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Abstract

At present the role of natural variability in in�uencing climate behaviour
is widely discussed. The generally accepted view is that atmosphere-ocean
coupled circulation patterns are able to amplify or reduce temperature increase
from interannual to multidecadal time ranges, leaving the principal driving role
to anthropogenic forcings. In this framework, the in�uence of these circulation
patterns is considered synchronous with global temperature changes. Here we
would like to investigate if there exists a lagged in�uence of these indices on
temperature. In doing so, an extension of the Granger causality technique,
which permits to test both direct and indirect causal in�uences, is applied. A
lagged in�uence of natural variability is not evident in our analysis, if we except
weak in�uences of some peculiar circulation indices in speci�c periods.

Keywords: Vector autoregressive models, Multi-horizon Granger causality, Global

temperature, Natural variability.
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1 Introduction

The search for the fundamental causes of the recent global warming has been ex-1

tensively performed in the last decade by attribution studies through a dynamical2

approach using Global Climate Models (GCMs): see, for instance, Hegerl and Zwiers3

(2011). The results clearly indicate the necessity to consider anthropogenic forcings4

(and especially greenhouse gases radiative forcing - GHGRF) if one wants to recover5

the increase in global temperature (T ) detected in the last half century (Bindo� et6

al., 2013).7

However, several studies show how circulation patterns of the coupled atmosphere-8

ocean system can in�uence the evolution of temperature behaviour, possibly ampli-9

fying or reducing temperature increase over interannual or multidecadal time ranges10

(Hoerling et al., 2008; DelSole et al., 2011). Generally, in these studies the in�uences11

of these circulation patterns on global temperature appears to be synchronous (see,12

for instance, Hurrell, 1996; Comrie and McCabe, 2013).13

Here we would like to investigate if there exists a lagged in�uence of these indices14

on global temperature. The motivation of our study relies on the evidence that these15

single oscillation patterns (here synthesized by indices based on Sea Surface Temper-16

atures (SSTs)), usually show teleconnections with delayed e�ects on temperatures17

elsewhere, on very wide regions: see, for instance, previous studies about physically18

based relationships between Atlantic and Paci�c SSTs (Saenko et al., 2004;Wang19

et al., 2011). Furthermore, the origins for the delayed increases in global surface20

temperature accompanying El Niño events have been explored, too (Trenberth et21

al., 2002). Finally, in other empirical attribution studies the values of circulation22

patterns have been also used as in�uence factors with a delayed e�ect on global tem-23

perature (Lean and Rind, 2008; Foster and Rahmstorf, 2011) even for indices here24

not considered, such as the North Atlantic Oscillation (Li et al., 2013).25

In order to do so, we adopt a well-known technique for testing causality links, the26

so-called Granger causality analysis (Granger, 1969), which represents the appropri-27

ate statistical tool for identifying lagged in�uences. Recently this analysis method28

has been applied to several problems in climate science and extensively to the at-29
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tribution topic (Kaufmann and Stern, 1997; Diks and Mudelsee, 2000; Wang et al.,30

2004; Triacca, 2005; Modesale et al., 2006; Elsner, 2007; Kodra et al., 2010; Attana-31

sio et al., 2012; Pasini et al., 2012; Triacca et al., 2013; Stern and Kaufmann, 2014;32

Pasini et al., 2015).33

In particular, for the �rst time, we investigate both direct in�uences and indirect34

chains of causality, using a generalization of the notion of Granger causality proposed35

by Dufour and Renault (1998): the so-called multi-horizon causality. The results give36

new insight in the role of circulation patterns for temperature determination.37

The paper is organized as follows. In Section 2 we introduce the notion of the38

multi-horizon causality. In Section 3 we describe the data and the used testing pro-39

cedures. Section 4 presents the obtained results. Section 5 provides some concluding40

remarks.41

2 Multi-horizon Granger causality42

The notion of Granger causality was �rst introduced by Norbert Wiener (1956) and43

later reformulated and formalized by Clive Granger (1969). Conceptually, the idea44

of Granger causality is quite simple. Suppose that we have two variables, x, y, and45

a vector z of m auxiliary variables, and that we �rst attempt to forecast yt+1 using46

past terms of y and z. We then try to forecast yt+1 using past terms of y, x, and z.47

We say that x Granger causes y, if the second forecast is found to be more successful,48

according to standard cost functions. If the second prediction is better, then the past49

of x contains a useful information for forecasting yt+1 that is not in the past of y50

and z. Clearly, Granger causality is based on precedence and predictability.51

If z is empty, we deal with a bivariate Granger causality, otherwise with a mul-52

tivariate Granger causality. The causal relationship between the variables x and y53

has often been investigated in a bivariate system (m = 0). However, it is well known54

that in a bivariate framework problems of spurious causality and of noncausality due55

to omission of a relevant variable can arise. These problems can be solved if a vector56

z of auxiliary variables is considered in the analysis.57

It is important to note that, when m > 0, the original de�nition of Granger could58
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be insu�cient to capture indirect causal links since it only deals with one step-ahead59

prediction. If a causal chain from x to y via z (x→ z → y) exists, it is possible that60

x fails to cause y for horizon 1 and causes y at horizon h > 1. Thus an extension of61

Granger causality is necessary in multivariate models. Following Dufour and Renault62

(1998), we will use the following de�nitions of noncausality.63

Let (yt, xt, zt)' be a (3×1) vector time series. Consider the following information64

sets:65

Iyxz(t) = {yt, xt, zt, yt−1, xt−1, zt−1, . . .}
66

Iyx(t) = {yt, xt, yt−1, xt−1, . . .}
67

Iyz(t) = {yt, zt, yt−1, zt−1, . . .}
68

Iy(t) = {yt, yt−1, . . .}

For any positive integer h (the prediction horizon) we denote with P (yt+h|I(t)) the69

optimal linear forecast of the variable yt+h based on the information set I(t).70

We say that:71

(i) x does not cause y at horizon h given Iyx(t) (denoted x
h9 y|Iyx(t)) if72

P (yt+h|Iy(t)) = P (yt+h|Iyx(t)) ∀t ∈ Z

(i.bis) x does not cause y at horizon h given Iyxz(t) (denoted x
h9 y|Iyxz(t)) if73

P (yt+h|Iyz(t)) = P (yt+h|Iyxz(t)) ∀t ∈ Z

(ii) x does not cause y up to horizon h given Iyx(t) (denoted x
(h)9 y|Iyx(t)) if74

x
k9 y|Iyx(t) for k = 1, . . . , h

(ii.bis) x does not cause y up to horizon h given Iyxz(t) (denoted x
(h)9 y|Iyxz(t))75

if76

x
k9 y|Iyxz(t) for k = 1, . . . , h

We observe that the conditions (i) and (ii) are equivalent (see Dufour and Renault77

(1998, Proposition 2.3)).78

4

© The Author 2016. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

 by guest on N
ovem

ber 1, 2016
http://clim

atesystem
.oxfordjournals.org/

D
ow

nloaded from
 

http://climatesystem.oxfordjournals.org/


It is important to underline that the causal relationship between two variables x79

and y is not guaranteed to be conserved when a third variable z is considered in the80

analysis. In particular, we can have the following situations:81

• Spurious causality. x
1→ y|Iyx(t) and x

19 y|Iyxz(t)82

• Spurious noncausality. x
19 y|Iyx(t) and x

1→ y|Iyxz(t)83

Another interesting pattern of causality is the following:84

• Indirect causality. x
19 y|Iyxz(t) and x

2→ y|Iyxz(t)85

It is possible to show that if x
19 y|Iyxz(t) and x

2→ y|Iyxz(t), then there exists86

a causal chain from x to y via z, that is x
1→ z|Iyxz(t) and z

1→ y|Iyxz(t) (see87

Propositions 2.3 and 2.4 of Dufour and Renault (1998)). Thus we have called this88

pattern indirect causality.89

3 Data and Methodology90

Here we deal with the annual time series for the period 1866− 2011:91

• Global temperature anomalies (T ) from the version 4 of the Hadley Cen-92

tre/Climatic Research Unit combined land and marine surface temperature93

global anomalies, HadCRUT4 (Morice et al., 2012): data retrieved from http:94

//www.cru.uea.ac.uk/data/;95

• Atlantic Multidecadal Oscillation, AMO (En�eld et al., 2001): data available96

at www.esrl.noaa.gov/psd/data/timeseries/AMO;97

• Paci�c Decadal Oscillation, PDO (Smith and Reynolds, 2004): data available98

at ftp.ncdc.noaa.gov/pub/data/ersstv2/pdo.1854.latest.st;99

• Southern Oscillation Index (SOI), related to ENSO (Ropelewski and Jones,100

1987; Allan et al., 1991; Konnen et al., 1998): data available at www.cru.uea.101

\\ac.uk/cru/data/soi/soi.dat;102

5
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• GHGRF: it is the radiative forcing of the main greenhouse gases (CO2, CH4,103

N2O). In particular CO2, CH4 and N2O concentrations (Hansen et al., 2007):104

data are available at http://data.giss.nasa.gov (since 1850); greenhouses gases105

main (CO2+CH4+N2O) radiative forcing (GHGRF) has been calculated as in106

Ramaswamy et al. (2001).107

3.1 Bivariate analysis108

We are interested to study, separately, Granger causality from AMO, PDO or SOI109

to global temperature anomalies. First of all, a bivariate Granger causality analysis110

is performed by means of the following unrestricted VAR model:111 [
yt
xt

]
=

[
µ1
µ2

]
+

k∑
j=1

[
α11,j α12,j

α21,j α22,j

] [
yt−j

xt−j

]
+

[
ε1t
ε2t

]
(1)

where µ = (µ1, µ2)
′
is a vector of constants, αil,j are �xed coe�cients and εt =112

(ε1t, ε2t)
′
is a bivariate white noise process. In this framework, the variable x does113

not cause y at horizon 1 given Iyx(t) if and only if α12,j = 0, for j = 1, . . . , k.114

Therefore the null hypothesis of noncausality is given by115

H0 : α12,j = 0 j = 1, . . . , k.

In order to test this hypothesis, we use an out-of-sample approach (see Ashley, 1988).116

Our sample of observations (yt, xt)
N
t=1 is divided into a training set and a test set. The117

test set is composed by the last P observations, while the training sample consists118

of all previous R = N − P observations. In particular we consider the unrestricted119

model (1) and the following restricted model120 [
yt
xt

]
=

[
γ1
γ2

]
+

k∑
j=1

[
β11,j 0
β21,j β22,j

] [
yt−j

xt−j

]
+

[
w1t

w2t

]
(2)

Considering the Mean Squared Prediction Errors (MSPEs)121

MSPE (ε1t) =
1

P

R+P∑
t=R+1

ε21t

122

MSPE (w1t) =
1

P

R+P∑
t=R+1

w2
1t

6
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the null hypothesis of Granger noncausality becomes123

H0 : E [MSPE (w1t)]− E [MSPE (ε1t)] = 0

where E is the expectation value operator.124

The alternative hypothesis is that the restricted model provides a bigger MSPE125

than the unrestricted model.126

Using the training set, the parameters of the models (1) and (2) are estimated127

by Ordinary Least Squared (OLS) and the P one-step-ahead forecast errors, for128

t = R+ 1, . . . , R+ P , are calculated as follows:129

ε̂1t = yt − µ̂1 −
k∑

j=1

α̂11,jyt−j −
k∑

j=1

α̂12,jxt−j

130

ŵ1t = yt − γ̂1 −
k∑

j=1

β̂11,jyt−j

Then we calculate the mean square prediction errors131

MSPE (ε̂1t) =
1

P

R+P∑
t=R+1

ε̂21t

132

MSPE (ŵ1t) =
1

P

R+P∑
t=R+1

ŵ2
1t

In order to test the null hypothesis, we use two tests described in McCracken133

(2007): the MSE-t, commonly attributed to Diebold and Mariano (1995) or West134

(1996), and the MSE-REG tests, suggested by Granger and Newbold (1977).135

De�ning dt = ε̂21t − ŵ2
1t, the MSE-t statistics is obtained by regressing dt on a136

constant a on the test set, thus obtaining137

MSE-t =
â

se (â)

where â is the OLS estimate of a and se (â) is the â's standard error. Furthermore, in138

order to calculate MSE-REG statistics, we consider the following regression model:139

(ε̂1t − ŵ1t) = c (ε̂1t + ŵ1t) + et

7
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on the test set, where et is a white noise. The MSE-REG statistics can be thus140

evaluated by use of the t-statistics associated with the coe�cient c, i.e.141

MSE-REG =
ĉ

se (ĉ)

where ĉ is the OLS estimate of c and se (ĉ) is the ĉ's standard error.142

In our case, we do not use the critical values described in McCracken (2007)143

because severale time series are not stationary (Kaufmann and Stern DI, 1997; At-144

tanasio, 2012; Triacca et al., 2013). The critical values of the tests are calculated by145

means of the following bootstrap method (bootstrap based on residuals):146

1. Calculate forecasts of the models (1) and (2) for the time series yt using a147

forecast schemes.148

2. Evaluate MSE-t and MSE-REG statistics.149

3. Under the null hypothesis of non-causality, estimate the restricted model (2)150

employing the full sample and extract the estimates γ̂j , β̂lm,j and the residuals151

ŵt.152

4. Apply bootstrap procedure (resampling with replacement) on ŵt and obtain153

the pseudo-residuals w∗
t .154

5. Create the pseudo-data given by155 [
y∗t
x∗t

]
=

[
γ̂1
γ̂2

]
+

k∑
j=1

[
γ̂11,j 0
γ̂21,j γ̂22,j

] [
y∗t−j

x∗t−j

]
+

[
w∗
1t

w∗
2t

]

6. Using the pseudo-data, repeat the steps 1 and 2 calculating MSE-t and MSE-156

REG bootstrap statistics.157

7. Repeat steps from 4 to 6 for M times (in our application we use a high value158

for M (10000), which should lead to avoid problems with the convergence of159

p-values).160

8. Calculate the bootstrap p-values which is the proportion of the MSE-t (or MSE-161

REG) estimated bootstrap statistics that exceed the same statistic evaluated162

on the observed data.163

8
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The model order k, with k ∈ {1, 2, 3, 4}, of the unrestricted model (1) is selected164

by means of Akaike information criteria on the training set.165

We close this subsection remembering that the problem of having to test for multi-166

horizon noncausality does not emerge in bivariate models. In fact, it is possible to167

show that x does not cause y at horizon 1 given Iyx(t) if and only if x does not cause168

y at any horizon h given Iyx(t). The reason is that in a bivariate system any causal169

e�ect of x on y must �ow directly from x to y : a causal chain cannot exist.170

3.2 Trivariate analysis171

In this subsection, in order to investigate the various patterns of causality (spurious172

causality, spurious noncausality, indirect causality), we introduce the formalism for173

a trivariate analysis. In this case the unrestricted VAR(k) model becomes174  yt
xt
zt

 =

 c1
c2
c3

+
k∑

j=1

 φ11,j φ12,j φ13,j
φ21,j φ22,j φ23,j
φ31,j φ32,j φ33,j

 yt−j

xt−j

zt−j

+

 u1t
u2t
u3t

 (3)

The variable x does not cause y at horizon 1 given Iyxz(t) if and only if φ12,j = 0,175

for j = 1, . . . , k. However, in this situation the causality may be indirect through z176

if φ13,j and φ32,j are not zero for some j. In this case, when x does not cause y at177

horizon 1 given Iyxz(t), the existence of an indirect causality through z implies that178

x causes y at horizon 2 given Iyxz(t). Giles (2002) proposed a sequential procedure179

that provides information on the horizon at which the causality, if any, arises. Here180

we use this procedure. First we test the null hypothesis181

H
(1)
0 : φ12,1 = . . . = φ12,k = 0

If this hypothesis is rejected, then x
1→ y|Iyxz(t): we call this �direct causality�.182

Otherwise the following conditional null hypotheses are tested183

H
(2)
0 : φ32,1 = . . . = φ32,k = 0|φ12,1 = . . . = φ12,k = 0

184

H
(3)
0 : φ13,1 = . . . = φ13,k = 0|φ12,1 = . . . = φ12,k = 0

If H
(2)
0 and H

(3)
0 are rejected, then x

1→ z|Iyxz(t), z
1→ y|Iyxz(t) and x

19 y|Iyxz(t).185

Thus we conclude that x
2→ y|Iyxz(t). While we accept x

29 y|Iyxz(t) when we accept186

one or both of the hypotheses H
(2)
0 and H

(3)
0 .187

9
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Even in this case, in order to test the null hypotheses H
(1)
0 , H

(2)
0 and H

(3)
0 we188

use the out-of-sample approach. The hypothesis H
(1)
0 is tested using the unrestricted189

model (3) and the following restricted model190  yt
xt
zt

 =

 a1
a2
a3

+
k∑

j=1

 θ11,j 0 θ13,j
θ21,j θ22,j θ23,j
θ31,j θ32,j θ33,j

 yt−j

xt−j

zt−j

+

 v1t
v2t
v3t

 (4)

Estimating the parameters of these two models by means of OLS, we can obtain the191

P one-step-ahead forecast errors of the �rst equation of the two models and the mean192

square prediction errors MSPE (û1t) and MSPE (v̂1t), respectively. If MSPE (v̂1t) >193

MSPE (û1t) and this di�erence is statistical signi�cant, then the null hypothesis H
(1)
0194

is rejected and we conclude that x
1→ y|Iyxz(t).195

Otherwise, indirect causality must be investigated. In this case we examine196

indirect Granger causality by means of the chain197

x
1→ z|Iyxz(t) and z

1→ y|Iyxz(t)

Thus we consider the VAR model (3) imposing φ12,j = 0, for j = 1, . . . , k198  yt
xt
zt

 =

 c1
c2
c3

+
k∑

j=1

 φ11,j 0 φ13,j
φ21,j φ22,j φ23,j
φ31,j φ32,j φ33,j

 yt−j

xt−j

zt−j

+

 u1t
u2t
u3t

 (5)

The null hypothesis H
(2)
0 can be tested considering the previous model (5) and the199

following model200  yt
xt
zt

 =

 a1
a2
a3

+
k∑

j=1

 θ11,j 0 θ13,j
θ21,j θ22,j θ23,j
θ31,j 0 θ33,j

 yt−j

xt−j

zt−j

+

 v1t
v2t
v3t

 (6)

Estimating the model parameters via OLS, we obtain the P one-step-ahead forecast201

errors202

û3t = zt − ĉ3 −
k∑

j=1

φ̂31,jxt−j −
k∑

j=1

φ̂32,jyt−j −
k∑

j=1

φ̂33,jzt−j

203

v̂3t = zt − â3 −
k∑

j=1

θ̂31,jxt−j −
k∑

j=1

θ̂33,jzt−j

We calculate the mean square prediction errors MSPE (û3t) and MSPE (v̂3t) and test204

the null hypothesis H
(2)
0 employing the MSE-t and MSE-REG tests. The critical205

10
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values are always calculated by means of previous bootstrap method. Finally, the206

null hypothesis H
(3)
0 can be tested using the same procedure described for H

(2)
0 .207

It is important to underline that, assuming a 100α1% signi�cance level for a test208

of H
(1)
0 and a 100α2% signi�cance level for a test of H

(2)
0 and H

(3)
0 , the overall size209

is bounded by α = α1 + 2α2.210

The model order k, with k ∈ {1, 2, 3, 4}, of the unrestricted VAR model in equa-211

tion (3) is selected, considering the training set, by means of Akaike information212

criteria.213

Finally, it is worthwhile to stress that in our study the forecasts are calculated214

by means of the �xed scheme. Under this scheme, each one-step-ahead forecast is215

generated using parameters that are estimated only once using data from 1 to R.216

4 Results217

In this framework, we analyze which pattern of variability (among those ones consid-218

ered here) are able to have a lagged in�uence on global temperature T , which is our219

y variable, by means of Granger causality. Following the same approach used in pre-220

vious papers (Attanasio et al., 2012; Pasini et al., 2012), the out-of-sample tests are221

performed on �ve test sets which span the following periods: 1941-2011, 1951-2011,222

1961-2011, 1971-2011, 1981-2011. The bivariate results obtained by our analysis are223

very clear: if we take PDO as x variable in equation (1), the null hypothesis of224

Granger non-causality on T is often rejected ( with only two exceptions) at a 5%225

signi�cance level (Table 1). Otherwise there is a clear general evidence of Granger226

causality from AMO or SOI to global temperature. In fact the null hypothesis of227

non-causality is always rejected at 5% level (Tables 2 and 3).228

In the trivariate case, we consider z = GHGRF in order to study the robustness of229

the bivariate results. Previous studies (Attanasio et al. 2012; Pasini et al. 2013; Stern230

and Kaufmann 2014) have shown that GHGRF Granger causes global temperature.231

Here we test both direct and indirect causality of circulation patterns on T. In232

the �rst case, we test the MSPEs coming from the unrestricted and restricted models233

(3) and (4). If no direct causality is found, the possibility of an indirect causality234
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through a causality chain is explored. The chains are formed by a �rst causal link235

between the oscillation pattern considered and GHGRF: a causal link between these236

variables is physically possible because of the in�uence of an oceanic release of GHGs237

in the atmosphere. The second link is obviously between GHGRF and T. If these238

two causal links should be both veri�ed in a statistical signi�cant manner by means239

of Granger tests, then an indirect causality arises even if no direct causality exists240

between a circulation pattern and T.241

When PDO is considered as x in equation (3), we never �nd direct or indirect242

Granger causality (Table 4 and Table 5).243

The other results are very impressive. In particular the bivariate outcomes of SOI244

and AMO are not statistically robust. In fact there is no direct Granger causality245

(with only one exception), at 5% signi�cant level, from SOI to T in our test sets246

(Table 6). Even the causal chains are always interrupted (Table 7). However, it is247

worthwhile to note that in the fourth test set the empirical evidence that does not248

support the null hypothesis H
(1)
0 is not too strong. In fact the p-value is just slightly249

smaller than 0.05.250

When x = AMO, the null hypothesis of non-causality is never rejected and we251

do not �nd a direct causality link (Table 8). In all test sets, the causal chains are252

not completed (Table 9).253

In summary, we �nd direct Granger causality just for SOI on the fourth test254

set. Thus, the apparent causality from AMO and SOI to T, which we found in255

a bivariate framework, generally disappears when the most in�uent context causal256

variable - GHGRF - is inserted in the information set, even considering a possible257

causal chain through this variable. Nevertheless, weak signals of natural variability258

in�uence can be still recognized in single time intervals, namely the weaker in�uence259

of SOI in the more recent decades.260

Finally, we should point out:261

• the p-values of the MSE-REG test are very similar to those of the MSE-t test;262

• using BIC (Bayesian Information Criterion) to select the VAR orders, the re-263

sults of very low causality found employing AIC are further strengthened.264
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These results are available from the authors upon request.265

5 Conclusions266

In this paper we have analysed the causal role of the climate natural variability, here267

exempli�ed by three circulation patterns, on the behaviour of global temperature.268

In particular, once accepted the idea that a synchronous relationship exists between269

these patterns and global temperature, we have investigated the presence of possible270

lagged in�uences.271

After a �rst evidence of strong causality for AMO and SOI, this has revealed itself272

as a spurious causality due to omission of variables in the information set considered.273

Once completed this set with data about greenhouse gases, the causality between274

natural variability and global temperature disappeared almost completely, even in275

the framework of the original analysis performed here about the role of possible276

indirect links.277

In general, a lagged causal link from the indices of natural variability considered278

here to global temperature is not evident in our analysis, if we exclude some cases279

of weak in�uences in speci�c periods.280
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Table caption

Table 1: Results of bivariate Granger noncausality tests from PDO to T .

Test set Model Order p-value

[1941− 2011] 1 0.0071*
[1951− 2011] 1 0.0093*
[1961− 2011] 1 0.1383
[1971− 2011] 1 0.3560
[1981− 2011] 2 nc

nc indicates that the MSPE of the unrestricted model (1) is bigger than the MSPE of the

restricted model (2), so that the MSE-t test is not calculated. * indicates that the null

hypothesis is rejected at 5% signi�cance level.

Table 2: Results of bivariate Granger noncausality tests from AMO to T .

Test set Model Order p-value

[1941− 2011] 1 0.0001*
[1951− 2011] 1 0.0020*
[1961− 2011] 1 0.0017*
[1971− 2011] 1 0.0010*
[1981− 2011] 4 0.0043*

* indicates that the null hypothesis is rejected at 5% signi�cance level.

Table 3: Results of bivariate Granger noncausality tests from SOI to T .

Test set Model Order p-value

[1941− 2011] 2 0.0019*
[1951− 2011] 2 0.0015*
[1961− 2011] 2 0.0010*
[1971− 2011] 2 0.0005*
[1981− 2011] 2 0.0010*

* indicates that the null hypothesis is rejected at 5% signi�cance level.

18

© The Author 2016. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

 by guest on N
ovem

ber 1, 2016
http://clim

atesystem
.oxfordjournals.org/

D
ow

nloaded from
 

http://climatesystem.oxfordjournals.org/


Table 4: Results of direct Granger noncausality tests from PDO to T in the trivariate
system given by PDO, T and GHGRF.

Test set Model Order p-value

[1941− 2011] 2 0.2564
[1951− 2011] 2 0.0987
[1961− 2011] 2 nc
[1971− 2011] 2 nc
[1981− 2011] 2 nc

nc indicates that the MSPE, for the equation of T , of the unrestricted model (3) is bigger

than the MSPE of the restrected model (4), so that the MSE-t test is not calculated. *

indicates that the null hypothesis is rejected at 5% signi�cance level.

Table 5: Results of indirect Granger noncausality tests from PDO to T via GHGRF,
in the trivariate system given by PDO, T and GHGRF.

Test set Model Order PDO
19 GHGRF (p-value) GHGRF

19 T (p-value)

[1941− 2011] 2 nc 0.0035*
[1951− 2011] 2 0.1460 0.0065*
[1961− 2011] 2 nc 0.0070*
[1971− 2011] 2 nc 0.0082*
[1981− 2011] 2 0.3577 0.0088*

nc indicates that the MSPE, for the equation of GHGRF, of the unrestricted model (5) is

bigger than the MSPE of the restricted model (6), so that the MSE-t test is not calculated.

* indicates that each null hypotheses is rejected at 2.5% signi�cance level.

Table 6: Results of direct Granger causality from SOI to T in the trivariate system
given by SOI, T and GHGRF.

Test set Model Order p-value

[1941− 2011] 2 0.2429
[1951− 2011] 2 0.3208
[1961− 2011] 2 0.2191
[1971− 2011] 2 0.0428*
[1981− 2011] 3 0.1110
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Table 7: Results of indirect Granger causality from SOI to T via GHGRF, in the
trivariate system given by SOI, T and GHGRF.

Test set Model Order SOI
19 GHGRF (p-value) GHGRF

19 T (p-value)

[1941− 2011] 2 0.1651 0.0045*
[1951− 2011] 2 nc 0.0071*
[1961− 2011] 2 nc 0.0066*
[1971− 2011] 2 − −
[1981− 2011] 3 nc 0.0289

nc indicates that the MSPE, for the equation of GHGRF, of the unrestricted model (5) is

bigger than the MSPE of the restricted model (6), so that the MSE-t test is not calculated.

* indicates that each null hypotheses is rejected at 2.5% signi�cance level.

Table 8: Results of direct Granger causality from AMO to T in the trivariate system
given by AMO, T and GHGRF.

Test set Model Order p-value

[1941− 2011] 2 0.1720
[1951− 2011] 2 0.2400
[1961− 2011] 2 nc
[1971− 2011] 2 0.1344
[1981− 2011] 3 0.3461

nc indicates that the MSE, for the equation of T , of the unrestricted model (3) is bigger

than the MSE of the restrected model (4), so the MSE-t test is not calculated. * indicates

that the null hypothesis is rejected at 5% signi�cance level.

Table 9: Results of indirect Granger causality from AMO to T via GHGRF, in the
trivariate system given by AMO, T and GHGRF.

Test set Model Order AMO
19 GHGRF (p-value) GHGRF

19 T (p-value)

[1941− 2011] 2 nc 0.0047
[1951− 2011] 2 nc 0.0081*
[1961− 2011] 2 nc 0.0075*
[1971− 2011] 2 0.9622 0.0097*
[1981− 2011] 3 0.0754 0.0309

nc indicates that the MSPE, for the equation of GHGRF, of the unrestricted model (5) is

bigger than the MSPE of the restricted model (6), so that the MSE-t test is not calculated.

* indicates that each null hypotheses is rejected at 2.5% signi�cance level.
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