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Abstract

Summary: A primary problem in high-throughput genomics experiments is finding the most important
genes involved in biological processes (e.g. tumor progression). In this applications note, we introduce
spathial, an R package for navigating high-dimensional data spaces. spathial implements the Principal
Path algorithm, which is a topological method for locally navigating on the data manifold. The package,
together with the core algorithm, provides several high-level functions for interpreting the results. One
of the analyses we propose is the extraction of the genes that are mainly involved in the progress from
one state to another. We show a possible application in the context of tumor progression using RNA-Seq
and single-cell datasets, and we compare our results with two commonly used algorithms, edgeR and
monocle3, respectively.
Availability and implementation: The R package spathial is available on the Comprehensive
R Archive Network (https://cran.r-project.org/web/packages/spathial/index.html) and on GitHub
(https://github.com/erikagardini/spathial). It is distributed under the GNU General Public Licence (version
3).
Contact: erika.gardini@iit.it, sergio.decherchi@iit.it
Supplementary Information: Supplementary data are available at Bioinformatics online.

1 Introduction
The recent advent of next-generation sequencing (NGS) techniques has
produced a massive amount of high-throughput data for quantitive biology,
especially in the field of transcriptomics. The increased depth and sample
size of transcript measurement has challenged scientists to create novel
algorithms that can use these highly complex datasets to increase our
understanding of biological phenomena (Camacho et al. (2018)).

Examples of these complex transcriptomic datasets are those generated
by the TCGA (Tomczak et al. (2015)) and GTEX (Lonsdale et al.
(2013)) consortia, which collect tens of thousands of human RNA-Seq
samples from tumor and physiological tissues, respectively. In the past
few years, the development of single-cell sequencing technologies has

further increased the sample size of RNA-Seq datasets, albeit at a cost for
transcript coverage (Svensson et al. (2018)).

RNA-Seq analyses to understand changes in gene expression have built
on the previous generation of technological platforms (microarrays), and
have focused on characterizing the quantitative differences between two or
more groups of samples, a process known as differential gene expression
analysis (DGEA).

As the sample sizes increase, so does our ability to detect and
study the natural heterogeneity of living systems, whether they are
bulk tissues (e.g. interpatient variance in cancer) or single cells (e.g.
different cells and cell states in a microenvironment). Moreover, large
datasets allow us to measure biological transition processes such as cell
differentiation and tumor progression (Pastushenko and Blanpain (2018)).
The literature contains some studies on defining cell trajectories (Qiu, X.
et al. (2017)); however, to our knowledge, there is no general and flexible
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algorithm/package for modeling continuous processes and extracting the
associated features (i.e. genes or transcripts).

Recently, Ferrarotti et al. (2018) designed an algorithm to identify
smooth and energetically meaningful paths in data space (Ferrarotti et al.
(2018); Ragusa et al. (2019)). This algorithm, the Principal Path algorithm,
was inspired by the minimum free-energy path concept in statistical
mechanics (Maragliano et al. (2006)). It allows the user to navigate and
analyze vector spaces morphing from a start point to an end point. The
waypoints along the path can be imagined as a chain of springs, with each
being a small variation of the previous one. They are therefore particularly
interesting from the evolutionary point of view.

Unlike shortest path algorithms (e.g. the Dijkstra shortest path (Dijkstra
(1959))), the Principal Path takes into account the concept of smoothness,
which can deliver solutions that are much more cognitively sound
(Ferrarotti et al. (2018)). The model can also be considered generative
(even if a distribution is not explicitly derived) because the waypoints are
interpolated over the data manifold.

Here, we present a readily usable R package, dubbed spathial, which
implements the Principal Path algorithm to analyze progressions in large-
scale transcriptomic datasets, such as those arising from bulk and single-
cell RNA-Seq.

2 The package
Here, we introduce a novel R package, spathial, which implements the
Principal Path algorithm for the analysis of multidimensional biological
datasets.

The algorithm is based on the following minimization problem:

min
W,u

N∑
i=1

Nc∑
j=1

‖φ(xi)− ωj‖2δ(ui, j) + s

Nc∑
i=0

‖ωi+1 − ωi‖2

whereN is the number of samples,Nc is the number of waypoints, φ(·) :
Rd → Rd’ is the (possibly nonlinear) transformation mapping of the d-
dimensional input space, xi is a sample of theN×dmatrixX arranged in
a row-wise fashion, ωj is a waypoint of theNc×d′ matrixW arranged in
row-wise fashion, and δ(ui, j) is the Kronecker delta where ui are cluster
memberships.

This functional is an extension of k-means clustering, where the
first and last clusters are fixed, while the other clusters are evolved
according to the functional, which induces a curve topology due to
the regularization term. All the clusters are waypoints for the path
and are topologically connected by a chain of springs (Ferrarotti et al.
(2018)). The s hyperparameter regulates the trade-off between data-
fitting and smoothness of the inferred path. The selection of s is critical.
The supplementary materials provide details on how s is selected in
this package together with the discussion regarding the computational
complexity of the algorithm.

Conceptually, the algorithm allows one to infer a relevant transition
or evolutionary path that can highlight the features involved in a specific
process. It can thus be useful in all the scenarios where the temporal (or
pseudo-temporal) evolution is the main problem (e.g. tumor progression,
cell cycle analysis). The input of the algorithm (together with the full data
matrix) comprises two points, which represent the boundary conditions
of the algorithm: the start point and the end point. Given the boundaries,
the algorithm learns a smooth transition path connecting them. Along the
path, there are new intermediate data samples which gradually morph from
the start point to the end point. In this way, it is possible to move from
two known states and analyze which features are involved in the transition
between the two states.

Fig. 1. Results on the TCGA Lung Adenocarcinoma dataset. (A) 2D visualization of the
Principal Path together with the data points. The x and the y coordinates are the output
of the dimensionality reduction performed with tSNE (Van der Maaten, L. et al. (2008)).
The start point and the end point of the Principal Path are the most distant points from
the centroid of the tumor samples and the centroid of the normal samples, respectively.
The Principal Path is composed of 50 intermediate points (waypoints) plus the boundaries
(B) Comparison of spathial and edgeR. The x and y coordinates are the position in
the rank for edgeR and spathial, respectively. The ranks are the statistical significance
(log10(pvalue)sign(FoldChange)) for edgeR and the Pearson’s correlation score
for spathial. Colored genes are the 60 oncogenes and tumor suppressor genes (from the
Cancer Gene Census list (v86 - Sondka, Z. et al. (2018)) for which spathial disagreed the
most strongly with edgeR and for which the spathial rank was better than edgeR.

The package spathial offers the option of running the Principal Path
algorithm using very high-level functions. It subdivides the workflow for
constructing the path into a few steps:
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• selection of the boundaries (start and end points). spathial provides
three different options: a visual selection by the user, classes centroids,
or selection of the samples using their row-name. However, users can
choose their own strategy, extract the row-names of the boundaries
and set them using the third mode;

• prefiltering (optional): allows one to obtain a local solution, which
does not involve the entire dataset. This procedure removes some data
points and forces the Principal Path algorithm to go through a restricted
number of samples. This can create smoother paths but at the same
time can prune some available data;

• execution of the Principal Path algorithm with the boundaries selected
during the first step and with the input data (filtered or not filtered).

After the Principal Path algorithm is run, users obtain the coordinate of
the waypoints (new interpolating samples). spathial provides some utility
functions for the analysis of the output. In particular, users can compute
the labels of the waypoints (assigned as the label of the nearest point).
Additionally, they can plot the 2D visual representation of the datapoints
together with the path waypoints. This utility function takes as input the
data points and the waypoints of the path. If those are in 2D, the function
directly plots them. If not, it performs a dimensionality reduction using
tSNE (Van der Maaten, L. et al. (2008)) and then plots the points. However,
users can adopt their preferred dimensionality reduction strategy and give
2D coordinates to the function. Finally, spathial allows the user to compute
some statistical information about the waypoints. In particular, it allows
one to obtain the Pearson’s correlation of the waypoint features with the
path progression. Path progression is here defined as the ordered sequence
of waypoint indices from 0 (the start point) toNc+1 (the end point). In this
way, users can obtain the features that are correlated with the progression
(features involved in the transition between the start point and the end
point), and they can perform a feature selection according to the Pearson’s
correlation scores. The function also provides the associated p-value and
q-value.
While the package can be applied to any data, its current focus is the
analysis of transcriptomic data, which include some of the largest (in
terms of number of features and samples) and most commonly generated
datasets.

3 Results
We performed several experiments to compare spathial with existing tools
and to demonstrate its flexibility.
First, we experimented on the TCGA lung adenocarcinoma RNA-Seq
dataset (The Cancer Genome Atlas Research Network1 et al. (2013)),
comprising 562 gene expression profiles RPM-normalized (19637 genes
each). Each sample is labelled as "tumor" or "normal" according to the
TCGA barcode. The aim of the experiment is to navigate the space from
the normal samples to the tumor samples. In this case, the start point was
the most distant normal sample from the tumor centroid and the end point
was the most distant tumor sample from the normal centroid. We selected
these start and end points because we were searching for the extremes,
conceptually the most normal sample and the most diseased sample. We
considered as ground truth the oncogenes and tumor suppressor genes (tsg)
listed in the Cancer Gene Census (Sondka, Z. et al. (2018)). The prefiltering
was not executed since the search is for a global solution. Finally, the
Principal Path algorithm was run with 50 intermediate points (waypoints)
plus the boundaries. Fig. 1A shows the samples (colored according to the
labels) and the path.
We compared the first 1000 best q-value ranked genes for spathial with
the relevant genes extracted by a commonly used tool for DGEA, edgeR
(Robinson, M.D. et al. (2010)) (again the first 1000 best q-values genes).

Tables in supplementary materials (ST 1 and ST 2) show the details for
this comparison. Some genes that spathial identified as being involved in
the progression were not identified as such by edgeR (and vice versa).
To further highlight the genes found by spathial and missed by edgeR
(see Fig. 1B), we selected the most correlated genes for spathial using the
quantiles and setting two thresholds such that 70% of values fell below
the first threshold and 30% fell above the second threshold, representing
the most positively and negatively correlated genes. From among the
positively correlated genes for spathial, we selected the oncogenes and
compared them with the edgeR results. In particular, we analyzed how
these oncogenes are placed by the edgeR and spathial ranking respectively
according to their statistical significance (computed as−log10(pvalue)∗
sign(FoldChange)) and their Pearson’s correlation scores. Finally, we
selected the first 30 genes for which spathial disagreed the most strongly
with edgeR and for which the spathial rank was better than edgeR. The
same comparison can be performed by selecting the tumor suppressor
genes (tsg) from among the most negatively correlated genes for spathial.
Fig. 1B shows the subset of 60 genes selected as described above. The
x and y coordinates are the position in the rank for edgeR and spathial,
respectively. Oncogenes and tumor suppressor genes (tsg) should be placed
at the end and the beginning of the rank, respectively (the rank is with
sign and ascending), because they should be highly positively and highly
negatively correlated in the transition from normal to tumor. Therefore, the
red genes on the left (oncogenes) and the blue genes (tsg) on the right are
those that spathial (but not edgeR) identified as involved in the transition
from normal to tumor.
Other experiments on the TCGA liver hepatocellular carcinoma and
the breast invasive carcinoma RNA-Seq datasets (The Cancer Genome
Atlas Research Network1 et al. (2013)) are shown in the supplementary
materials. Figures SF 3 and SF 4 and tables ST 3, ST 4, ST 5, ST 6 show
the resulting path and the comparison with edgeR.
We performed a second experiment with spathial on a single-cell RNA-
Seq dataset. In this case, we selected the dataset used in the experiments
in Karlsson et al. (2017). This dataset comprises 96 human myxoid
liposarcoma cells, each described with a gene expression profile (23928
genes each). Cells are labelled as "G1", "S", "G2/M" according to their
experimentally determined cell cycle phase. The aim of the experiment is to
navigate the space from the "G1" samples to the "G2/M" samples. The start
point was the "G1" centroid and the end point was the "G2/M" centroid.
There was no prefiltering because the search was for a global solution.
Finally, the Principal Path algorithm was run with 50 intermediate points
(waypoints) and the boundaries. Figure SF 5 shows the samples (colored
according to the labels) and the path.
We computed the q-value for each gene, then selected the genes with
high statistical significance (the first 1000 best q-value ranked genes).
Then, we compared them with the statistical information extracted with
monocle3, a package for computing single-cell trajectory analysis (Qiu,
X. et al. (2017)). In particular, one can use monocle3 to learn the graph and
find genes that are differentially expressed across a single-cell trajectory
computing the MoranâŁ™s I test. Here too, we selected the first 1000 best
q-value ranked genes (this q-value is computed on the Moran’s I scores
and adjusted according to the Benjamini-Hochberg method). We detected
a significant overlap between monocle3 and spathial gene predictions
(see supplementary material, tables ST 7 and ST 8). However, some
genes identified by spathial as being involved in the progression were
not identified as such by monocle3 (and vice versa). Some of those genes
belong to "Group2" and "Group3" of the Karlsson et al. (2017) experiment
and are known to respectively decrease and increase in expression from
G1 toward mitosis; the decrease/increase information is used as ground
truth.
The supplementary material contains all the detailed results, tables, and

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa273/5841659 by Beurlingbiblioteket user on 21 M

ay 2020



4 Gardini et al.

figures, all the datasets, and the scripts for reproducing the experiments
and figures.

4 Conclusions
We have developed spathial, an R implementation of the Principal Path
algorithm. spathial can be readily used to identify progression paths,
either temporal or pseudo-temporal, in data space. We applied this
algorithm to transcriptomic and single-cell RNA-Seq datasets because
these applications demonstrate its flexibility in coping with different
problems. However, the package can be applied to any omics. Results show
that the tool is able to retrieve information missed from other packages and
vice versa.
The package is available on the Comprehensive R Archive Network
(https://cran.r-project.org/web/packages/spathial/index.html) and on GitHub
(https://github.com/erikagardini/spathial).
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