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Abstract

Motivation: Simulating complex evolution scenarios of multiple populations is an important task

for answering many basic questions relating to population genomics. Apart from the population

samples, the underlying Ancestral Recombinations Graph (ARG) is an additional important means

in hypothesis checking and reconstruction studies. Furthermore, complex simulations require a

plethora of interdependent parameters making even the scenario-specification highly non-trivial.

Results: We present an algorithm SimRA that simulates generic multiple population evolution

model with admixture. It is based on random graphs that improve dramatically in time and space

requirements of the classical algorithm of single populations.

Using the underlying random graphs model, we also derive closed forms of expected values of the

ARG characteristics i.e., height of the graph, number of recombinations, number of mutations and

population diversity in terms of its defining parameters. This is crucial in aiding the user to specify

meaningful parameters for the complex scenario simulations, not through trial-and-error based on

raw compute power but intelligent parameter estimation. To the best of our knowledge this is the

first time closed form expressions have been computed for the ARG properties. We show that the

expected values closely match the empirical values through simulations.

Finally, we demonstrate that SimRA produces the ARG in compact forms without compromising

any accuracy. We demonstrate the compactness and accuracy through extensive experiments.

Availability and implementation: SimRA (Simulation based on Random graph Algorithms)

source, executable, user manual and sample input-output sets are available for downloading at:

https://github.com/ComputationalGenomics/SimRA

Contact: parida@us.ibm.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

We address the task of modeling and simulating complex scenarios

of related multiple populations with subdivision and admixture.

These scenarios can be used to study the effect on the genetic profiles

of extant populations as well as for testing complex hypotheses. The

aim of simulations is to not only capture the resulting populations

but also the relevant evolutionary history (for possible reconstruction

studies). In literature, most admixture models are based on rather

simplistic hypothesis of their possible inter-evolution history. One of

the bottlenecks has been the sheer size of the monolithic common his-

tory of multi-populations, each of realistic size. Under these condi-

tions simulators of even simple scenarios of just three populations

often do not terminate in reasonable time in spite of meaningful par-

ameter settings (sometimes up to 10–12 hours, for instance with
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COSI (Schaffner et al., 2005)). We observed a similar abort-and-re-

run requirement in our experiments even with the classical algorithm

(called Hudson in the paper).

We present a framework for modeling complex evolutionary

scenarios and an algorithm named SimRA that is both time and

space efficient enough to be practical. SimRA makes it possible to

run hundreds of experiments in very short time (in minutes) enabling

a very effective means of carrying out complex studies, such as in

Parida et al. (2015). We demonstrate that the algorithm does not

compromise the accuracy of the resulting simulations, all the while

being very compact in its description.

1.1 Background
ARG is a directed acyclic graph (DAG) that captures the common

evolutionary history of extant samples (Griffiths and Marjoram,

1997). SimRA is based on backward simulation of the ARG.

Backward simulations begin in the present and move in time

through the past generations and are usually more efficient than for-

ward simulations due to the elimination of many (obvious) redun-

dant paths in the evolution process. The big picture showing the

relationship between a complete genealogical network and an ARG

highlighting the backward trace of history is illustrated in Figure 1.

Complex simulation of scenarios results in complex interplay of

parameters. For instance, what should be the sample size m of a

population such that the expected number of active lineages in t gen-

erations is more than one. We present analytic forms of the expected

ARG characteristics of a population in terms of the input param-

eters. These derivations use the graph-theoretic results of the ran-

dom graph model presented in Parida (2010b). To the best of our

knowledge, this is the first time that such closed forms of the ARG

characteristics estimates have been computed. The estimated ex-

pected values can be effectively utilized by the user to design

appropriate input regimens, removing time consuming trial and

error iterations (see case study in Supplementary Section S5).

2 Modeling multiple populations

We model the relationship between m populations by a DAG P0

with m leaf nodes, and call it a scaffold. An example is shown in

Figure 2 (i). The progress of time is assumed to be from top to bot-

tom and the m leaf nodes are annotated with the population labels.

Further, each edge e in P0 has three characteristics: the incubation

length lenðeÞ, the number of lineages at the bottom of the edge, lb(e)

and the number of lineages at the top of the edge, ltðeÞ. The length is

a time parameter defined in generations. Note that two parameters,

an effective population size and a recombination rate, determine the

number of lineages ltðeÞ for a fixed pair of values of lb(e) and lenðeÞ.
We assume that the scaffold P0 is binary (i.e., each internal node in

P0 has exactly two ascendants or two descendants, but not both).

For each internal node, the junction constraints are defined as

1 2 3 4

(a) (b) (c) (d) (e)

1 2 3 4

Fig. 1. (a) shows the complete genealogical (pedigree) graph of a Wright Fisher population of 8 at each generation. Every individual has exactly two parents.

(b) shows the substructure of (a) based on tracking some chromosomal segment from four extant samples, marked in dark purple. The bold edges mark the flow

of the genetic segments of interest to the four extant units. (c) shows the relevant part by removing the extraneous parts of the network of (b). Note that a forward

simulator (moving in time from past to present) may have to simulate the network in (a) or (b), whereas the network in (c) is adequate for a backward simulator

(moving in time from present to past). In fact a backward simulator may only construct the network in (d) where every node has either multiple descendants or

multiple ascendants (termed the ARG). For visual clarity, the time scale has been adjusted. (e) The possible flow of 3 non-mixing segments in the ARG is shown

in three distinct colors, green, red and blue (from left to right on the chromosomal segment). The dashed edges imply that these do not affect any of the four ex-

tant samples, due to a recombination node in their path

BDA C A BDC

(i) scaffold (ii) ARG

Fig. 2. An example with four populations A, B, C, D. (i) shows the scaffold P 0.

(ii) shows a corresponding ARG P. Note that in general the structure of P 0 is

not apparent from P and the ARG P simply looks like the ARG in Figure 1. See

text for more details

Sampling ARG of multiple populations with SimRA 1049
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follows (see also Figure 3). A node v in P0 that has two incoming

edges e1 and e2 and an outgoing edge e3 (termed a split node) the fol-

lowing relationship holds: ltðe3Þ � lbðe1Þ þ lbðe2Þ, i.e., the lineages

at v is the union of the lineages of the two incoming edges. Similarly

if node v has two outgoing edges e1 and e2 with one incoming edge

e3 (termed a merge node), then lbðe3Þ � ltðe1Þ þ ltðe2Þ, i.e., the lin-

eages at v is the union of the lineages of the two outgoing edges.

Each edge e of P0 represents the evolution of a Wright Fisher popula-

tion captured in a DAG say Pe. The union of each of these DAGs by

appropriately gluing the ends of the edges corresponding to the

nodes of P0 gives the ARG P that can be written as: P ¼ [e2P0Pe:

Such a P is shown in Figure 2 (ii) where the leaf nodes correspond to

extant units of each population of P0.

Figure 4 shows an example of parameters that define the scaffold

P0. Additionally a recombination rate (r) and effective population

size for each edge, ultimately decides the topology of the resulting

ARG. Further, the mutation rates and the short tandem repeats

(STR) details define the polymorphism in the samples of the individ-

uals of the populations.

Consider the scaffold specified in Figure 4. Each edge is simulated

as a single population (Section 3) and assume that the effective popula-

tions size Nej
is specified for each edge ej. For instance, the edge e1

labeled with population D is simulated with 12 extant samples, i.e.,

lbðe1Þ ¼ 12; lenðe1Þ ¼ t1. The resulting surviving lineages ltðe1Þ is split

in the ratio 1:1 as shown in Figure 3. Similarly, the edge e2 is labeled

with population C with 18 extant samples, lbðe2Þ ¼ 18; lenðe2Þ ¼ t2.

The resulting surviving lineages ltðe2Þ is split in the ratio 1:1. Next,

ltðe1Þ=2 lineages are simulated until a time depth of t3 on edge e3 to

give ltðe3Þ lineages. Population B is simulated with 14 extant samples

on edge e4 until a time depth of t3, i.e., lbðe4Þ ¼ 14; lenðe4Þ ¼ t4. The

ltðe3Þ lineages are combined with ltðe4Þ lineages. This node in the scaf-

fold is a merge node as shown in Figure 3 and the population is simu-

lated to a time depth of t6 (i.e., for time t6 � t3). Similarly all the edges

are simulated until a total time depth of t7.

3 ARG network sampling algorithm

We now address the problem of simulating each edge of the scaffold

P0 which can also be viewed as the ARG sampling of a single popula-

tion. This is a well-studied problem as discussed in (Hein et al.,

2004; Hudson, 2002). In the remainder of the paper, we refer to this

classical backward algorithm, based on Kingman coalescence, as

Hudson (Kingman, 1982). The reader is directed to (Hein et al.,

2004; Hudson, 2002) and citations therein for a comprehensive de-

scription of Hudson. However, we found that even Hudson algo-

rithm was not efficient enough to admit complex scaffold

simulations: it was too time consuming and in many instances failed

to terminate in reasonable time, forcing to abort and re-run. A single

scaffold requires multiple runs (corresponding to each edge) thus

making the algorithm prohibitively expensive. Here we present our

algorithm for simulating a single (neutral) population.

3.1 Overview of the approach
The algorithm is based on Kingman coalescence and is along the

lines discussed in (Hein et al., 2004) and is very similar to the

Hudson algorithm. Again, to keep the discussion self-contained we

give the complete description here, along with the changes specific

to SimRA in the text of the description below. The algorithm works

back-in-time starting from the present (time 0), moving back into

the past. Further, the ARG is incrementally constructed by identify-

ing the event nodes in the graph. An event node either has multiple

incoming or multiple outgoing edges. For example a chain node is

not an event node. An important assumption, that considerably sim-

plifies the algorithm, is made: The probability of multiple events in

the same epoch (generation) is extremely low, hence the algorithm

assumes there is at most one event per generation. The design of the

overall algorithm is affected by this and at each step the algorithm

simply seeks the closest generation from the current where an event

node occurs.

3.1.1 The closest event node from the current state in the ARG

In the interest of brevity, some basic definitions are presented in

Supplementary Section S1 and use here. Let L lineages be active at

time T. Let tcoal
ab denote the time to the coalescence of lineages la and

lb. Let trcmb
l denote the time to the closest (to T) recombination event

of lineage l. Eq. 23 (in Supplementary) shows that each of the L

2

� �
coalescent events, generically written as tcoal

ab , can be approximated

by an exponential distribution with parameter k ¼ 1. Recall the fol-

lowing observation from (Parida, 2010b):

OBSERVATION 1. (Ancestor Without Ancestry Paradox) The edges

(and nodes) of an ARG must be annotated with the chromosomal

segment that flows through the edge.

Based on the above observation, Eq. 26 (in Supplementary) can

be approximated by an exponential distribution with parameter r0l
where r0l ¼ Nrl and rl is the recombination rate of the segment flow-

ing through lineage l. These approximations to the exponential dis-

tributions are based on two assumptions (Wright Fisher

population): the population at each generation is N and a unit picks

its parent randomly from the previous generation (non-overlapping

generations and panmictic mating population). Also, note that the

factor of N in r0l is due to the approximation of the distributions,

and not due to the underlying population evolution model. The task

is to find t, the time to the closest event node in the past. This event

could either be a coalescent event (merging of two lineages) or a

4
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1:1
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Fig. 4. Specifying the family of 4 populations, A, B, C and D with sample sizes

10, 14, 18 and 12 respectively. The horizontal dashed lines correspond to time

t0 ¼ 0 < t1 < t2 < ::: < t7. At times t1 and t2 the surviving lineages are split in

the ratio 1:1 along the diverging lines of the scaffold at the split nodes

t
t

NN 21

(i) Merge (ii) Split

Fig. 3. The two types of nodes in a scaffold P 0 : Merge and split nodes are

marked by the horizontal dashed lines at time t. The tiny black disc nodes and

the thin black edges are part of the underlying ARG P
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recombination event (splitting of a lineage). Since all the events are

independent, then we seek overall minimum. Thus

t ¼ min
�

min1�a<b�Lðtcoal
ab Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{
;min1�l�Lðtrcmb

l Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
�

¼ Exp
�

1þ 1þ � � � þ 1
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{

þ r01 þ r02 þ � � � þ r0L|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�

(1)

using Property 1 (Supplementary Section S1). The overbraces cap-

ture the L

2

� �
coalescent events and the underbraces capture the L re-

combination events. t computes the time to the closest event back in

time from the current time T, but, is the closest event coalescent or

recombination? The answer to this comes from Property 2

(Supplementary Section S1). The event is a coalescent event with

probability

L

2

� �
L

2

� �
þ
X

l

rl
0

(2)

and a recombination at lineage 1 � k � Lwith probability

rk
0

L

2

� �
þ
X

l

rl
0

(3)

In the implementation of the algorithm, both Eqs. 2 and 3 are

used in a single draw of a random number. Imagine a unit interval

½0;1� is broken up into 1þ L sub intervals of lengths in the follow-

ing ratio L

2

� �
: r01 : r02 : . . . : r0l : . . . : r0L: Thus a random number drawn

from the interval ½0; 1� belongs to one of these 1þ L sub-intervals

and is appropriately interpreted: the first interval implies

coalescent event and kth (k > 1) interval implies a recombination

at the lineage lk�1. Since the events are random, t is estimated first

and then the lineages are picked at random from the L active

lineages.

3.1.2 Genetic material flowing through the ARG

The chromosomal segment whose evolution history is captured by

the ARG is represented as the real interval ½0;1�, without loss of gen-

erality. Every node in the ARG is annotated with union of one or

more sub-intervals of ½0;1�. Thus genetic material, I, carried by a

node is: I ¼ f½‘1;u1�; ½‘2; u2�; . . . ; ½‘s;us�g; where 0 � ‘1 < u1 < ‘2
< u2 < ::: < ‘s < us � 1: The closed intervals ½‘i;ui� 2 I are termed

solid and the open intervals ðui; ‘iþ1Þ are termed gaps where

1 � i < iþ 1 � s. The length (len) of I is defined as the total span of

I, irrespective of the gaps, while density (den) of I is defined as the

total span of the solid intervals only. The definitions are summarized

as (see also Fig. 3):

solidðIÞ ¼ ½‘1; u1� [ ½‘2; u2� [ ::: [ ½‘s; us�;

gapsðIÞ ¼ ðu1; ‘2Þ [ ðu2; ‘3Þ [ ::: [ ðus�1; ‘sÞ;

lenðIÞ ¼ us � ‘1;

denðIÞ ¼
Xs

i¼1

ui � ‘i;

½x; y� � solidðIÞ () ½x; y� � ½‘i; ui�; for some 1 � i � s:

The union operation on segments, Ia [ Ib ¼ Ia[b, has the natural

interpretation:

½‘;u� 2 Ia[b () ½‘;u� � solidðIaÞOR ½‘;u� � solid ðIbÞ: (4)

The splitting of I at x (‘1 � x � us) into Ia and Ib is defined as:

I split
!

Ia ¼ Ib ¼ I;when x ¼ ‘1 or x ¼ us;

Ia ¼ f½‘1; u1�; ½‘2;u2�; . . . ; ½‘j;x�g;
Ib ¼ f½x;uj�; ½‘jþ1; ujþ1�; . . . ; ½‘s; us�g;

)
when ‘j < x < uj;

Ia ¼ f½‘1; u1�; ½‘2; u2�; . . . ; ½‘j;uj�g;
Ib ¼ f½‘jþ1;ujþ1�; . . . ; ½‘s; us�g;

)
when uj � x � ‘jþ1:

8>>>>>>><
>>>>>>>:

(5)

3.2 On the uniqueness of GMRCA
A founding ancestor of the extant units is termed GMRCA (grand

most recent common ancestor). Let X denote the set of all (infinite)

graphs, with nodes partitioned into distinct levels, or generations,

with N nodes at each level, and each node having no more than two

parents. For each X 2 X, and any subset V of the nodes at level 0,

there is an induced subgraph of X, namely the ARG induced by V

and we call this the ARG associated with X.

Following Parida (2010a) we introduce a probability measure on

X as follows. For X 2 X and h > 0, we denote by Xh the truncation

of X to depth h, i.e., Xh is the finite induced graph from X on the set

of vertices of level � h. Similarly, for a subset E � X, and h > 0, we

denote Eh ¼ fXhjX 2 Eg. We say that E is finitely determined if

there exists some h0, such that X 2 E() Xh0
2 Eh0

, and in this

case we denote lðEÞ ¼ jEh0
j

jXh0
j. The family, F , of finitely determined

subsets E 2 2X clearly forms a field, and thus by the Caratheodory

extension theorem (see for example Varadhan (2001), Theorem 1.1,

pp. 4), l can be uniquely extended to the r-field generated B by this

family. We denote this measure also by l and consider X as a prob-

ability space with measure l.

Let Eunq � X be the set of graphs X 2 X, such that the ARG asso-

ciated to X has a unique GMRCA. The following theorem (whose

proof is presented in the Supplementary due to space constraints) fol-

lows from the definition of the measure l. It assures us that almost

every ARG has a unique GMRCA. In fact, in over ten thousand simu-

lations, of which about three thousand are reported in this paper,

SimRA terminated in every instance with a unique GMRCA.

Theorem 1. The subset Eunq is measurable and lðEunqÞ ¼ 1.

Corollary 1. The measure of the space of all ARGs with no unique

GMRCA is zero.

3.3 Algorithm to generate the topology
INPUT: Due to historical reasons, the unit of recombination rate is

specified in centiMorgans per megabase per generation and the mu-

tation rate is specified in number of mutations per base pair per gen-

eration (�10�8). The input parameters and some typical parameter

values for a human chromosomal segment are given below.

ASSUMPTION: Not more than one event, coalescent or recom-

bination, occurs at a generation. Also, no back mutations, i.e., a

position undergoes no more than one mutation in the entire ARG.

The mutation rate and recombination rate are uniform over the seg-

ment being simulated.

OUTPUT: ARG; L is the number of GMRCAs.

Sampling ARG of multiple populations with SimRA 1051
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3.4 Painting ARG edges with SNP & STR mutations
Each time t of Step 2(a) can be scaled to generation as j ¼ Nt. Let

time t be associated with an incoming edge on node v. At this stage,

each edge is annotated with the mutation events, which is appropri-

ately reflected in Iv, the segment carried by node v.

3.4.1 SNP mutations

Since number of generations is Nt and the span of the segment Iv has

been normalized in the initialization step, let

p ¼ lNt and n ¼ gdenðIvÞ: (9)

Each edge of the ARG, incoming on node v, is annotated with

number of mutations based on Eq. 9 as follows. X, the random

draw from a Poisson distribution with parameter np:

X ¼ Poisson ðnpÞ: (10)

Then the X mutations are placed at random in segment Iv

(excluding the gaps, see Fig. 5).

3.4.2 STR mutations

Note that the number and positions of the STR loci are fixed by the

input specification. For each STR locus, k, carried by Iv, we compute

the following. The number of STR mutations at locus k on each

edge of the ARG, incoming on node v, is Xv, the random draw from

a Poisson distribution with parameter Ntlstr:

Xk ¼ Poisson ðNtlstrÞ: (11)

Let pþ be the probability of the mutation that increases the num-

ber of copies (by 1 in one generation) and p� be the probability of

the mutation that decreases the number of copies (by 1 in one gener-

ation). Then, Xkþ , the number of times the STR mutation results in

an increase in the number of copies of the repeat follows a binomial

distribution, hence is the random draw from a binomial distribution

with parameter Xk and pþ Xkþ ¼ Binomial ðXk; pþÞ: Thus the re-

mainder, i.e., Xk �Xkþ must be the number of events that result in

decrease of the number of copies. Thus Dk the net change in the num-

ber of copies at locus k is: Dk ¼ Xkþ � ðXk �Xkþ Þ ¼ 2Xkþ �Xk: If

unspecified, we use the default value of pþ ¼ 1
2, assuming

pþ ¼ p� ¼ 1
2 :

4 Four quantitative hallmarks of ARG

The ARG is a random object defined by parameters, m, the extant

sample size; N, the population size; g, the length of the genomic seg-

ment whose common history is being tracked; r the recombination

rate; l, SNP mutation rate. In fact, other polymorphisms, such as

STR, can be incorporated just as the SNP mutations are. Note that

the unique founding ancestor, GMRCA, is attained in an ARG with

probability 1 (see Section 3.2). We consider the following four quan-

tities as the hallmark of the random object ARG with parameters m,

N, g, r, l:

1. Depth of the ARG (H).

2. Number of non-mixing segments in the sample population (Z).

3. Number of polymorphic sites in the sample population (Y).

4. Diversity in the sample population (D).

5 Closed-form approximations of the expected
hallmark values

We derive approximations of the expected hallmark values as

closed-form functions of the ARG parameters. We did not find ana-

lytic or closed-forms of the expected values for the general scenario

in literature, except some very specialized cases such as depth of

Algorithm

1. Initialization.

a. The genetic material, Iv, of each of the m leaf nodes, v,

is set to Iv ¼ f½0; 1�g.
b. The number of live lineages L is initialized to m.

c. For lineage l, incident on leaf node v, the recombination

rate (based on Eq. 26 in Supplementary Section S1) is:

rl
0 ¼ Nrl where rl ¼ grlenðIvÞ: (6)

Since, len ðIvÞ ¼ 1 for the leaf nodes, for each l, rl
0 ¼ a

where

a ¼ Ngr: (7)

d. Time T is set to 0 and iteration i to 1.

2. Loop. Iterate until L is one (or T crosses a pre-defined

threshold). Iteration i is defined as follows.

a. Compute the recombination rate rl
0 of each lineage l

(the outgoing edge on node v) using Eqs. 6 and 7 as

rl
0 ¼ a� lenðIvÞ: Then compute the time ti to the next

event using the exponential distribution (Eq. 1):

ti ¼ Exp

 
L

2

� �
þ
XL

l¼1

rl
0

!
: (8)

In other words, draw a random number from the

above exponential distribution.

b. Based on Eqs. 2 and 3, if coalescent event, then pick

two lineages, la and lb (with genetic material Ia and

Ib respectively) at random and coalesce them to one

and update the genetic material of this new node

and lineage Ia [ Ib (as defined in Eq. 4). Update L to

L – 1.

c. If recombination at lineage k, then randomly pick a

point x on the segment being carried by lineage k, split-

ting the lineage into two, as defined in Eq. 5. Update

the genetic material of the two lineages based on this

splitting point. Update L to L þ 1.

d. T is updated as T þ ti and iteration as i þ 1.

I

0 1 1

I

0

Using den(I) in Eq 9. Using len(I) in Eq 9.(a) (b)

Fig. 5. The top line represents a chromosomal segment I carried by an edge

in both (a) and (b): gapsðIÞ are shown as dashed lines and solidðIÞ as solid

segments. I is mapped to a normalized line segment, say ½0; 1�, shown in the

bottom in both (a) and (b). In (a) the gaps are skipped, and the lengths of each

element in solidðIÞ is proportionally represented in ½0; 1�. Thus any element in

½0; 1� can be mapped back to a unique location in solid(I). In (b) the gaps are

not skipped, and the lengths of each element in solidðIÞ and in gaps(I), is pro-

portionally represented in ½0; 1�. Any element only in the solid section in ½0; 1�
can be mapped back to a unique location in solid(I); any other element maps

to a gap in I
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GMRCA in the absence of recombinations (Hein et al., 2004). Our

derivations are based on the theorems and observations in Parida

(2010a).

In fact, we found that if we required a single population only to

study the hallmark expected values, but not the sample population,

then the closed form approximations were tight enough to make the

actual simulation redundant.

Overview of the derivations. We use two notions: depth of a

node and girth of an edge. An edge length, as well as depth of a

node, is defined to be in time units. The unit of time is measured in

generations. The depth of each node is measured from the leafnodes

and the depth of a leafnode is defined to be 0. The girth of an edge is

defined to be the product of the edge length and the size of the gen-

omic segment the edge transmits.

1. The ARG network is decomposed into overlapping trees (see

Thm 2; also Figs 6 and 7 and Fig. 11 in Supplementary).

2. For each tree, we compute the depth of each node and the girth

of each edge, using Kingman coalescence. The depth of a tree is

simply the depth of its root node. The girth of the tree is the sum

of the girth of each edge of the tree.

3. The depth and girth of each tree are used for approximating the

ARG hallmark values. However, the interdependence of the

trees makes these computations non-trivial.

5.1 Mathematical details
To keep this section self-contained, we recall the following basic

identities. Let 0 < m0 < m.

Xm
i¼m0þ1

1

i� 1
� 1

i

� �
¼ 1

m0
� 1

m
; (12)

Xm
i¼2

1

i� 1
¼ 1þ 1

2
þ . . .þ 1

m� 1
� logm; (13)

Xm
i¼m0þ1

1

i� 1
� logm� logm0 ¼ log

m

m0
: (14)

Consider a tree with m leafnodes. Using Kingman coalesence, all

the non-leaf nodes of the tree can be written in increasing depth

(from the leafnodes) as v1, v2, . . . , vm�1, with the active lineages

decreasing by one at each node. Let ti denote the depth of vi from

vi�1 where depth of v0 is defined to be 0. Then the tree truncated at

a depth that has m0 active lineages, is written as Tm;m0 . Let HTm;m0 be

the depth of this tree. Then using Property 3 (Supplementary Section

S1), linearity of expectations, and the above identities we get:

EðHTm;m0 Þ ¼
Xm

i¼1þm0

EðtiÞ ¼
Xm

i¼1þm0

1
i

2

� �

¼ 2
Xm

i¼1þm0

1

i� 1
� 1

i

� �
¼ 2

1

m0
� 1

m

� �
:

(15)

Let g the length of the genomic segment carried by each edge in

the tree and the girth of the tree be wtTm;m0 . Then

EðwtTm;m0 Þ ¼
Xm

i¼1þm0

iEðtiÞg

¼ g
Xm

i¼1þm0

i
i

2

� � ¼ 2g
Xm

i¼1þm0

1

i� 1

(16)

� 2g log
m

m0
: (17)

The complete tree with a single root node is written as Tm;1 and

EðHTm;1
Þ ¼ 2 1� 1

m

� �
; (18)

EðwtTm;1
Þ ¼ 2g logm: (19)

41 2 3 1 2 3 4

(a) (b)

Fig. 6. The horizontal lines denote the time at which an event (coalescence or

recombination) occurs. (a) An example of an ARG. (b) depicts the flow of the

3 non-mixing segments shown in three distinct colors: green, red and blue

(from left to right on the chromosomal segment)

Fig. 7. The four trees embedded in the ARG network of Figure 6 (as captured in Eq. 20). The three marginal trees, T 1 to T 3 correspond to the three non-mixing

segments shown in green, red and blue
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We recall the following from Parida (2010a) relating population

genetics entities with graph entities like least common ancestor

(LCA). A non-mixing genetic segment does not have any recombin-

ation event in the common history of the m samples.

THEOREM 2 Let G be an ARG with some K 	 1 non-mixing

segments. Then K marginal trees are embedded in G and the

GMRCA of G is the LCA of the K LCAs of the K marginal trees.

Figure 6 gives a simple illustration on an ARG on four samples

with three non-mixing segments. An alternative view of the theorem

is as follows: Let T ðl; bÞ denote a tree defined on l leafnodes

each carrying the segment of length b. Then for some partition of

genome segment g into K non-overlapping segments, where

g ¼ g1 [ g2 [ ::: [ gK,

G �
�[K

k¼1

T kðm; gkÞ
�
[ T 0ðK; gÞ; (20)

where the roots of the T k’s are the leaves of T 0. Two examples illus-

trate the embedded trees, one in Figure 7 and the other, due to space

constraints, in the Supplementary in Figure S11. In the former the

number of nodes in T 0 is of the order of K while the latter has the

smallest possible size of just one node. In both, T 1-T 3 are the mar-

ginal trees of usual shape and size.

Corollary 2. If H1 is the maximum of the depths of Tkðm; gkÞand

H2 is the depth of T 0ðK; gÞand H is the depth of the GMRCA of the

G, then

H ¼ H1 þH2: (21)

Corollary 3. The girth of ARG G is the sum of the girth of each

T kðm; gkÞ and T 0ðK; gÞ.

5.2 Summary of closed-form formulations
Due to space constraints, the derivations have been presented in

Supplementary Section S2 and only the results are summarized here.

Let

H1 ¼ 2 1� 1

m

� �
;

a ¼ Nrg; b ¼ aH1 þ 1; c ¼ 2a� b;

H2 ¼
cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 8að1� bÞ

p
2a

; when r > 0;

K ¼ ðH1 þH2ÞNrgþ 1:

Fig. 8. The closed form expected values are compared against empirical values for different parameter values of m, g and N. The recombination rate used is

r ¼ 0:1� 10�8 Morgan/bp/generation, l ¼ 1:5� 10�8 mutations/bp/generation, and m0 ¼ 1. For the results with m0 > 1, see Figure S12 in the Supplementary.

Note that the mutation rate affects only (iii) and (iv). Each experiment was run 100 times, using both SimRA and Hudson. The box-and-whisker diagram summar-

izes the result for each. On each box, the central mark is the median, the circle is the mean, the edges of the box are the 25th and 75th percentiles, the whiskers

extend to the most extreme data points not considered outliers, and outliers are plotted individually. In each, the green diamond is the expected value as com-

puted by the closed form, while the hollow circles are the observed empirical values by SimRA and Hudson. Notice that not only do the two algorithms give simi-

lar values; the closed form is also a tight approximation
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Then the four (expected) hallmark values are:

EðHÞ � H1 þH2;

EðZÞ � K� 1;

EðYÞ � 2lgNðlogmþ logKÞ;

EðDÞ � 2gNl
Xm
i¼2

1

i2
:

Expected Height of Truncated ARG. H1, a and b values are as

above and m0 is the number of surviving lineages of the truncated

ARG. Then

c ¼ 2a�m0b;

H2 ¼
c6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 8am0ðm0 � bÞ

p
2am0

; when r > 0;

EðHÞ � H1 þH2:

6 Comparison study

For a comprehensive survey of sampling algorithms and simulators

the reader is directed to (Hoban et al., 2012), which discusses both

backward and forward simulators.

Many simulators in literature address the issue of redundancy in

the simulations and they can also be classified on the basis of the ex-

tent of non-redundancy (see Parida, 2012, for instance).

The underlying mathematics of a backward simulator is non-

trivial and the classical Hudson algorithm captures the essence of

backward simulations.

SimRA simulates multiple populations under admixture and sub-

division, while other simulators incorporate other demographic

models, making it difficult for a nose-to-nose comparison. However,

the core engine of SimRA can be compared with the Hudson algo-

rithm, which forms the basis in all backward simulators. Hence in

the comparative study here, we use only the single population of

SimRA and the classical Hudson algorithm using exactly the same

input parameters. Furthermore, to keep the comparisons agnostic to

other possible extraneous factors, we use identical implementation

for the common parts of SimRA and Hudson.

6.1 Differences from Hudson algorithm
Recall that Hudson algorithm uses a single scaled recombination

rate Nr, while SimRA uses the L segmented versions

r0l ¼ Nrl; l ¼ 1; ::;L. This is reflected in Eqs. 1–3. Eq. 1 suggests that

in our algorithm, to account for recombination event, time t takes

into account not just the number of active lineages but also the size

of the segments carried by each of them (rl ¼ grlenðIvÞ of Eq. 6).

Note that
P

v lenðIvÞ 6¼ 1 at each iteration making the two computa-

tions distinct; hence distinct algorithms. Thus if pc is the probability

of coalescence (Eq. 2), then the probability of recombination is 1

�pc with equal probability over all the lineages in Hudson algo-

rithm. But SimRA uses Eq. 3 to pick a lineage for the recombination

event. Thus Eq. 3 has no counterpart in the classical Hudson algo-

rithm. The accuracy of the two algorithms are comparable while

SimRA outperforms Hudson in time, space and non-redundancy fac-

tor, as seen below. We performed extensive comparative analysis be-

tween the two algorithms SimRA and Hudson, to measure various

outcomes. In particular, we carried out hundred runs for each par-

ameter set up, for both the algorithms.

6.2 Accuracy measures
We demonstrate the accuracy of the SimRA algorithm by comparing

the four hallmark values to the ones computed by Hudson. The re-

sults are shown in Figure 8. Notice that the SimRA and the Hudson

estimates are very close to each other, over 100 runs for each config-

uration. We use the same set-up to compare the closed form ex-

pected values of the last section to the observed empirical values.

Again, note the tightness of the approximations. In addition, Figure

12 in the Supplementary shows the expected height of truncated

ARG compared against the observed values using both SimRA and

Hudson, with similar accuracy.

6.3 Time and space performance
Figure 9 shows the results of the comparative time and space per-

formances. SimRA shows consistently superior performance in both

time and space, and, the difference is particularly accentuated with

increasing values of recombination rate r. For higher values of r, the

time and space requirement is nearly two orders of magnitude higher

for Hudson.

In particular, for the study summarized in Figure 10, the Hudson

algorithm had to be aborted and re-run several times and it took

over six months just to complete, while SimRA was done with the

four hundred runs in less than half a day.

6.4 Non-redundant ARGs of SimRA
How redundant is the ARG network sampled by an algorithm? If

we assume that all the marginal trees and the resulting samples are

the essential content of a simulation, then it is meaningful to ask

what portion of the ARG resulting from a simulation has no contri-

bution to the essential content. This is formally studied as the min-

imal descriptor in Parida et al. (2011) and other details pertaining to

Fig. 9. The box-and-whisker diagrams of the time and memory performance

of SimRA and Hudson computed for 100 runs with N¼10K, g¼ 150K, l ¼ 1:5

�10�8 and different value of recombination rates (shown in the x-axis) and

for each parameter setting both the algorithms were run 100 times. The red

line demarcates the time and space requirement for Hudson for the rightmost

value of r. While all values of r the time and space requirement of SimRA is

better than that of Hudson. In particular for large r SimRA is nearly two orders

of magnitude better than Hudson
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the execution of the experiments are presented in Supplementary

Section S4.

Let the compaction factor f be defined as the ratio of the number

of nodes in the minimal descriptor to the number of nodes in the ori-

ginal ARG as in (Utro et al., 2013). Thus the closer the value of f to

1, the less redundant is the ARG and thus more compact. Figure 10

shows that the ARGs produced by SimRA are systematically more

compact than the ones produced by the Hudson algorithm. This is

particularly accentuated for higher values of r.

7 Conclusion

The design of the SimRA algorithm was influenced by the implica-

tions of the Ancestor Without Ancestry Paradox, which also paved

the way for computing the closed forms of the expected values of

the ARG characteristics. To the best of our knowledge this is the

first time analytic formulae have been given for an ARG.

Such closed-forms, apart from mathematical completeness, also

serve multiple practical purposes.

Ironically, it obviates single population simulations in many situ-

ations where the interest is only in the characteristic estimates. In

others it provides a framework for evaluating correctness of the

ARG sampling algorithms. Also, for complex scenarios such as the

ones with population scaffold architectures it aids in parameter spe-

cification (this is illustrated in Supplementary Section S5).

Through extensive comparison studies, we demonstrated that

the ARGs produced by SimRA are more compact, more efficient in

time and space, without compromising accuracy. Currently we are

looking into extending SimRA to incorporate other demographic

models including selection.
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