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Abstract

Motivation: Cellular mRNA levels originate from the combined action of multiple regulatory proc-

esses, which can be recapitulated by the rates of pre-mRNA synthesis, pre-mRNA processing and

mRNA degradation. Recent experimental and computational advances set the basis to study these

intertwined levels of regulation. Nevertheless, software for the comprehensive quantification of

RNA dynamics is still lacking.

Results: INSPEcT is an R package for the integrative analysis of RNA- and 4sU-seq data to study

the dynamics of transcriptional regulation. INSPEcT provides gene-level quantification of these

rates, and a modeling framework to identify which of these regulatory processes are most likely to

explain the observed mRNA and pre-mRNA concentrations. Software performance is tested on a

synthetic dataset, instrumental to guide the choice of the modeling parameters and the experimen-

tal design.

Availability and implementation: INSPEcT is submitted to Bioconductor and is currently available

as Supplementary Additional File S1.

Contact: mattia.pelizzola@iit.it

Supplementary Information: Supplementary data are available at Bioinformatics online.

1 Introduction

The study of eukaryotic cellular transcriptional responses following

external stimuli or during cell differentiation processes is typically

based on profiling of mRNA abundances over time. This allows dis-

criminating between early, intermediate and late responsive genes,

but leaves undisclosed the dynamic transcriptional regulatory proc-

esses determining the resulting observed RNA level. mRNAs are

synthesized within the nucleus thanks to a complex process that is

controlled by numerous factors, including chromatin accessibility,

transcription factors binding events and RNA Polymerase release

(Orphanides and Reinberg, 2002). The joint action of these regula-

tory processes determines the efficiency of transcription, which can

be recapitulated and measured as the RNA synthesis rate. Precursor

mRNA molecules (pre-mRNAs), originated through the synthesis

step, need to be processed in order to make a mature, functional

mRNA molecule. Maturation involves the excision of the introns

and the addition of a 50-cap and a 30 poly-adenine tail, modifications

that co-occur at the transcription site and impact transcript stability.
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Once mature mRNA is produced, it is translocated within the cyto-

plasm where it can be either translated or bound by RNA-binding

proteins and targeted for degradation (Fu et al., 2014; Houseley and

Tollervey, 2009). Overall, synthesis, processing and degradation

rates determine the levels of mRNA within the cell, and the com-

bined modulation of these three elements determines changes in

mRNA abundance over time (Braun and Young, 2014; Raghavan

et al., 2002; Shalem et al., 2008).

Recently, an experimental technique based on a short pulse of a

labeled nucleotide (4-thiouridine, 4sU) and consequent incorporation

in the nascent RNA was developed, to measure the concentration of

nascent mRNA and for the genome-wide inference of gene-level syn-

thesis rates. During a short pulse (typically few minutes), cells medium

is complemented with 4sU, a naturally occurring modified uridine that

is incorporated within mRNA growing chains with minimal impact

on cell viability (Melvin et al., 1978). RNA chains having incorporated

the uridine variant (newly synthesized) can be isolated from the total

RNA population by biotinylation and purification with streptavidin-

coated magnetic beads, followed by sequencing (4sU-seq).

Consequently, various studies have elucidated the different roles that

RNA synthesis, processing and degradation can have in response to

various environmental conditions in yeasts and metazoans (Eser et al.,

2013; Miller et al., 2011; Rabani et al., 2011; Sun et al., 2013; Zeisel

et al., 2011), illustrating how various and complex can be the tran-

scriptional responses originated by the concerted action of these regu-

latory mechanisms.

Few analytical methods were proposed for the study of these

regulatory mechanisms. The DTA Bioconductor package was used

to determine synthesis and degradation rates in a number of works

(Eser et al., 2013; Miller et al., 2011; Sun et al., 2013). The main

limitations of this tool are (i) the lack of inference of processing

rates, (ii) the lack of computationally based normalization between

4sU and RNA-seq data, and more importantly (iii) the absence of a

modeling framework. A similar method was described for the infer-

ence of synthesis and degradation rates, lacking a corresponding

software implementation (Zeisel et al., 2011). In a first study,

Rabani et al. introduced a framework where rates are modeled to

improve the confidence in the determination of rates absolute val-

ues. Additionally, this modeling approach was used to discriminate

between constant and varying degradation processes (Rabani et al.,

2011). This method was extensively described in the publication but

no software implementation was released. At the moment of this

publication, the method described in Rabani et al. (2011) was ex-

tended to distinguish between constant and varying processing rates

and a software implementation was released (DRiLL) (Rabani et al.,

2014). The software currently available has major limitations in

terms of both documentation and implementation, and lacks func-

tionalities to test its performance and provide guidance on the most

suitable experimental design.

Given the limitations of these studies and their corresponding

tools, we developed INSPEcT (INference of Synthesis, Processing

and dEgradation rates in Time-course analysis), a computational

tool for the joint analysis of 4sU- and RNA-seq data providing ro-

bust synthesis, processing and degradation rates over time, based on

a system of differential equations describing mRNA production,

maturation and degradation processes. INSPEcT can determine the

probability of a given combination of rate(s) to regulate the gene ex-

pression during the time-course by modeling and comparing alterna-

tive scenarios of transcriptional regulation. Importantly, INSPEcT

allows testing the performance of the tool given a dataset and pre-

dicting how many additional replicates and/or time points would be

needed to reach the desired performance.

2 Software implementation and overview

INSPEcT is a computational tool for the analysis of RNA- and 4sU-

seq time-course data, resulting in the inference of RNA synthesis,

processing and degradation rates over time, and allowing to statis-

tically assess their contribution in shaping the expression level of a

gene. INSPEcT is based on estimation of total mRNA levels and pre-

mRNA levels (from RNA-seq), synthesis rates and processing rates

(from 4sU-seq), and degradation rates from the combined analysis

of these two data types.

The INSPEcT R package is submitted to the Bioconductor pro-

ject and was developed in compliance with the most common

Bioconductor infrastructures. Specifically, classes inheriting from

the ExpressionSet class are used to represent high-throughput gene

expression data, and the TranscriptDb class (available for an exten-

sive set of organisms) is adopted as a reference for gene models.

Therefore, methods and functions available within this package can

be easily integrated with other Bioconductor packages for up- or

down-stream analysis steps. Parallel computation is used to minim-

ize the computational time for most demanding tasks, as in the case

of the modelRates INSPEcT method. As required in Bioconductor,

each individual method and function is accompanied by specific

documentation and working examples. Moreover, INSPEcT in-

cludes a vignette to interactively demonstrate the software key func-

tionalities and a typical workflow (also reported as Supplementary

Additional File S2). Methods, functions and classes available in the

INSPEcT package matching the discussed functionalities are in italic

throughout the text, and the main steps in the software workflow

are outlined here:

• Exonic and intronic RPKMs (Reads Per Kilobase per Million

mapped reads) for both RNA- and 4sU-seq datasets are deter-

mined for each gene (makeRPKMs function). Exonic and

intronic RNA-seq RPKMs allow quantifying total mRNA and

pre-mRNA, respectively.
• Normalized synthesis, processing and degradation rates are ob-

tained integrating RNA- and 4sU-seq data (newINSPEcT).
• Total mRNA and pre-mRNA concentrations, and synthesis, pro-

cessing and degradation rates are modeled for each gene to assess

which of the rates (if any) is changing over time reconstructing

observed abundances of mRNAs (modelRates).
• Simulated data that recapitulate rate distributions, their variation

over time and their pair-wise correlations are created and used to

evaluate the performance of the method (makeSimModel,

makeSimDataset, rocCurve).

Figure 1 illustrates the overall INSPEcT design along with the

main input and output.

3 Mathematical model

INSPEcT is based on a set of differential equations describing the

process of production, maturation and degradation of pre-mRNA

and mature mRNAs. The system of differential equations models

the synthesis of new pre-mRNAs (P) by a process that occurs at rate

aðtÞ (synthesis). pre-mRNAs decay into mature mRNAs (M) expo-

nentially following a rate cðtÞ (processing). Mature mRNAs are ex-

ponentially degraded following rate bðtÞ (degradation). Total

mRNAs levels are defined as the sum of pre-mRNA and mature

mRNA levels (T ¼ PþM).

;!a P!c M!b ; (1)
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(
_P ¼ aðtÞ � cðtÞP

_T ¼ aðtÞ � bðtÞðT � PÞ
(2)

This model makes the assumptions that pre-mRNAs are not

degraded, and that translocation of mRNAs from nucleus (where

they originate) to cytoplasm (where they can be degraded) occur im-

mediately after maturation, or at a rate considerably faster than

bðtÞ. These assumptions are typically considered acceptable and

have been previously referred to (Rabani et al., 2011). The model

also imposes no spatial segregation of mRNA into cellular compart-

ments. This phenomenon can have an impact on degradation of

some mRNAs, but the experimental information is typically difficult

to obtain (or not available).

3.1 Determination of normalized rates and

concentrations
After having quantified data from RNA-seq (R) and 4sU-seq

(labeled, L) libraries into intronic and exonic RPKMs (makeRPKMs

function), the newINSPEcT method is used to estimate synthesis,

processing and degradation rates by solving the system of differen-

tial equations (2) applied at every time point (t) to both the total and

labeled fractions. When applied to the labeled RNA fraction, the

system can be solved and integrated between t� tL and t, assuming

that no labeled molecules existed before the labeling pulse (tL).

INSPEcT by default assumes that no degradation occurs during the

short labeling time (typically 10 min). Consequently, we have four

equations with three unknowns (at, bt, and ct):

_PRt
¼ at � ctPRt

_TRt
¼ at � btðTRt

� PRt
Þ

PLt
¼ at

ct
ð1� e�ct tL Þ

TLt
¼ attL

8>>>>>><
>>>>>>:

(3)

For each gene, PRt
is equal to its pre-mRNA level (intronic RNA-seq

RPKM), TRt
is equal to the total mRNA level (exonic RNA-seq

RPKM), and PLt
is equal to the pre-mRNA level as quantified in the

labeled fraction (intronic 4sU-seq RPKM). Finally, TLt
is equal to

the total mRNA level as quantified in the labeled fraction (exonic

4sU-seq RPKM). _PRt
, _T Rt

are estimated from the interpolation of

the PRðtÞ and TRðtÞ time-courses using cubic splines.

INSPEcT takes advantage of the over-determination of the sys-

tem to identify for each time point a normalization factor nt that is

used to scale labeled data (PLt
,TLt

). nt is determined minimizing the

difference between ct as estimated from (i) equations (3.1) and (3.3),

and (ii) equations (3.3) and (3.4) [see Supplementary Additional File

S3, equations (s1)–(s2)].

Subsequently, while synthesis rates are calculated solving equa-

tion (3.4), processing and degradation rates are determined by

newINSPEcT iteratively integrating equations (3.1) and (3.2),

assuming linear behavior of synthesis rate, pre-mRNA and total

mRNA between time-points.

½PRðtÞect �t�tiþ1

ti
¼
ðtiþ1

ti

aðtÞ � ect �tdt

½TRðtÞebt �t�tiþ1

ti
¼
ðtiþ1

ti

aðtÞ � ebt �tdt þ bt

ðtiþ1

ti

PRðtÞ � ebt �tdt

8>>><
>>>:

(4)

The solution of the first time point is obtained directly from the data

assuming the steady state.

c0 ¼ a0=PR0

b0 ¼ a0=ðTR0
�PR0

Þ

8<
: (5)

This procedure of estimation of degradation and processing rates is

more robust compared with estimating derivatives of T and P dir-

ectly from the data [for details see Supplementary Additional File

S3, equations (s3)–(s7)].

In case of experiments based on longer 4sU pulses, the assump-

tion that no degradation of newly synthesized transcript occurs does

not hold anymore. To cope with this experimental design, the

newINSPEcT method provides an alternative set of equations that

take into account the degradation of transcripts during the pulse

[see Supplementary Additional File S3, equation (s8)].

3.2 Modeling of rates and concentrations
Once a prior estimate is obtained for synthesis, processing and deg-

radation rates over time for each gene, INSPEcT tests different models

of transcriptional regulation to identify the most likely combination

of rates explaining the observed changes in gene expression

(modelRates method). To this purpose, a parametric function is fit on

each rate over time, through minimization of residual sum of squares.

For example in the case of RNA synthesis, after having selected func-

tion f for the fit of a synthesis rate for a given gene, a set of parameters

pa is chosen after n random initializations as the one that better ex-

plains the data [see Supplementary Additional File S3, equation (s9)].

Fig. 1. Diagram illustrating the main steps of a typical INSPEcT workflow.

INSPEcT functions and methods that can be used for specific steps are indi-

cated in italic. Input RNA- and 4sU-seq sequencing data are both subjected to

alignment and exonic and intronic RPKMs are computed. These data are

passed to the newINSPEcT method that determines total and pre-mRNA con-

centrations and normalized rates. On one hand these data can be used for the

creation of a simulated dataset; simulated RNA concentrations and rates are

subjected to modeling, leading to evaluation of modeling performance

through ROC analysis. On the other hand, real RNA concentrations and rates

are subjected to modeling thus providing for each gene the most likely tran-

scriptional regulatory mechanism. For example, as indicated in the figure the

expression of gene X over time is mostly under control of varying synthesis

(a) and degradation (b) rates
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Both f and n can be user-defined in INSPEcT. By default, rates are fit

using both the sigmoid and the impulse model (Chechik and Koller,

2009) functions, and the one that better explains the data in terms of

goodness of fit, measured by v2 test is chosen, thus penalizing the im-

pulse model for the added complexity. For both functions, due to the

reduced number of the time-points typically available in a biological

time-course experiment, a strong priori to the random initialization of

parameters is given based on the data. Once the parametric function-

alization for synthesis, degradation and processing rates were ob-

tained, it is possible to test how those parametric functions were able

to recapitulate the experimental data they originated from after an

additional minimization step [see Supplementary Additional File S3,

equations (s10)–(s11)]. To identify the most likely mechanism of tran-

scriptional regulation, INSPEcT tests the possibility that each rate is

constant during the time course by building models that alternatively

set as constant one, two or all the three rates. Regarding the degrad-

ation rate for example, four pairs of models (dashed arrows in Fig. 2)

can be considered to test whether this rate is more likely to be con-

sidered variable or constant. All these pairs are nested models that can

be evaluated via log likelihood ratio test against the null hypothesis

that the degradation rate is constant. Only pairs of nested models

where at least one model is successfully evaluated by v2 test are con-

sidered, and resulting P-values are combined using Brown’s method

(Brown, 1975) The same procedure is thus applied for the evaluation

of synthesis rate (comparing nested models as indicated by the solid

arrows in Fig. 2) and processing rate (dotted arrows). Alternatively,

model selection through AIC (Akaike information criterion) is

supported.

4 Evaluation of performance through
simulated data

Simulated data were used to evaluate the performance of INSPEcT

in classifying each rate as constant or variable, and to estimate the

number of time points and replicates necessary to achieve a given

performance. Simulated data are generated on the basis of real data

(RNA concentrations and rates) and aim at: (i) reproducing the dis-

tributions of their absolute intensities, their variation over time, and

the correlations between these features; and (ii) obtaining a dataset

where the ground truth is known in terms of which genes are under

the control of varying or constant rates.

4.1 Generation of the simulated data
The generation of the simulated data involves the following steps

(see also Fig. 1 and Supplementary Additional File S3 for details):

i. Real rates quantification (newINSPEcT function): rates are

quantified on a real time-course dataset (including N time

points).

ii. Parametric functions of simulated rates (makeSimModel method):

distributions of rates, their variation over time, and their pairwise

correlations are evaluated. As a result, functions of the simulated

rates and their parameters are returned for the required number

of genes (G) (see an example for the synthesis rate in

Supplementary Fig. S6 in Supplementary Additional File S3).

iii. Recapitulating the variance of real data (makeSimModel

method): to sample the noise that will be added to the simulated

data, a time-course of synthesis, degradation and processing

rates is created for N time points, and pre-mRNA and total

mRNA levels are coherently generated for G genes. Rates and

concentrations are then used to derive simulated exonic and in-

tronic signals of labeled and total RNA datasets. The resulting

simulated datasets are intrinsically noise-free and indeed show a

reduced variance compared with the real data. The missing vari-

ance is determined and returned for each gene G and dataset

(see an example for the exonic signals from the labeled library

in Supplementary Fig. S7 in Supplementary Additional File S3).

iv. Generation of simulated data (makeSimDataset method): given

a required number of time-points and replicates, and the output

of the makeSimModel method, for each gene G simulated rates

and concentrations are calculated, white-noise is added (with

the given noise variance), and exonic and intronic signals are

coherently reconstructed and returned for both the total and the

labeled dataset.

The obtained simulated dataset, subjected to the modeling by the

modelRates method, is provided to the rocCurve method, which uses

a ROC-curve analysis to measure classification performance in terms

of sensitivity and specificity. False negatives (FN) represent cases

where the rate is identified as constant while it was simulated as vary-

ing. False positives (FP) represent cases where INSPEcT identified a

rate as varying while it was simulated as constant. On the contrary,

true positives (TP) and negatives (TN) are cases of correct classifica-

tion of varying and constant rates, respectively. Consequently, sensi-

tivity and specificity are computed using increasing thresholds for the

brown’s P-values, and the ability of correctly classifying a rate is

measured through the area under the curve (AUC) for each rate.

4.2 Evaluation of INSPEcT classification performance

with different experimental designs
To evaluate INSPEcT performance, we generated a pilot experiment

using mouse 3T9 cells transfected with the MycER construct so that

the expression of the Myc transcription factor can be induced beyond

endogenous levels. The transcriptional response was followed over

time (9 time points) by RNA-seq and 4sU-seq sequencing (10 min 4sU

pulse; the data are available within the INSPEcT package).

Normalized rates and concentrations are determined applying the

newINSPEcT method on the experimental data as illustrated earlier

and were used to generate synthetic datasets with different numbers

of replicates and time points that were subjected to ROC analysis. In

all tested cases the performance achieved for the synthesis rate was

higher in terms of AUC compared with degradation and processing

rates. This is expected, since only the synthesis rate is determined dir-

ectly from the labeled RNA fraction. When increasing the number of

Fig. 2. Schema illustrating the models to be compared for determining if a tran-

scriptional regulatory rate is variable or constant over time. mRNA synthesis

(a), degradation (b) and processing rates (c) are individually tested for being

variable or constant; models are named after rate(s) that are hypothesized to be

variable. For each rate, multiple nested models can be compared, indicated by

identical arrows. As an example, dashed arrows indicate the four models that

could be tested to determine the likelihood that the degradation rate (b) is vary-

ing over time, given the provided data (see text for details)
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time points from 9 to 12 and the number of replicates from 1 to 3, the

performance of the classification significantly improved: AUC

increased from 0.78 to 0.89 for the synthesis rate, from 0.65 to 0.83

for the degradation rate and from 0.61 to 0.77 for the processing rate

(Fig. 3 and Supplementary Fig. S1 in Supplementary Additional File

S3). As expected, using a simulated dataset including only two repli-

cated time-courses provided intermediate performance, while increas-

ing from three to four replicated time-courses did not significantly

improve the results, thus not justifying the increase sequencing cost.

We concluded that, given the simulated data created on the basis of

the pilot experiment data, an experimental design comprising three

replicated time-courses of 12 time points each would provide the best

trade-off in terms of cost and performance.

5 Comparison with existing methods and tools

We compared INSPEcT theoretical and computational framework

with available tools and data from the following studies:

i. (Rabani et al., 2011); from here on data will be named

Rabani2011; no software provided;

ii. (Miller et al., 2011); data: Miller2011; software: DTA

iii. (Rabani et al., 2014); data: Rabani2014; software: DRiLL

5.1 Rabani2011 and DRiLL
Compared with the method proposed in Rabani et al. (2011),

INSPEcT implements and significantly extends the set of equations

describing the dynamics of system, and the modeling and testing

framework. Very recently, a revised version of the method originally

proposed in Rabani et al. (2011) was published, extending the former

approach to quantify pre-mRNAs and model processing rates

(Rabani et al., 2014). Both Rabani2011 and Rabani2014 are based

on high-throughput measurements of the transcriptional response of

mouse dendritic cells exposed to lipopolysaccharide, for both total

and 4sU-labeled RNAs. Rabani2011 data were obtained through the

Nanostring nCounter platform, thus providing digital measurements

based on a limited number of probes for several hundreds genes.

Thanks to INSPEcT flexibility, we could analyze these data despite

the lack of probes covering introns, at the cost of an impaired quanti-

fication of pre-mRNA. Although we were not able to quantify pre-

mRNA processing rates, we could recapitulate the published results in

terms of degradation rates distribution and degradation dynamics of

genes that were considered variable over time (Supplementary Figs S2

and S3 in Supplementary Additional File S3).

For a more quantitative comparison, we reanalyzed Rabani2014

data, for which rates resulting from DRiLL analysis are available.

Data were provided in the form of pre-mRNA and mature mRNA

expression intensities of the labeled and the total fraction. We

derived intronic expression directly from their pre-mRNAs inten-

sities and exonic expression as the sum of the pre-mRNAs and ma-

ture mRNAs levels. Intronic and exonic expressions of both labeled

and total fractions were provided to the newINSPEcT method and

rates were obtained and further subjected to modeling. According to

Rabani et al. (2014) the correlation of DRiLL-derived rates with

their previous study (Rabani et al., 2011) was considered significant

(r¼0.39 and 0.23 for degradation and processing rates, respect-

ively). Similarly, rates estimated with INSPEcT on Rabani2014

modeled rates are correlated at 0.33 and 0.24 for degradation and

processing, respectively. Importantly, after modeling these rates

with INSPEcT, the correlations increased to 0.56 and 0.28, respect-

ively. Synthesis rates are correlated at 0.65 and 0.69 pre- and post-

modeling. We consider these correlations to be modest and we eval-

uated the possibility that this variation is due to the different

normalization strategy adopted by INSPEcT and DRiLL. DRiLL

introduced a normalization method that tries to estimate the con-

tamination of total RNA in the labeled library. The authors esti-

mated this contamination to be around 30% in Rabani2014 data,

and they consequently adjusted the data for this factor. We adopted

the same method they described to estimate this contamination fac-

tor on Rabani2014 and on the data in the current study. We could

not confirm this level of contamination, which was estimated at

10% in their dataset and was absent in ours. When compensating

for this factor, the correlation between INSPEcT and DRiLL only

marginally increased to 0.75 and 0.36 for pre-model synthesis and

processing rates, respectively. Eventually, we decided to refrain

from implementing this correction, while ruling out that this might

represent a reason for the observed difference in the estimated rates.

Similarly to DRiLL, INSPEcT provides a computational routine

for the normalization of RNA- and 4sU-seq data, allowing an un-

biased estimation of the scaling factors at each time point. This was

previously achieved based on the yield of the 4sU-labeled mRNA re-

covered from the total RNA (Miller et al., 2011; Rabani et al.,

2011). However, this procedure depends on the 4sU availability

within the cell, which can be influenced by the rate of nucleotides

transportation and metabolism. Considering the fact that genes

involved in uridine transportation and metabolization are often

regulated over time-resolved transcriptional responses (see

Supplementary Figs S4 and S5 in Supplementary Additional File S3),

the scaling factors computed using the amount of 4sU recovered and

the one estimated computationally can be highly different and lead

to considerably different global results. Therefore, we propose to

rely on the computational scaling factor as a more robust alternative

for the analysis of 4sU-seq data.

Importantly, Rabani2014 dataset lacks replicates, which is far

from the optimal choice when using INSPEcT, especially for the
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Fig. 3. The ability of identifying variable or constant rates in simulated data

(twelve time-points, three replicated time-courses) is evaluated through ROC

curves. Sensitivity and specificity are calculated for each of the synthesis,

degradation and processing rates considering different p-values cutoffs. The

area under the curve (AUC) is reported in the legend
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modeling framework. It is not clear to us how they managed the

lack of replicated experiments. In fact, Supplementary Figure S1 in

our manuscript displays the performance evaluation on the analysis

of our own experimental data in single replicate with sequencing

depth similar to the Rabani2014 dataset (86M versus 68M rRNA-

depleted, unaligned reads in their dataset, compared to our own).

We show there that the performance of the constant/varying classifi-

cation is quite low with data of this depth and lack of replicates

(Supplementary Fig. S1). Our ROC analysis suggests that their data-

set did not have enough replicates. For this reason, we decided to

avoid to compare the classification between the two methods.

Eventually, the ROC analysis based on the simulated data gener-

ated by INSPEcT, could have been conclusive on the relative perform-

ance of the two tools. Unfortunately, we were unable to use DRiLL

neither on their nor on our own data, having this software major limi-

tations in terms of both documentation and implementation.

5.2 DTA
DTA is an alternative method available for the joint analysis of

RNA- and 4sU-seq data (Miller et al., 2011). Compared with

INSPEcT, DTA is limited to the inference of RNA synthesis and deg-

radation rates in terms of variation between two conditions.

Moreover, it does not offer the possibility of determining pre-

mRNA levels and computing pre-mRNA processing rates.

Importantly, DTA lacks any modeling, which is central in INSPEcT,

and consequently is not able to infer which layer(s) of transcrip-

tional regulation (synthesis, degradation or processing in the case of

INSPEcT) are most likely to be responsible for the final mRNA level.

Regarding the normalization of RNA- and 4sU-seq data, an ex-

panded version of DTA was released (Eser et al., 2013; Sun et al.,

2012), proposing an experimental procedure to scale the data from

the two sequencing libraries, which is based on the adoption of in-

ternal standards quantified along with the sample, thus allowing the

estimation of absolute rate intensities. However, this procedure does

not eliminate the bias due to 4sU-metabolism discussed earlier.

In order to directly compare INSPEcT to DTA, we used our tool

to reanalyze the Miller2011 dataset. As previously discussed for

Rabani2011, the Miller2011 dataset does not include expression

intensities for introns and only synthesis and degradation rates can

be determined. Leveraging on INSPEcT flexibility, we were able to

reanalyze these data, and we obtained a correlation of 0.91 and 0.70

for pre-model synthesis and degradation rates, respectively.

Importantly, Miller2011 degradation rates are validated comparing

with experiments performed in response to drugs blocking transcrip-

tion, thus indirectly validating the rates obtained with INSPEcT.

5.3 Advantages of INSPEcT compared with available

methods (DRiLL and DTA)
Recapitulating, the INSPEcT advantages compared with DTA are:

• the ability of dealing with the intronic signal to determine pre-

mRNA levels and quantify mRNA processing rates
• the presence of a comprehensive modeling framework, based on

ODE modeling of RNA dynamics
• a computational normalization method to scale labeled and total

mRNA intensities that compensates for 4sU-metabolism bias

INSPEcT advantages compared with DTA and DRiLL are:

• the INSPEcT ability to generate simulated data and perform a

ROC analysis to evaluate the performance of the classification

and guide on the experimental design

• the flexibility of working with both exonic only and exonic plus

intronic signals
• the ability of dealing with long 4sU pulses, taking into account

degradation during the pulse (which is in our experience a rela-

tively common experimental choice among our collaborators)
• the possibility of fitting either impulse or sigmoid functions on

the data to reduce overfitting
• the possibility of using Akaike information criterion (AIC) for

model selection
• the availability as open-source R package in the Bioconductor

project and of the extended documentation for both individual

methods and the overall workflow (see Supplementary

Additional File S4). This only applies with respect to DRiLL.

6 Conclusions

In conclusion, INSPEcT provides an R/Bioconductor compliant so-

lution for the study of dynamic transcriptional regulatory processes.

Based on RNA- and 4sU-seq time-course datasets, which can be

jointly analyzed thanks to a computational normalization routine,

INSPEcT determines mRNA synthesis, degradation and pre-mRNA

processing rates over time for each gene, genome-wide. The

INSPEcT modeling framework allows the identification of gene-

level transcriptional regulatory mechanisms, determining which

combination of constant or variable synthesis, degradation and pro-

cessing rates is most likely to be responsible for the observed mRNA

level over time. Importantly, given a dataset, INSPEcT allows testing

its performance in classifying rates as constant or varying, and in

predicting how many additional replicates and/or time points would

be needed to reach the desired performance.

Acknowledgements

The authors would like to thank Magnus Rattray, Valerio Bianchi, and Anna

Russo for critical feedback and discussions, and all R/Bioconductor

developers.

Funding

This work was supported by the European Community’s Seventh Framework

(FP7/2007-2013) project RADIANT (grant number 305626) to M.P., and a

grant from the Italian Association for Cancer Research (AIRC) to B.A.

Conflict of Interest: none declared.

References

Braun,K.A. and Young,E.T. (2014) Coupling mRNA synthesis and decay.

Mol. Cell. Biol., 34, 4078–4087.

Brown,M. (1975) A method for combining non-independent, one-sided tests

of significance. Biometrics, 31, 987–992.

Chechik,G. and Koller,D. (2009) Timing of gene expression responses to en-

vironmental changes. J. Comput. Biol., 16, 279–290.

Eser,P. et al. (2013) Periodic mRNA synthesis and degradation co-operate dur-

ing cell cycle gene expression. Mol. Syst. Biol., 10, 717.

Fu,Y. et al. (2014) Gene expression regulation mediated through reversible

m6A RNA methylation. Nat. Rev. Genet., 15, 293–306.

Houseley,J. and Tollervey,D. (2009) The many pathways of RNA degrad-

ation. Cell, 136, 763–776.

Melvin,W.T. et al. (1978) Incorporation of 6-thioguanosine and 4-thiouridine

into RNA. Application to isolation of newly synthesised RNA by affinity

chromatography. Eur. J. Biochem., 92, 373–379.

Miller,C. et al. (2011) Dynamic transcriptome analysis measures rates of

mRNA synthesis and decay in yeast. Mol. Syst. Biol., 7, 1–13.

2834 S.de Pretis et al.

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/31/17/2829/183812
by guest
on 30 July 2018

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv288/-/DC1
 / 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv288/-/DC1
to
Sun etal., 2012; 
above
to
to
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv288/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv288/-/DC1
.


Orphanides,G. and Reinberg,D. (2002) A unified theory of gene expression.

Cell, 108, 439–451.

Rabani,M. et al. (2011) Metabolic labeling of RNA uncovers principles of

RNA production and degradation dynamics in mammalian cells. Nat.

Biotechnol., 29, 436–442.

Rabani,M. et al. (2014) High-resolution sequencing and modeling identifies

distinct dynamic RNA regulatory strategies. Cell, 159, 1698–1710.

Raghavan,A. et al. (2002) Genome-wide analysis of mRNA decay in

resting and activated primary human T lymphocytes. Nucleic Acids Res.,

30, 5529–5538.

Shalem,O. et al. (2008) Transient transcriptional responses to stress are generated by

opposing effects of mRNA production and degradation. Mol. Syst. Biol., 4, 223.

Sun,M. et al. (2012) Comparative dynamic transcriptome analysis (cDTA) re-

veals mutual feedback between mRNA synthesis and degradation. Genome

Res., 22, 1350–1359.

Sun,M. et al. (2013) Global analysis of EukaryoticmRNA degradation reveals

Xrn1-dependent buffering of transcript levels. Mol. Cell, 52, 52–62.

Zeisel,A. et al. (2011) Coupled pre-mRNA and mRNA dynamics unveil oper-

ational strategies underlying transcriptional responses to stimuli. Mol. Syst.

Biol., 7, 529.

INSPEcT: inferring mRNA dynamics from time course 2835

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/31/17/2829/183812
by guest
on 30 July 2018


	btv288-M1
	btv288-M2
	btv288-M3
	btv288-M4
	btv288-M5

