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GENERALIZED DIMENSION ESTIMATES FOR IMAGES

OF POROUS SETS UNDER MONOTONE SOBOLEV MAPPINGS

PEKKA KOSKELA AND ALEKSANDRA ZAPADINSKAYA

(Communicated by Jeremy Tyson)

Abstract. We give an essentially sharp estimate in terms of generalized Haus-
dorff measures for images of porous sets under monotone Sobolev mappings,
satisfying suitable Orlicz-Sobolev conditions.

1. Introduction

In this paper, we study dimension distortion under monotone Sobolev mappings,
defined in the Euclidean space Rn and with images in R

m, where n,m ∈ N are such
that m ≥ n ≥ 2. We assume additional integrability for the distributional differ-
ential of the mappings in question in the form of (1). Some dimension distortion
estimates under this integrability condition were obtained in [7–9,13,14]. We prove
the following theorem (see the next section for the definitions).

Theorem 1.1. Let f ∈ W 1,1(Ω,Rm), where Ω is a domain in R
n, be a monotone

mapping, satisfying

(1) |Df |n logλ(e+ |Df |) ∈ L1(Ω)

for some λ ≥ −1. Then Hhλ+1(f(E)) = 0 for each porous set E ⊂ Ω, when

hλ+1(t) = tn logλ+1(1/t).

The papers [8, 9, 13, 14] mentioned above use similar kinds of scales to measure
the size of the image sets and consider mappings f : Rn → R

n, n ≥ 2. In those
papers, the pre-image sets are assumed to have dimensions strictly less than n,
which is known to be a weaker assumption than porosity [15,17]. As a consequence
of our restrictions, we obtain an essentially optimal gauge under the integrability
condition (1). More precisely, the gauge in [9, Theorem 2] and [14, Theorem 1(ii)],

where monotone mappings were considered, is hλ(t) = tn logλ(1/t), which corre-
sponds to larger image sets than the ones given by Theorem 1.1. The gauge of
Theorem 1.1 was obtained in the plane in [13] for the image sets under mappings
that are additionally assumed to be homeomorphisms. The generalization of this
result to higher dimensions required a further regularity assumption for the inverse
mapping (see [14, Theorem 1(iii)]).

Results on Lusin’s property N for a Sobolev mapping f : Rn → R
n, satisfying (1)

for some λ, were obtained in [4–6, 11]. It is enough to require (1) with λ = −1, to
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obtain property N for a sense-preserving mapping [5]. However, even λ = n− 1 is
not enough, if a mapping is assumed to be continuous only [4]. As for monotone
mappings, so far, it is known that such mappings satisfy condition N whenever they
belong to the class W 1,n [11], that is, once (1) is satisfied with λ = 0. One can see
that we obtain a better gauge (tn log(1/t)) for the images of porous sets in that
case. It remains open whether or not condition N holds for monotone mappings
that satisfy (1) for some λ ∈ [−1, 0[.

Theorem 1.1 is sharp in the following sense. In [2, Section 5], given a positive λ,
a monotone mapping f ∈ W 1,1(Rn,Rn) was constructed which maps a porous set
C ⊂]0, 1[n onto a set C′ ⊂]0, 1[n of positive generalized Hausdorff measure with gauge

tn logλ(1/t). The integrability of the differential of f was examined in [8, Section 2]
in the case n = 2 and |Df |n logs(e + |Df |) was proved to be locally integrable
for any s < λ − 1. The same integrability bounds may be easily verified for any
larger n ∈ N. On the other hand, [5] gives a construction of a monotone mapping
f ∈ W 1,1(]0, 1[n,Rn), which satisfies (1) for each λ < −1 and maps a porous set
onto a set of positive n-dimensional Lebesgue measure.

The proof of Theorem 1.1 uses ideas rather similar to the ones applied in the proof
of Theorem 2 of [9]. The novelty in our argument comes from the multiplicity of the
covering layers that we are able to provide for porous sets. This theorem remains
true if we assume local integrability only in (1) and f ∈ W 1,1

loc . Moreover, it suffices
to assume that the mapping f be pseudomonotone (see [11] for the definition).

2. Preliminaries

We assume that our mapping f : Ω → R
m is defined in a domain Ω ⊂ R

n,
n,m ∈ N, m ≥ n ≥ 2, and it is at least of class W 1,1(Ω,Rm), that is, the component
functions of f have integrable distributional first-order derivatives. By monotonicity
we mean that f is continuous and the equalities

(2) sup
∂B

fi = sup
B

fi and inf
∂B

fi = inf
B

fi

are true for every ball B ⊂ Ω and each component function fi, i = 1, . . . ,m, of the
mapping f .

Let us further agree on some basic notation. We write B(x, r) for an open ball
in R

n centred at x ∈ R
n and having radius r > 0. If B = B(x, r) is a ball and

a is a positive number, aB denotes the ball aB = B(x, ar). All cubes mentioned
in this paper are n-dimensional cubes in R

n. By |A|, we mean the n-dimensional
Lebesgue measure of the set A ⊂ R

n. We denote the diameter of a set A in
a Euclidean space by diamA and the distance between two sets A,B ⊂ R

n by
dist(A,B). The expression A + a, with A ⊂ R

n and a > 0, stands for the set
{x ∈ R

n : dist({x}, A) < a}. The function χA : Rm → {0, 1} is the characteristic
function of the set A ⊂ R

m. When we write L = L(·), we mean that the number
L ∈ R depends only on the parameters listed in the parentheses. Finally, the
constant C > 0 may differ from occurrence to occurrence, but it depends only on
the dimensions of the domain and image spaces n and m, the porosity parameter
δ (see Section 2.2) and the integrability constant λ.

2.1. Measures and dimensions. We define a dimension gauge as a non-decreas-
ing function h : [0,∞[→ [0,∞[ with h(0) = 0. The only type of gauges we are going
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GENERALIZED DIMENSION ESTIMATES FOR IMAGES OF POROUS SETS 3

to use is the gauge hp, p > 0, mentioned in the statement of Theorem 1.1. In order
to make hp a proper gauge, we redefine it as hp(t) = tnϕp(t), where

ϕp(t) =

{
logp 1

t , if t ∈]0, tp];
logp 1

tp
, if t > tp;

and tp < 1 is chosen so that the function tn logp 1
t is increasing in t on ]0, tp[. Notice

that ϕp is decreasing.
Let h be a dimension gauge. We write Hh(A) for the generalized Hausdorff

measure of a set A ⊂ R
m, given by

Hh(A) = lim
δ→0

Hh
δ (A),

where

Hh
δ (A) = inf

{ ∞∑
i=1

h(diamUi) : A ⊂
∞⋃
i=1

Ui, diamUi ≤ δ
}
.

We also need the generalized weighted Hausdorff content of a set A ⊂ �m, given
by

λh
∞(A) = inf

{ ∞∑
i=1

cih(diamUi) : χA(x) ≤
∞∑
i=1

ciχUi
(x), ∀x ∈ �m

}
.

Here, h is also a gauge function. The sequence of pairs (ci, Ui)
∞
i=1, where ci ≥ 0

and Ui ⊂ �
m for every i ∈ N, satisfying χA ≤

∑∞
i=1 ciχUi

, is called a weighted
covering of the set A, and the infimum is taken over all weighted coverings of A.

The relation to the generalized Hausdorff content is given by the following lemma,
which follows from Corollary 8.2 and the proof of Theorem 9.7 of [3].

Lemma 2.1. Let A ⊂ �
m be bounded and h be a continuous gauge function

satisfying h(t) > 0 and h(2t) ≤ ch(t) for some c > 0 and each t > 0. Then
Hh

∞(A) ≤ Lλh
∞(A) with L = L(c) > 0.

The upper Minkowski dimension dimM(A) of a bounded set A ⊂ R
n is defined

by
dimM(A) = inf{s : lim sup

ε→0+
N(A, ε)εs = 0},

where N(A, ε), ε > 0, denotes the smallest number of balls of radius ε needed to
cover A:

N(A, ε) = min
{
k : A ⊂

k⋃
i=1

B(xi, ε) for some xi ∈ R
n
}
.

2.2. Porous sets and Whitney cubes. Let E be a set in R
n, x ∈ E and r > 0.

Put

Por(E, x, r) = sup {δ ≥ 0: B(y, δr) ⊂ B(x, r) \ E for some y ∈ B(x, r)} .
We call a set E δ-porous for some δ ∈]0, 1/2], if

lim inf
r→0+

Por(E, x, r) ≥ δ

for all x ∈ E. If, on the other hand, there exists a number r > 0 such that
Por(E, x, r′) ≥ δ for all x ∈ E and r′ ∈]0, r[, we say that the set E is (δ, r)-porous.

By “porosity” in the statement of Theorem 1.1, we mean that E may be any
δ-porous set for some δ > 0. However, due to the σ-additivity of the generalized
Hausdorff measure, it is enough to verify the theorem for a set E ⊂ Ω which is
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4 PEKKA KOSKELA AND ALEKSANDRA ZAPADINSKAYA

(δ, r)-porous for some δ > 0 and r > 0. Indeed, it is obvious that once 0 < δ′ < δ,
each δ-porous set E ⊂ R

2 may be written as a countable union E =
⋃∞

i=1 Ei of
(δ′, ri)-porous sets Ei for some ri > 0, i = 1, 2, . . . [15].

It is known that each bounded (δ, r)-porous set in R
n has upper Minkowski

dimension strictly less than n (see, for instance, the proof of Theorem 2 in [17]).
In order to obtain a multiple covering for a porous set, we utilize the tool of

Whitney cubes. Recall that for each open subset A of Rn there exist a decompo-

sition A =
∞⋃
i=1

Qi, where Qi are closed cubes with mutually parallel sides, pairwise

disjoint interiors and of side lengths 2k for some integer k, such that the relation

(3)
1

4
≤ diamQi

dist(Qi, ∂A)
≤ 1

holds for all i = 1, 2, . . .. See [16] for details.
We need the following simple lemma proved in [12, Lemma 4.6], for example.

Lemma 2.2. Let Q0 be a cube in R
n and X its Whitney decomposition, whose

cubes have sides parallel to the ones of Q0. If Q̃ ⊂ Q0 is a cube sharing a face
with part of a face of Q0, then there exists a cube Q ∈ X , such that Q ⊂ Q̃ and
diam(Q) ≥ diam(Q̃)/c0 (with c0 = c0(n) > 0).

The definition of porosity implies the following lemma.

Lemma 2.3. Let E ⊂ R
n be a closed (δ, r)-porous set. Then there exist a countable

collection B of pairwise disjoint balls and constants C0 = C0(n, δ) > 1 and C1 =
C1(n, δ) > 1, such that for every j0 ∈ N, satisfying 2−j0 < 8r, and x ∈ E, we are
able to find j0 balls B1, . . . , Bj0 of B with the following properties:

(i) diam(Bi) ≥ 2−2j0/C0;
(ii) Bi ⊂ B(x, 2−j0) and diamBi ≤ 2−j0 ;
(iii) x ∈ C1Bi;

for each i ∈ {1, . . . , j0}.

Proof. Let Q be a Whitney decomposition of the set Rn \E. For each cube Q ∈ Q,
we fix its Whitney decomposition XQ, whose cubes have sides parallel to the ones
of Q. We define an auxiliary collection of cubes by

W =
⋃

Q∈Q
XQ.

Finally, the collection B consists of the largest balls, contained in the cubes of W .
Let δ′ ∈]0, δ[. Fix x ∈ E and j0 ∈ N such that 2−j0 < 8r. Denote by Ak = Ak(x),

with k = j0, j0 + 1, . . . , 2j0 − 1, the annuli B(x, 2−k) \ B(x, 2−k−1). Let us fix
k ∈ {j0, j0 + 1, . . . , 2j0 − 1} and prove that we are able to find a ball from B,
contained in Ak and having the required properties. Consider the smaller annulus
Ãk = (Ak ∩B(x, 7 · 2−k/8)) \ B(x, 5 · 2−k/8), which is an annulus of width 2−k/4,
twice smaller than that of Ak. There are two possibilities. The first case is that
the annulus Ãk contains a point y of E: y ∈ E ∩ Ãk. Since E is porous, there is a
ball B ⊂ B(y, 2−k/8) ⊂ Ak of radius δ′ · 2−k/8, which has empty intersection with

E. If the annulus Ãk contains no points of the set E, B may be chosen to be any
large enough ball B ⊂ Ãk.

Let us take a Whitney cube Q ∈ Q containing the centre of B. This cube cannot
contain Ak; therefore, we are able to pick the largest possible cube Q̃ ⊂ (Q ∩ Ak),
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GENERALIZED DIMENSION ESTIMATES FOR IMAGES OF POROUS SETS 5

sharing at least one face with part of a face of Q. This cube may be Q itself, which
is the worst case. If Q = Q̃, (3) implies

5 diam(Q̃) ≥ diam(Q̃) + dist(Q̃, E) ≥ δ′ · 2−k

8
≥ δ′ · 2−2j0

4
.

Otherwise, this inequality is even more obvious. Using Lemma 2.2, we obtain a
cube Qk ∈ W , Qk ⊂ Q̃, of diameter diam(Qk) ≥ δ′ · 2−k/40c0 ≥ δ′ · 2−2j0/20c0.
Finally, we take the largest ball Bk ∈ B, contained in Qk. Thus, the property (i)
is valid with C0 = 20

√
nc0/δ

′, while the constant C1 may be taken as C1 = 4C0,
because diam(4C0Bk) ≥ 2 · 2−k. �

2.3. Oscillation on balls. One of the important tools in estimating the diameters
of the images of balls under monotone mappings is the maximal operator. Assume
that Ω ⊂ R

n is an open cube and h : Ω → R is a non-negative and integrable
function. The maximal operator MΩ is defined by

MΩh(x) = sup
{
−
ˆ
Q

h dx : x ∈ Q ⊂ Ω
}
,

where the supremum is taken over all subcubes Q of Ω, containing the given point
x ∈ Ω. Recall that the value

−
ˆ
A

h =
1

|A|

ˆ
A

h,

where A ⊂ R
n with |A| < ∞, is called the mean integral of the function h over the

set A. We need the following result on the maximal operator, proved in [1, Lemma
5.1].

Lemma 2.4. Let Ω ⊂ R
n be an open cube and h : Ω → R be a non-negative and

integrable function. If A : [0,∞[→ [0,∞[ is increasing and Φ(t) = A(t)tq for some
q > 1, then there exists a constant L = L(n, q) > 0, such thatˆ

Ω

Φ(MΩh) ≤ L

ˆ
Ω

Φ(Lh).

The second lemma was basically proved in Theorem 4.3 of [10] for the usual
Hardy-Littlewood maximal operator. Since our setting is a little bit different, we
would like to reprove it for convenience.

Lemma 2.5. Let p ∈]n − 1, n[ and C1 > 1 be some positive parameters. There
exists a number L = L(n,m, p, C1) > 0, such that once Ω ⊂ R

n is an open cube

and f ∈ W 1,p′
(Ω,Rm) is a monotone mapping with p′ > p, we have

diam(f(C1B)) ≤ L diamB

(
−
ˆ
B

MΩ (|Df |p)
) 1

p

for each ball B ∈ R
n, satisfying 2C1B ⊂ Ω.

Proof. In the proof of this lemma, we allow C to depend on p. Let B be a ball
such that 2C1B ⊂ Ω and t ∈ [1, 2]. Applying the inequalities (2) to each of the
component functions of the monotone mapping f , we easily obtain the estimate

diam f(C1B) ≤ diam f(tC1B) ≤
√
mdiam f

(
∂(tC1B)

)
.
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6 PEKKA KOSKELA AND ALEKSANDRA ZAPADINSKAYA

By the Sobolev imbedding theorem on spheres, we further observe

tn−p−1 diamp f(C1B) ≤ Ctn−p−1 diamp f
(
∂(tC1B)

)
≤ C(C1 diamB)p−n+1

ˆ
∂(tC1B)

|Df |p

for C = C(n,m, p) > 0 and L1-a.e. t ∈ [1, 2]. We integrate both parts over t to
obtain

diamp(f(C1B)) ≤ C(C1 diamB)p−n

ˆ
2C1B

|Df |p.

Pick the smallest cube QB, containing 2C1B and having sides parallel to the sides
of Ω. This cube is contained in Ω and has the ball B as its subset. We proceed,
obtaining

diamp(f(C1B)) ≤ C(C1 diamB)p−n

ˆ
QB

|Df |p = C(C1 diamB)p−
ˆ
QB

|Df |p

≤ CCp
1 diam

p BMΩ (|Df |p) (x)

for each x ∈ B. We complete the proof taking the mean integral over x ∈ B of
both sides of the last inequality. �

3. Proof of Theorem 1.1

We are now ready to start with the proof of Theorem 1.1. The proof differs
slightly for negative and positive values of λ. We give most of the details for both
cases. Taking a Whitney decomposition of Ω, enlarging the cubes suitably to make
them open, considering the intersection of E with the original Whitney cubes and
using the σ-additivity of the generalized Hausdorff measure, we may assume that
Ω is an open cube and that the closure of E is contained in Ω. Moreover, since
the closure of a (δ, r)-porous set is (δ, r)-porous, we may assume that E is a closed
(δ, r)-porous set for some δ ∈]0, 1/2] and r > 0. Let us prove that Hhλ+1(f(E)) = 0.

Fix p = n− 1/2. Obviously, f ∈ W 1,p′
(Ω,Rm) for each p′ ∈]p, n[. Let us take a

function Ψ so that Ψ is continuous, non-negative, strictly increasing and convex on
[0,∞[ and Ψ(t) = tn/p logλ t > 1 for t ≥ t0, where the number t0 > 1, depending on

n and λ, is fixed suitably. We also require log t ≥ 2 log log|λ|p/n t > 0 for all t ≥ t0.

Put Φ(y) = yp/n log−λp/n y for each y ≥ y0 = Ψ(t0). When t ≥ t0, we have

Φ(Ψ(t)) =
( p

n

)λp
n log

λp
n t

log
λp
n (t log

λp
n t)

t ≥
( p

n

)λp
n

(
1

2

) |λ|p
n

t,

which yields Ψ−1(y) ≤ CΦ(y) for y ≥ y0. Clearly, the assumed integrability (1)
implies that Ψ(|Df |p) ∈ L1(Ω). Moreover, by Lemma 2.4, we obtain

(4) M :=

ˆ
Ω

Ψ(MΩ|Df |p) < ∞.

Finally, define M1 = max{1,M}.
Fix a positive number η. Choose an integer j0 ∈ N with 2−j0 < 8r, large enough

to guarantee the inclusion E + (C1 + 1)2−j0 ⊂ Ω. This makes it possible to apply
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GENERALIZED DIMENSION ESTIMATES FOR IMAGES OF POROUS SETS 7

Lemma 2.5 to all the balls, given by Lemma 2.3. In addition, 2−j0 should be less
than or equal to tλ+1 and the estimate

ˆ
E+2−j0

Ψ(MΩ|Df |p) < η

should be valid. We refine the choice of j0 later.
When λ > 0, we use the fact that the upper Minkowski dimension of the set

E is strictly less than n. This fact gives a constant C > 0, depending only on
n, a number ε ∈]0, n[ and a radius r1 > 0, such that |E + r′| < C(r′)ε for each
r′ ∈]0, r1]. If necessary, we redefine j0 so that 2−j0 < r1. We also fix a positive
parameter α ∈]n−ε/2, n[. Then σ := 2α+ε−2n is positive and we are able to make
j0 large enough to ensure the inequality jλ0 2

−σj0 < η. In the case of non-positive
λ’s, it is enough to require |E + 2−j0 | < η.

We apply Lemma 2.3 to the set E, obtaining a collection of balls B. In what fol-
lows, the constants C0 and C1 are the ones given by Lemma 2.3. Let B0 ⊂ B be the
subcollection of B, consisting of those balls only, which are contained in E+2−j0 and
whose diameters lie in the range [2−2j0/C0, 2

−j0 ]. Notice that (1/j0, f(C1B))B∈B0

is a weighted covering of the set f(E). Let us estimate the generalized weighted
Hausdorff content of this image set with the help of this covering. Similarly to what
is done in [9], we consider two classes of balls:

B1={B∈B0 : diam f(C1B)≤diamB}

and

B2={B∈B0 : diam f(C1B)>diamB} .
Hence, we obtain

λhλ+1
∞ (f(E)) ≤ 1

j0

∑
B∈B0

diamn(f(C1B))ϕλ+1(diam(f(C1B)))

(5)

≤ 1

j0

∑
B∈B1

diamn B logλ+1 1

diamB

+
1

j0

∑
B∈B2

diamn(f(C1B)) logλ+1 1

diamB

≤ C
∑
B∈B1

diamn B logλ
1

diamB
+C

∑
B∈B2

diamn(f(C1B)) logλ
1

diamB
.

Let us estimate the first sum on the right-hand side in the case that λ > 0. We
consider a larger sum for our future purposes:∑

B∈B0

diamn B logλ
1

diamB
≤

∑
B∈B0

diamn B diamα−n B logλ
1

diamB
(6)

≤
(
Cn

0 logλ(2C0)
)
2λjλ0 2

2j0(n−α)
∑
B∈B0

diamn B

≤Cjλ0 2
2j0(n−α)|E + 2−j0 |

≤Cjλ0 2
−σj0 < Cη.
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8 PEKKA KOSKELA AND ALEKSANDRA ZAPADINSKAYA

When −1 ≤ λ ≤ 0, we do not have to consider the larger sum and the estimations
become much simpler, because the logarithmic factor is bounded from above by
logλ 2. Then the whole sum becomes less than or equal to C|E + 2−j0 | < Cη.

In order to estimate the second sum in (5), we apply Lemma 2.5 to each ball
B ∈ B2 and use Jensen’s inequality. We obtain

diam f(C1B) ≤C diamB

(
−
ˆ
B

MΩ(|Df |p)
) 1

p

≤C diamB

(
Ψ−1

(
−
ˆ
B

Ψ(MΩ(|Df |p))
)) 1

p

≤C diamB

(
−
ˆ
B

Ψ(MΩ(|Df |p))
) 1

n

log−
λ
n

(
−
ˆ
B

Ψ(MΩ(|Df |p))
)
,

once MB := −́
B
Ψ(MΩ(|Df |p)) ≥ y0; otherwise,

diam f(C1B) ≤ C
(
Ψ−1(y0)

)1/p
diamB.

Therefore,

∑
B∈B2

diamn(f(C1B)) logλ
1

diamB
(7)

≤ C
(
Ψ−1(y0)

)n
p

∑
B∈B2
MB<y0

diamn B logλ
1

diamB

+ C
∑
B∈B2
MB≥y0

ˆ
B

Ψ(MΩ(|Df |p)) log−λ(MB) log
λ 1

diamB
.

The first sum appearing here was estimated in (6). The estimations for the remain-
ing sum differ for positive and negative values of λ again.

Case λ ∈ [−1, 0]. In the first case, the estimations are rather straightforward.
Denoting by ωn the n-dimensional Lebesgue measure of the unit ball in R

n, we
obtain

∑
B∈B2
MB≥y0

ˆ
B

Ψ(MΩ(|Df |p)) log−λ(MB) log
λ 1

diamB
(8)

≤
∑
B∈B2
MB≥y0

ˆ
B

Ψ(MΩ(|Df |p)) log−λ 2nM1

ωn diam
n B

logλ
1

diamB

≤
(2nj0)

−λ log−λ
(

2n+1M1C0

ωn

)
j−λ
0 log−λ 2

ˆ
E+2−j0

Ψ(MΩ(|Df |p)) < Tη

with T = T (n, δ, λ,M1) > 0.
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Case λ > 0. In order to deal with this case, we again consider two possibili-
ties. If B ∈ B2 is such that MB ∈ [y0, diam

α−n B[, then
´
B
Ψ(MΩ(|Df |p)) ≤

C diamα B; otherwise, when MB ≥ max{y0, diamα−n B}, we have log−λ(MB) ≤
1

(n−α)λ
log−λ 1

diamB . Hence, we observe

∑
B∈B2
MB≥y0

ˆ
B

Ψ(MΩ(|Df |p)) log−λ (MB) log
λ 1

diamB
(9)

≤ C log−λ(y0)
∑
B∈B2

y0≤MB<diamα−2 B

diamα B logλ
1

diamB

+
1

(n− α)λ

ˆ
E+2−j0

Ψ(MΩ(|Df |p)) <
(
C +

1

(n− α)λ

)
η

by (6).
Finally, collecting together (5), (6), (7), (8) and (9), we obtain the estimate

λ
hλ+1
∞ (f(E)) ≤ T1η, where the constant T1 > 0 depends only on n, m, δ, λ, the

upper Minkowski dimension of the set E and the value of the integral (4). Since η

was an arbitrary number, we have λ
hλ+1
∞ (f(E)) = 0, which yields Hhλ+1

∞ (f(E)) = 0
(see Lemma 2.1). This in turn implies Hhλ+1(f(E)) = 0.
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