d), magenta] quasiperiodic
vertical two-cluster, tolerating small mismatches in amplitude.
(Top panels): bifurcation diagram of the (left) in-phase and (right)
antiphase solution. (Bottom panels): representative time series of
VbeðtÞ from simulations grouped by experimental observability.
When clustered solutions are present, we indicate them with V,
H, orD in the upper left hand corner for vertically-, horizontally-,
and diagonally-synchronized, respectively.

FIG. 4. Comparison between experimental results and theoreti-
cal predictions. Capital letters in figure indicate experimental
observations; lowercase letters indicate theoretical predictions.
[(A), (a), gray] one-cluster state; [(C), (c), pink] vertical two-cluster
state; [(B), (b), turquoise] vertical two-cluster state two-cluster
with a phase offset up to π=2; [(D), (d), magenta] quasi-periodic
solution of the vertical two-cluster state; [white] no stable fre-
quency locking. Stripes of two colors represent bistability between
the two states represented by each color. (Top left) Experimentally
observed cluster states. Black dots represent individual experi-
mental measurements; we infer a color mesh from these results.
(Top right) Theoretical prediction of cluster states from Fig. 3.
(Bottom) Experimental time series of VbeðtÞ demonstrating
clusters corresponding to the theoretical predictions.
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and experiments was essential for an in-depth phenom-
enological understanding of the system behavior; experi-
ments allowed us to understand which theoretically
predicted cluster states were observable, while theory
helped us identify hard to find cluster states. Note that
even though we have applied our analysis to a very simple
multilayer network, it is possible to scale the described
approach to networks with any numbers of nodes or layers.
This scaling is nontrivial and requires the definition of
the group of symmetries of a multilayer network; this is the
subject of ongoing research and is briefly introduced in the
SM, Sec. V [32].
Our work shows how different interaction layers influ-

ence the overall state of the system; applications of the
described theory can be found in a variety of fields where
patterned behavior and multilayer systems arise. The
method requires three ingredients: (1) a dynamical system
describing the network, (2) multiple kinds of interactions,
and (3) patterned behavior. Many papers propose dynami-
cal equations for both neurons [50–52] and their network of
interactions [53–56]; neurons are connected through elec-
trical and chemical synapses [6]. A vast literature explores
the likely relationship between epilepsy and synchroniza-
tion [57], and models of coupled neurons exhibit clustered
behavior [19]. Several models exist to describe the dynam-
ics of opinion formation [58,59], which is mediated by
different layers of interaction through social media, adver-
tising, friend networks, etc., producing clusters of belief
[60]. Bark beetles infest forests in patterns [61]; different
tree species and various beetle transportation methods (self,
carried by animals or wind, etc.) form the multilayer
network representation of the forest-insect model [4].
Proposed circuit designs use quantum cellular automata
with clusterlike clock zones to perform calculations; two
kinds of quantum cellular automata cells (regular and
rotated) are connected with either coplanar or multilayer
connections [62]. Understanding the dynamical behavior of
symmetric multilayer networks may play an important role
in the design and development of neuromorphic computa-
tional systems [63]. To our knowledge, none of the studies
on neuromorphic systems has considered dissimilar inter-
actions between nodes, which seems to be an essential
feature of most biological networks such as the brain [6] as
well as a contributor to the overall robustness of a
system [64,65].

This work was supported by the National Science
Foundation (Grant No. 1727948).
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