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NONHOLONOMIC TANGENT SPACES: INTRINSIC
CONSTRUCTION AND RIGID DIMENSIONS
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(Communicated by Svetlana Katok)

Abstract. A nonholonomic space is a smooth manifold equipped with a
bracket generating family of vector fields. Its infinitesimal version is a ho-
mogeneous space of a nilpotent Lie group endowed with a dilation which mea-
sures the anisotropy of the space. We give an intrinsic construction of these
infinitesimal objects and classify all rigid (i.e. not deformable) cases.

1. Introduction

Let M be a (C∞) smooth connected n-dimensional manifold and F ⊂ VecM a
set of smooth vector fields on M . Given q ∈M and an integer l > 0 we set

∆l
q = span{[f1, [. . . , [fi−1, fi] · · · ](q) : fj ∈ F , 1 ≤ j ≤ i, i ≤ l} ⊆ TqM.

Clearly, ∆l
q ⊆ ∆m

q for l < m. The set F is called bracket generating (or completely
nonholonomic) at q if there exists mq such that ∆mq

q = TqM . The minimum among
these mq is called the degree of nonholonomy of F at q. The set F is called bracket
generating if it is bracket generating at every point.

We treat the pair (M,F) as a “nonholonomic space”, i.e. we assume that in-
formation propagates in M only along the integral curves of fields from F and the
concatenations of these curves. If F is bracket generating, then any point of M is
“reachable” from any other, i.e. points can be connected by an admissible curve.
This is the Rashevskii–Chow theorem [5, 7]. Actually, one can derive more from
this theorem. Let t 7→ etf be the (local) one-parameter subgroup of diffeomor-
phisms generated by a vector field f ∈ F so that t 7→ etf(q), q ∈ M , are integral
trajectories of f . The natural “nonholonomic topology” is the strongest topology
on M such that the mappings

(t1, . . . , tk) 7→ et1f1 ◦ · · · ◦ etkfk(q), fi ∈ F q ∈M, k = 1, 2, . . . ,

are continuous. It follows from the arguments of Rashevskii and Chow that this
nonholonomic topology coincides with the standard topology on M .

Thus, the nonholonomic space (M,F) is homeomorphic to the manifold M ,
but Analysis and Geometry on (M,F) are very different from those on M . The
main difference comes from the anisotropy of nonholonomic spaces: information
propagates in all directions but with very different rates.
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In this note we focus on tangent spaces to nonholonomic spaces. Let q ∈M ; we
denote by TFq M the nonholonomic tangent space at q to be defined. We should
make some remarks before we go to its construction, since this kind of spaces, bur-
dened by extraneous structures, already appeared in various contexts. First of all,
the nonholonomic tangent functor is a generalization of the usual one: if F = VecM
then TFq M coincides with TqM . Actually the tangent space TFq M is homeomorphic
to Rn for any bracket generating F . Moreover, TFq M is a homogeneous space of
a nilpotent Lie group, but in general, it has no intrinsic linear structure. On the
other hand, it is intrinsically equipped with a canonical dilation which measures
the anisotropy of the space.

Sub-Riemannian context. Assume that F is the space of sections of a vector
subbundle of TM (a vector distribution) and that M is endowed with a Riemannian
structure. The Carnot–Caratheodory distance between two points in M is defined
to be the infimum of all the lengths of admissible curves connecting these points.
It is well known that the Carnot–Caratheodory metric spaces admit tangent metric
spaces in the Gromov–Hausdorff sense. These tangent spaces are homeomorphic to
Rn and their metrics are homogeneous with respect to certain dilations (see [3] for
details). It turns out that the space and the dilation are defined independently on
any metric and just represent TFq M .

Other contexts are mathematical control theory and hypoelliptic operators. Non-
holonomic tangent functors appear here via nilpotent or graded approximations of
the anisotropic objects to be studied (see [1, 2, 4, 6, 8, 9, 10]). The cited papers
contain effective constructions and algorithms which allow one to compute things
explicitly. A weak point of these constructions is their heavy dependence on the
choice of coordinates. Because of that, the approximation looks like an auxiliary
technical tool rather than a fundamental functorial operation; the geometric insight
and the application of geometric machinery are highly impeded.

In this paper we introduce the nonholonomic tangent functor which performs
the above-mentioned graded approximation in a natural coordinate-free way and
demonstrates the intrinsic meaning of the dilation. One more goal of the paper is to
classify all “rigid” cases. What does “rigid” mean? Obviously, TFq M depends only
on the germ of F at q. Moreover, it depends only on the module generated by F
over the algebra of germs at q of smooth scalar functions. Assume that this module
has d generators f1, . . . , fd; then TFq M = T

{f1...fd}
q M . We say that T {f1...fd}

q M is

rigid if T {f1...fd}
q M is isomorphic to T {f

′
1...f

′
d}

q M for all f ′i close enough to fi in the
C∞ topology. The pair (d, n) is called rigid bidimension if there exists at least one
set of germs, {f1, . . . , fd} ⊂ Vec0Rn, such that T {f1...fd}

0 Rn is rigid. Given a rigid
bidimension (d, n), it is not hard to show that a generic germ {f1, . . . , fd} is rigid
and there is only a finite number of mutually nonisomorphic rigid T {f1...fd}

0 Rn.
In this paper we completely characterize the rigid bidimensions and, for each rigid
bidimension, we indicate the number of different (up to isomorphism) T {f1...fd}

0 Rn.
It turns out that this number can only be 1, 2, or 3. Normal forms and proofs will
be given in a forthcoming long paper.

2. Tangent functor

A flow in M is a one-parameter family of diffeomorphisms Pt ∈ Diff M satisfying
the condition P0 = id. The set of flows is a group with respect to pointwise
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composition: the product of Pt and P̂t is the flow t 7→ Pt ◦ P̂t. Let q ∈ M . The
tangent space TqM consists of 1-jets at 0 of smooth curves γ(t) in M such that
γ(0) = q. To construct the nonholonomic tangent space TFq M we need jets of order
mq, where mq is the degree of nonholonomy of F at q. The group of flows naturally
acts on the space of smooth curves starting from q: the flow Pt sends the curve γ(t)
to the curve P.(γ) : t 7→ Pt(γ(t)). Of course, for any positive integer l, the l-jet at
0 of P.(γ) depends only on Pt and on the l-jet of γ. We thus obtain the action of
the group of flows on the space Clq of l-jets of smooth curves in M starting from
q. We keep the notation q for the constant curve γ(t) ≡ q and its jets; indeed, the
trajectory t 7→ Pt(q) of the flow Pt is the image of the constant curve under the
natural action. The canonical dilation

δlα : Clq → Clq, δlα1α2
= δlα1

◦ δlα2
, α ∈ R, δ0(Clq) = q,

is induced by the standard dilation δα on the space of smooth curves: (δαγ)(t) =
γ(αt) for any curve γ.

We denote by pl,k(f) : Clq → Clq the transformation induced by the flow t 7→ et
kf ,

where f ∈ VecM . Let P l,F be the group of transformations generated by δlα with
α 6= 0, and by pl,k(f) with f ∈ F and k = 1, 2, 3, . . . . Dilations do not commute
with flows, even at the jet level of P l,F . However, given a flow Pt, one can see that
lims→0(δls ◦ P. ◦ δls−1) = id on the space of curves. This motivates the definition
D(φ) = lims→0(δls◦φ◦δls−1), φ ∈ P l,F . Then the image of the group homomorphism
D is the dilation group {δα : α 6= 0}.

We denote by Ol,F ⊂ Clq the orbit of the jet q under the action of the group
P l,F . Let us also consider the normal subgroup P l,F◦ of P l,F generated by pl,k(f),
f ∈ F , k = 2, 3, . . . (the difference from P l,F is that pl,1(f) and δlα are absent).
Finally, we set:

• T l,Fq M , the quotient space of Ol,F by the action of the group P l,F◦ ;
• TqP l,F , the group of transformations of T l,Fq M induced by the action of
P l,F/P l,F◦ .

We keep the symbols δlα and pl,k(f) for the induced transformations of T l,Fq M ,
and the symbol D for the induced homomorphism of TqP l,F on {δα : α 6= 0}. See
Section 3 for further understanding of these objects.

Proposition 2.1. The codimension 1 normal subgroup D−1(id) ⊂ TqP l,F is a
nilpotent Lie group generated by the one-parameter subgroups s 7→ pl,1(sf), f ∈ F .
The group D−1(id) acts transitively on T l,Fq M .

Let πl : Clq → Cl−1
q be the standard projection. Obviously, πl ◦ pl,k(f) =

pl−1,k(f) ◦ πl, πl ◦ δlα = δl−1
α ◦ πl. Hence πl sends orbits of the groups P l,F

and P l,F◦ to orbits of the groups P l−1,F and P l−1,F
◦ and induces a mapping on

the quotient spaces. We keep the symbol πl for the induced mapping so that
πl : T l,Fq M → T l−1,F

q M .

Proposition 2.2. For any l > 0, πl : T l,Fq M → T l−1,F
q M is a fiber bundle with

fiber ∆l
q/∆

l−1
q .

In particular, T l,Fq M is diffeomorphic to ∆l
q and T l,Fq M = T

mq,F
q M for l ≥ mq,

where mq is the degree of nonholonomy. Moreover, one can show that TqP l,F =
TqPmq,F for l ≥ mq as well.
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Definition. Let l be greater than or equal to the degree of nonholonomy, i.e. ∆l
q =

TqM . The nonholonomic tangent space TFq M is the manifold T l,Fq M equipped with

the transitive action of the group TqPF
def= TqP l,F . For any f ∈ F , the vector field

TFq f ∈ VecTFq M is the generator of the one-parameter group s 7→ pl,1(sf); in other

words, esT
F
q f

def
= pl,1(sf).

Obviously, f 7→ TFq f is a homomorphism of Lie algebras of vector fields; the

group TqPF is generated by the dilation and the one-parameter subgroups esT
F
q f ,

s ∈ R, f ∈ F . Moreover, just from the fact that the definition of TFq M is intrinsic, it
follows that every diffeomorphism Φ : M →M automatically induces an equivariant
mapping ΦF∗ : TFq M → TΦ∗F

Φ(q) M such that (Φ1 ◦ Φ2)F∗ = ΦΦ2∗F
1∗ ◦ ΦF2∗ for any pair

of diffeomorphisms Φ1, Φ2. One more functorial property is as follows. Assume
that F ⊂ G ⊂ VecM ; the identity inclusion ı : F → G induces a homomorphism
ı∗ : TqPF → TqPG and an equivariant smooth mapping ı∗ : TFq M → T Gq M .

Proposition 2.3. Let F̄ = {
∑k
j=1 ajfj : fj ∈ F , aj ∈ C∞(M), k > 0} be the

module over C∞(M) generated by F , and let ı : F → F̄ be the identity inclusion.
Then ı∗ :

(
TqPF , TFq M

)
−→

(
TqP F̄ , T F̄q M

)
is an isomorphism.

Remark. The last proposition states that nonholonomic tangent spaces depend on
the submodule of VecM generated by F rather than on F itself. In fact, from the
very beginning of the paper, we could deal with submodules of VecM instead of
subsets. This approach would provide slightly more general functorial properties,
but the whole construction would become even more dry and abstract than it is now.
Anyway, the algebraically trained reader will easily recover the missing functorial
properties.

3. Coordinate presentation

Given nonnegative integers k1, . . . , kl, where k1 + · · ·+ kl = n, we present Rn as
the direct sum Rk1 ⊕ · · · ⊕ Rkl . Every vector x ∈ Rn can be written as

x = (x1, . . . , xl), xi = (xi1, . . . , xiki ) ∈ Rki , i = 1, . . . , l.

A differential operator on Rn with smooth coefficients has the form
∑

α aα(x)∂
|α|

∂xα ,
where aα ∈ C∞(Rn) and α is a multiindex: α = (α1, . . . , αl), αi = (αi1, . . . , αiki),
|αi| =

∑ki
j=1 αij , i = 1, . . . , l. The space of all differential operators with smooth

coefficients is an associative algebra with composition of operators as multiplication.
The set of differential operators with polynomial coefficients is a subalgebra of this
algebra with generators 1, xij , ∂

∂xij
, i = 1, . . . , l, j = 1, . . . , ki. We introduce a

Z-grading of this subalgebra by assigning weights ν to the generators: ν(1) = 0,
ν(xij) = i, and ν( ∂

∂xij
) = −i. Accordingly

ν

(
xα

∂|β|

∂xβ

)
=

l∑
i=1

(|αi| − |βi|)i,

where α and β are multiindices.
A differential operator with polynomial coefficients is said to be ν-homogeneous

of weight m if all monomials occurring in it have weight m. It is easy to see that
ν(A1◦A2) = ν(A1)+ν(A2) for any ν-homogeneous differential operatorsA1 and A2.



NONHOLONOMIC TANGENT SPACES 115

The most important for us are the differential operators of order 0 (functions) and
of order 1 (vector fields). We have ν(ga) = ν(g)+ν(a), ν([g1, g2]) = ν(g1)+ν(g2) for
any ν-homogeneous function a and vector fields g, g1, g2. A differential operator of
order N has weight at least −Nl; in particular, the weight of a nonzero vector field
is at least −l. Vector fields of nonnegative weights vanish at 0 while the values at 0
of fields of weight −i belong to the subspace Rki , the ith term in the presentation
Rn = Rk1 ⊕ · · · ⊕ Rkl .

We introduce a dilation δt : Rn → Rn, t > 0, by setting

(1) δt(x1, x2, . . . , xl) = (tx1, t
2x2, . . . , t

lxl).

The ν-homogeneity means homogeneity with respect to this dilation. In particular,
we have that a(δtx) = tν(a)a(x), δt∗g = t−ν(g)g for a ν-homogeneous function a and
a vector field g.

Now let g =
∑

i,j aij
∂

∂xij
be an arbitrary smooth vector field. Expanding the

coefficients aij in a Taylor series in powers of xij and grouping terms with the same
weights, we get an expansion g ≈

∑+∞
m=−l g

(m), where g(m) is a ν-homogeneous field
of weight m. This expansion enables us to introduce a decreasing filtration in the
Lie algebra of smooth vector fields VecRn by putting

Vecm(k1, . . . , kl) = {X ∈ VecRn : X(i) = 0 for i < m}, −l ≤ m < +∞.

It is easy to see that

[Vecm1(k1, . . . , kl),Vecm2(k1, . . . , kl)] ⊆ Vecm1+m2(k1, . . . , kl).

It happens that this class of filtrations is in a sense universal. The following theorem
is a special case of the general results proved in [2, 4].

Theorem 3.1. Suppose that dim(∆i
q/∆

i−1
q ) = ki, i = 1, . . . , l. Then there exists a

neighborhood Oq of q in M and a coordinate mapping χ : Oq → Rn such that

χ(q) = 0, χ∗(∆i
q) = Rk1 ⊕ · · · ⊕ Rki , 1 ≤ i ≤ l,

and χ∗(F) ⊂ Vec−1(k1, . . . , kl).

A mapping χ : Oq → Rn which satisfies the hypothesis of the above theorem is
called an adapted coordinate map for F . All constructions have a simple explicit
presentation in adapted coordinates. Unfortunately, an adapted coordinate map
for a given F is far from being unique and it is not clear how to select a canonical
one.

In any coordinates, the l-jet of a curve is identified with its degree l Taylor
polynomial. In particular, χ∗(Clq) = {

∑l
i=1 t

iξi : ξi ∈ Rn}.
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Proposition 3.2. Let χ be an adapted coordinate map for F ; then

χ∗(Ol,F ) =

{
l∑

i=1

tiξi : ξi ∈ Rk1 ⊕ · · · ⊕ Rki , 1 ≤ i ≤ l
}

and, for any γ ∈ Ol,F ,

χ∗(P l,F◦ (γ)) = χ∗(γ) +

{
l∑

i=1

tiξi : ξi ∈ Rk1 ⊕ · · · ⊕ Rki−1 , 1 ≤ i ≤ l
}
.

The proof of this proposition is based on the expansions

χ∗(f) ≈ χ∗(f)(−1) +
∞∑
j=0

χ∗(f)(j) ∀f ∈ F ,

χ(eτf(q)) ≈
∞∑
i=1

τ i

i!
(χ∗f) ◦ · · · ◦ (χ∗f)︸ ︷︷ ︸

i times

Id (0),

where Id (x) ≡ x, x ∈ Rn, and on the fact that all ν-homogeneous functions of
positive weight vanish at 0.

Proposition 2.3 implies the identification of T χ∗(F)
0 Rn with {

∑l
i=1 t

iξi : ξi ∈ Rki ,
1 ≤ i ≤ l}. Similarly, the vector field T

χ∗(F)
0 f is identified with t(χ∗(f))(−1). In

particular, the fields TFq f, f ∈ F , are represented by ν-homogeneous vector fields
of weight −1 in adapted coordinates.

4. Regularity and rigidity

In general, the nilpotent Lie algebra generated by the fields TFq f, f ∈ F , may
have a dimension strictly greater than dimTFq M = dimM , and TFq M may not
have an intrinsic Lie group structure. A simple example is provided by the Martinet
distribution F = span{ ∂

∂x1
, ∂
∂x2

+ x2
1
∂
∂x3
} in R3, where TFq f, f ∈ F , generate a

4-dimensional Lie algebra. This phenomenon does not occur in the so-called regular
case, first studied by Vershik and Gershkovich (see [8, 9, 10]).

Definition. We say that F ⊂ VecM is regular at q0 ∈M if dim ∆i
q is constant in

a neighborhood of q0, ∀i > 0.

Let F be regular at q and dim ∆1
q = d. Take f1, . . . , fd ∈ F such that the vectors

f1(q0), . . . , fd(q0) form a basis of ∆1
q0 . Then f1(q), . . . , fd(q) form a basis of ∆1

q for
any q in a neighborhood of q0. Hence, for any f ∈ F there exist smooth functions
a1, . . . , ad such that f(q) =

∑d
i=1 ai(q)fi(q) for any q in the same neighborhood. It

follows that

∆l
q = span{[fi1 , [. . . , fil ] · · · ](q) : 1 ≤ ij ≤ d}+ ∆l−1

q , l = 1, 2, . . . .

By the regularity of F at q, one can select vector fields from the collection
{[fi1 , [. . . , fil ] · · · ](q) : 1 ≤ ij ≤ d} in such a way that their values at q form a
basis of ∆l

q/∆l−1
q for all q close enough to q0. With these bases in hand we easily

obtain the following well-known fact:
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Lemma 4.1. Assume that F ⊂ Vec M is regular at q0, vi, vj ∈ Vec M , vi(q) ∈
∆i
q, vj(q) ∈ ∆j

q ∀q, and vi(q0) = 0. Then [vi, vj ](q0) ∈ ∆i+j−1
q0 .

It follows immediately from this lemma that the Lie brackets of vector fields with
values in ∆i

q, i = 1, 2, . . . , induce a structure of graded Lie algebra on the space∑
i>0 ∆i

q0/∆
i−1
q0 . We denote this graded Lie algebra by Lieq0 F . Obviously, Lieq0 F

is generated by ∆1
q0 .

Proposition 4.2. Let F be regular and bracket generating at q ∈ M . Then the
mapping f 7→ TFq f , f ∈ F , induces a Lie algebra isomorphism of Lieq F and
Lie{TFq f : f ∈ F}.

Recall that Lie{TFq f : f ∈ F} is the Lie algebra of a codimension 1 normal
subgroup of TqPF , which acts transitively on TFq M (see Proposition 2.1). The
quotient of TqPF by this subgroup is the dilation. We thus have a transitive action
of the n-dimensional nilpotent Lie group generated by the Lie algebra Lieq F on
TqM . Since TFq M is diffeomorphic to Rn and has the “origin” (the jet of the
constant curve q), we obtain a canonical isomorphism of TFq M with the simply
connected Lie group generated by Lieq F .

We now turn to the generic case. Let Ld be the free Lie algebra with d generators
(all algebras in this paper are over R); in other words, Ld is the Lie algebra of com-
mutator polynomials of d variables. We have Ld =

⊕∞
i=1 Lid, where Lid is the space

of degree i homogeneous commutator polynomials. We set `d(i) = dimLid, `
(i)
d =∑i

j=1 `d(i). The classical recursion expression of `d(i) is `d(i) = di −
∑

j|i j`d(j).
Below we deal with the space of germs at q ∈ M of d-tuples of smooth vector

fields (f1, . . . , fd) endowed with the standardC∞ topology. The following statement
is almost obvious.

Proposition 4.3. For an open, everywhere dense set of d-tuples (f1, . . . , fd), the
set F = {f1, . . . , fd} is regular and bracket generating at q with degree of nonholon-
omy mq = min{i : `(i)d ≥ n} and dim(∆i

q/∆
i−1
q ) = `d(i) for i = 1, . . . ,mq − 1.

Take F such that the module F̄ is generated by a generic d-tuple of vector
fields. According to Propositions 4.2 and 4.3, the classification of

(
TqPF , TFq M

)
for such F is reduced to the classification of generic graded Lie algebras Lieq F or
corresponding Lie groups.

Definitions of rigidity and of rigid bidimensions were given in the Introduc-
tion (isomorphism in this case means just Lie group isomorphism). In the next
theorem we list all rigid bidimensions. It is convenient to give special names
to some infinite series of bidimensions. For d = 2, 3, 4, . . . , the bidimensions(
d, `

(i)
d

)
, i = 1, 2, 3, . . . , are called free; the bidimension (d, d + 1) is called the

Darboux bidimension, and the bidimension (d, (d − 1)(d + 2)/2) is called the dual
Darboux bidimension.
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Theorem 4.4. All free, Darboux, and dual Darboux bidimensions are rigid; each of
these bidimensions admits a unique up to isomorphism rigid group. Besides, there
are 16 exceptional rigid bidimensions:

(2, 4)1, (2, 6)2, (2, 7)2, (4, 6)2, (4, 7)2, (4, 8)2,
(5, 7)1, (5, 8)2, (5, 9)3, (5, 11)3, (5, 12)2, (5, 13)1,
(6, 8)2, (6, 19)2, (7, 9)1, (7, 26)1,

where the index j in the expression (d, n)j indicates the number of isomorphism
classes of rigid groups for the bidimension (d, n).

There are no other rigid bidimensions.

Remark. This theorem is based on a complete classification of rigid groups, which
will be published in a separate paper. An interesting open problem is to classify all
“simple” T {f1,...,fd}

q M . The term comes from singularity theory: a nonholonomic
tangent space T {f1,...,fd}

q M is called simple if its small perturbations T {f
′
1,...,f

′
d}

q M
admit only a finite number of isomorphism classes. The above-mentioned Martinet
distribution is an example of a nonrigid simple case. Obviously, all simple cases
must live in rigid bidimensions.

5. Generalization

The construction of the functor TFq is easily generalized to the case of an F
with a fixed filtration (when various fields from F have various “weights”). More
precisely, let

F0 ⊆ F1 ⊆ · · · ⊆ Fν ⊆ · · · = F

and f0(q) = 0 for any f0 ∈ F0. Then the (local) diffeomorphism ef0 induces a
transformation pl,0(f) of Clq. We now set:

• ∆l
q = span{[f1, [. . . , [fi−1, fi] · · · ](q) : fj ∈ Fνj , ν1 + · · ·+ νi ≤ l, i > 0};

• P l(F), the group of transformations generated by δlα, α ∈ R \ 0 and by
pl,k(f), f ∈ Fk, k ≥ 0;
• P l◦(F), the normal subgroup of P l(F) generated by pl,k(f), f ∈ Fk−1,
k > 0;

and repeat the whole construction with these modified definitions. The presence of
F0 brings some new phenomena. In particular, the Lie algebra generated by Tqf ,
f ∈ F , is not, in general, nilpotent. Moreover, the substitution for F of the module
F̄ with the induced filtration may enlarge this Lie algebra.

Typical examples are smooth nonlinear control systems with an equilibrium at
(q, 0):

(2) ẋ = f(x, u), x ∈M, u ∈ Rr, f(q, 0) = 0.

We set Fν =
{
∂|α|

∂uα f(·, 0) : |α| ≤ ν
}

; the induced filtration of the module F̄ is
feedback invariant. If the linearization of system (2) at (q, 0) is controllable, then the
tangent functor provides exactly the linearization and its module version admits a
finite classification (Brunovsky normal forms). The number of isomorphism classes
equals the number of partitions of r. It would be very interesting to study the
tangent functor for some classes of systems with noncontrollable linearizations.
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Figure 1. Rigid bidimensions with the indication of the number
of isomorphism classes. The free bidimensions lie on the curves.
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