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EFFICIENT NONLINEAR ITERATION SCHEMES BASED

ON ALGEBRAIC SPLITTING FOR THE INCOMPRESSIBLE

NAVIER-STOKES EQUATIONS

LEO G. REBHOLZ, ALEX VIGUERIE, AND MENGYING XIAO

Abstract. We propose new, efficient, and simple nonlinear iteration methods
for the incompressible Navier-Stokes equations. The methods are constructed
by applying Yosida-type algebraic splitting to the linear systems that arise
from grad-div stabilized finite element implementations of incremental Picard
and Newton iterations. They are efficient because at each nonlinear iteration,
the same symmetric positive definite Schur complement system needs to be
solved, which allows for CG to be used for inner and outer solvers, simple pre-
conditioning, and the reusing of preconditioners. For the proposed incremental

Picard-Yosida and Newton-Yosida iterations, we prove under small data con-
ditions that the methods converge to the solution of the discrete nonlinear
problem. Numerical tests are performed which illustrate the effectiveness of
the method on a variety of test problems.

1. Introduction

The development of effective solvers for the steady incompressible Navier-Stokes
equations (NSE) is an open problem in the study of incompressible fluids [22]. A
successful solver must have two fundamental properties: the nonlinear iteration
scheme must converge in a low number of iterations, and the linear systems that
arise at each iteration must be efficiently solvable. Newton and Picard iterations
typically converge in a low number of nonlinear iterations [14], but create non-
symmetric saddle point linear systems that can be difficult to solve. These linear
systems resemble closely those that arise in time dependent NSE problems, but are
significantly harder because they do not possess the mass matrix contribution of
the time derivative in the velocity block, which is critical for the use of splitting
methods (either before or after discretization). Other types of nonlinear iteration
schemes for steady NSE exist which create easier linear system solves, such as
iterated penalty (with small penalty) or Arrow-Hurwicz methods [15,37], but they
may require large numbers of nonlinear iterations to converge. Herein, we propose
a modification of Picard- and Newton-type schemes which require linear system
solves that are more easily solvable than those that arise for Picard and Newton,
and which can have minimal effect on the convergence behavior of the nonlinear
iteration.
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2 LEO G. REBHOLZ, ALEX VIGUERIE, AND MENGYING XIAO

We consider the steady incompressible NSE, which are given in a domain Ω ⊂ R
d

(d=2,3) by

u · ∇u+∇p− νΔu− γ∇(∇ · u) = f,(1.1)

∇ · u = 0,(1.2)

u|∂Ω = 0,(1.3)

where ν is the kinematic viscosity, f is a forcing, u and p represent velocity and
pressure, and the parameter γ ≥ 0 is the grad-div stabilization parameter. Although
the term −γ∇(∇ · u) = 0 due to (1.2) in the system above, when discretized with
the most common finite element schemes which only weakly enforce (1.2), this term
acts to penalize the L2(Ω) divergence error of numerical solutions, and reduce the
effect of the pressure error on the velocity error [23]. It is shown in numerous recent
papers how the use of grad-div stabilization with γ = O(1) can dramatically reduce
velocity error (see, e.g., [12,19,21,23,28] and the references therein), hence for the
same accuracy, significantly coarser meshes can be used when grad-div stabilization
is applied. Grad-div stabilization is also known to aid in preconditioning the Schur
complement that arises in the associated linear sytems, although it is a tradeoff
since it makes the velocity block solves harder [5,6,19]. How to efficiently solve the
linear systems with γ > O(1) is an open problem, although some work has been
done in this direction [36]. Overall, a small grad-div parameter tends to be a good
choice that balances these pros and cons, and therefore throughout this work, we
will assume γ = O(1).

For simplicity of our presentation and analysis, we consider homogeneous Dirich-
let boundary conditions, but in our numerical tests we will also use nonhomogeneous
Dirichlet and zero-traction boundary conditions. We remark also that all results
and analysis herein can be extended, with the same analytic tools, to the case of
the NSE with an added friction term of σu to (1.1), with parameter σ > 0, which
can arise from a friction term but more commonly arises from an unsteady NSE
temporal discretization, with σ ∼ 1

Δt and Δt representing a time step size. The
case of interest is σ small, since if σ is large, then practitioners are typically not
interested in solving the nonlinear problem (1.1)–(1.3), but instead some lineariza-
tion of it where u · ∇u is replaced by U · ∇u, with U a known (e.g., from previous
time step solutions) and good approximation to u. We consider herein only the
case of σ = 0 to simplify the presentation and analysis.

The standard Picard iteration scheme for (1.1)–(1.3) takes the following form:
Guess u0, and for k = 1, 2, . . ., find uk, pk satisfying

uk−1 · ∇uk +∇pk − νΔuk − γ∇(∇ · uk) = f,(1.4)

∇ · uk = 0,(1.5)

uk|∂Ω = 0.(1.6)

After equipping (1.4)–(1.6) with a finite element spatial discretization, one is left to
solve a (sometimes very) large linear system at each iteration that takes the form

(1.7)

(
Ak B
BT 0

) (
ûk

p̂k

)
=

(
F
0

)
,

where ûk and p̂k represent coefficient vectors corresponding to functions uk and pk,
respectively.
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NONLINEAR ITERATION SCHEMES BASED ON ALGEBRAIC SPLITTING 3

Such “saddle point” linear systems for the steady NSE are well known to be
difficult to solve, especially when inertial forces from convection are not dominated
by the viscous forces, creating an A matrix with large nonsymmetric part. Direct
solvers are not effective for these systems, except for tiny problems, and typical
approaches use some decomposition of the saddle point matrix. The main diffi-
culty in the decompositions is the need to perform a linear solve using the Schur
complement matrix S := BTA−1

k B. The Schur complement matrix is revealed, for
example, by performing a block LU decomposition of the above linear system (1.7)
arising at step k from (1.4)–(1.6):

(1.8)

(
Ak 0
BT −BTA−1

k B

) (
I A−1

k B
0 I

) (
ûk

p̂k

)
=

(
F
0

)
.

Solving (1.8) can thus be done by two linear solves with coefficient matrix Ak,
and one with the Schur complement matrix.

Solving a Schur complement linear system when the system size is large and Ak

has large nonsymmetric part is well known to be very difficult and is an active
area of research in CFD. It requires inner and outer iterative solvers for nonsym-
metric matrices (e.g., GMRES) since forming A−1

k is not feasible, and also good
preconditioners for both solvers. There has been a large amount of recent work
on preconditioning these systems, e.g., [4, 5, 10], however, obtaining robust solvers
that work for a wide range of problems, parameters, and discretizations remains an
important and difficult open problem.

To partially circumvent this issue, work has been done for “two-level” methods
for approximating solutions to (1.1)–(1.3), where just one linear solve of (1.7) is
required for a fine mesh, and multiple solves of (1.7) for a coarser mesh [17,24,26,
27]. These methods work reasonably well in terms of accuracy, as they generally
lose only minimal accuracy compared to a “fine mesh only” solving procedure.
However, these methods still require the practitioner to solve the linear system
(1.7) that arises from a fine mesh—even if it is just once, this may still be very
costly.

The first method we propose for efficient and accurate solving of (1.1)–(1.3) we
call incremental Picard-Yosida (IPY). It is an alteration of the Picard iteration that
uses an incremental formulation for the pressure, and an inexact LU factorization
that yields an SPD Schur complement. In matrix form, each iteration can be written
as

(1.9)

(
Ak 0

BT −BT Ã−1B

) (
I A−1

k B
0 I

) (
ûk

δ̂pk

)
=

(
F −Bp̂k−1

0

)
,

where Ã is the SPD part of Ak and δ̂pk is the pressure update (see Algorithm 3.1

for the precise definition of IPY). The matrix Ã is constructed by removing the

nonlinear contributions from Ak, which makes Ã independent of k and thus the
Schur complement for IPY is the same at each iteration.

The only difference in the matrices that arise in IPY linear systems and Pi-
card linear systems is the Schur complement. The IPY Schur complement is the
Stokes-Schur complement with grad-div stabilization, and is both SPD and con-
stant at each step of the iteration. A second key difference in IPY, which is critical
for the iteration itself but does not affect the matrices, is that it relies on an in-
cremental pressure formulation. For Picard, it is equivalent to use an incremental
pressure formulation, however this equivalence is lost under Yosida approximations.
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In particular, we note that without the incremental pressure formulation, a Yosida
approximation applied to (1.8) need not converge to the correct solution (in par-
ticular, the limit of such a nonlinear iteration would not necessarily be discretely
divergence-free; see Remark 3.2). As will be shown in our analysis and numerical
tests, the use of grad-div stabilization is also critical for IPY to work. However, it
is only required that γ ≥ ν for good nonlinear convergence, which is a very mild
restriction since typically ν < 1, and γ would likely be chosen at least this large for
accuracy purposes [21]. We note also the use of grad-div makes the system (1.9)
related to approaches taken in [5, 6, 19] for preconditioning similar linear systems.

The proposed IPY method is very efficient because at each nonlinear iteration,
it does two solves with Ak as the coefficient matrix, and one solve with a symmetric
positive definite (SPD) Schur complement (that is, the same at each iteration) as
the coefficient matrix. In particular, this means that only SPD Schur complement
linear systems need solved, inner and outer iterative solvers can be conjugate gra-
dient (CG), preconditioners can be reused, and are much easier to construct. Since
grad-div stabilization is used, the outer Schur complement linear system solve is
effectively preconditioned simply by the pressure mass matrix—this simple precon-
ditioning of the outer solve is a key point, since even though other preconditioners
may be better in the sense of iteration counts of the linear solvers (e.g., geometric
and algebraic multigrid), they are typically harder to implement, can have higher
setup costs, and can involve parameters.

We prove herein that under a small data condition and with grad-div parameter
γ ≥ ν, the IPY nonlinear iteration will converge to the solution of the associated
NSE finite element problem. Our numerical tests show that the number of nonlinear
iterations required is about the same as when the Picard iteration is used. Hence,
in short, the IPY method finds the same solution as Picard, and in about the
same number of iterations, but with each iteration being both efficient and easy to
implement.

We note that algebraic splitting methods are quite common for the time depen-
dent NSE and related flow problems [3,7,13,29–32], and they work by introducing
O(Δtk) error (where Δt is the time step size) into the system to create linear sys-
tems of the form (1.9). These methods are known to be quite efficient for the same
reasons IPY is efficient. However, since their use relies on approximations depen-
dent on the time step size, extending them to be used on steady problems was not
considered until the two recent papers [33, 38]. In [33], it was shown for a single
linear solve that if grad-div stabilization is used in the finite element method that
creates the saddle point linear system, then the Yosida-type splitting can be effec-
tive. The work of [38] showed that certain types of nonlinear iterations can also be
effective for the steady NSE. The nonlinear iteration scheme we propose above is
a careful combination of ideas from [33] and [38], and our proofs of convergence of
the method utilize techniques from analysis of an incremental Yosida-type method
for time dependent problems in [34].

This paper is arranged as follows. In section 2, we give mathematical preliminar-
ies and notation, to allow a smooth analysis to follow. Section 3 analyzes and tests
the incremental Picard-Yosida method. Here, we rigorously prove convergence, and
test the method on several benchmark and application problems. In section 4, we
extend the ideas to the Newton iteration, complete with development, analysis, and
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NONLINEAR ITERATION SCHEMES BASED ON ALGEBRAIC SPLITTING 5

testing of the incremental Newton-Yosida method. Finally, conclusions and future
directions are given in section 5.

2. Mathematical preliminaries

We consider a domain Ω ⊂ R
d (d = 2, 3) that is open, connected, and with

Lipschitz boundary ∂Ω. The L2(Ω) norm and inner product will be denoted by ‖ ·‖
and (·, ·), and L2

0(Ω) denotes the zero mean subspace of L2(Ω). Throughout this
paper, it is understood by context whether a particular space is scalar or vector
valued, and so we do not distinguish notation.

For the natural velocity and pressure spaces for Stokes and NSE, we use the
notation

X := H1
0 (Ω), Q := L2

0(Ω).

In the space X, the Poincaré inequality is known to hold: There exists λ > 0,
dependent only on the size of Ω, such that for every v ∈ X,

‖v‖ ≤ λ‖∇v‖.

The dual space of X will be denoted by X ′, with norm ‖ · ‖−1.
Let τh be a conforming, shape-regular, and simplicial triangulation of Ω with hT

denoting the maximum element diameter. We denote with Pk the space of degree k
globally continuous piecewise polynomials with respect to τh, and P disc

k the space
of degree k piecewise polynomials that can be discontinuous across elements.

Throughout the paper, we consider only discrete velocity-pressure spaces (Xh, Qh)
⊂ (X,Q) that satisfy the LBB condition: there exists a constant β, independent of
h, satisfying

inf
q∈Qh

sup
v∈Xh

(∇ · v, q)
‖q‖‖∇v‖ ≥ β > 0.(2.1)

Common examples of such elements are (P2, P1) Taylor-Hood elements, and
(Pk, P

disc
k−1 ) Scott-Vogelius (SV) elements on meshes with particular structure [2,40];

see also [11, 16].
Define the discretely divergence-free velocity space by

Vh := {v ∈ Xh, (∇ · v, q) = 0 ∀q ∈ Qh}.

Define the skew-symmetric, trilinear operator b∗ : X ×X ×X → R by

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v),

and recall from, e.g., [14], that there exists M depending only on Ω such that

(2.2) |b∗(u, v, w)| ≤ M‖∇u‖‖∇v‖‖∇w‖

for every u, v, w ∈ X. As with most finite element NSE analyses, the use of the
skew-symmetric form of the nonlinearity is critical in the analysis, although does not
seem to make a difference in any of our computations if the convective formulation
was used instead (results omitted).
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6 LEO G. REBHOLZ, ALEX VIGUERIE, AND MENGYING XIAO

2.1. Discrete NSE. The discrete NSE take the following form: find (u, p) ∈
(Xh, Qh) satisfying for all (v, q) ∈ (Xh, Qh),

b∗(u, u, v)− (p,∇ · v) + ν(∇u,∇v) + γ(∇ · u,∇ · v) = (f, v),(2.3)

(∇ · u, q) = 0.(2.4)

Define the data-dependent constant α := Mν−2‖f‖−1, and we will refer to the
following as a small data condition:

(2.5) α < 1.

Recall that if (2.5) holds, then (2.3)-(2.4) is well-posed and ‖∇u‖ ≤ ν−1‖f‖−1

[25, 37].
Two common fixed point iterations for solving the nonlinear problem (2.3)–(2.4)

are the Picard and Newton iterations, which are stated below. These iterations
are classical, and are known to work well on many problems. However, they suffer
from the problem we discuss above, which is that the linear systems that arise at
each iteration can be very difficult to solve. Sections 3 and 4 present our proposed
alternatives, which attempt to address some of the difficulties with these algorithms.

Algorithm 2.1. The Usual Picard iteration for (2.3)–(2.4) takes the form

Step 1: Guess u0 ∈ Xh.
Step k: Find (uk, pk) ∈ (Xh, Qh) satisfying for all (v, q) ∈ (Xh, Qh),

b∗(uk−1, uk, v)− (pk,∇ · v) + ν(∇uk,∇v) + γ(∇ · uk,∇ · v) = (f, v),

(∇ · uk, q) = 0.

Algorithm 2.2. The Usual Newton iteration for (2.3)–(2.4) takes the form

Step 1: Guess u0 ∈ Xh.
Step k: Find (uk, pk) ∈ (Xh, Qh) satisfying for all (v, q) ∈ (Xh, Qh),

b∗(uk−1, uk, v) + b∗(uk, uk−1, v)− b∗(uk−1, uk−1, v)

−(pk,∇ · v) + ν(∇uk,∇v) + γ(∇ · uk,∇ · v) = (f, v),

(∇ · uk, q) = 0.

Both of these iterations are known to converge (under small data conditions),
and Newton is known to converge quadratically [14]. For completeness, and to
motivate the IPY convergence proof in the next section, we provide next a proof
for convergence of the Picard iteration. The proof of quadratic convergence of
Newton is more technical, and we refer the interested reader to Theorem 6.3 in
[14].

Lemma 2.1. The Usual Picard iteration, Algorithm 2.1, converges to the unique
solution of (2.3)–(2.4), provided the small data condition (2.5) is satisfied.

Proof. We first note that ‖∇uk‖ ≤ ν−1‖f‖−1 for all k = 1, 2, . . ., since taking
v = uk in Algorithm 2.1 causes the nonlinear and pressure terms to vanish, leaving

ν‖∇uk‖2 = (f, uk) ≤ ‖f‖−1‖∇uk‖.
Since the iteration is linear, bounded, and finite dimensional, we have that each
step of the iteration is well-posed.
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NONLINEAR ITERATION SCHEMES BASED ON ALGEBRAIC SPLITTING 7

To prove the iteration converges, we begin by setting δk = uk − uk−1 and δpk =
pk − pk−1 and consider the result of subtracting the iteration equations at Step k
and k + 1:

b∗(δk, uk, v) + b∗(uk, δk+1, v)− (δpk+1,∇ · v) + ν(∇δk+1,∇v)+ γ(∇ · δk+1,∇ · v) = 0.

Taking v = δk+1 (note δk+1 ∈ Vh) causes the second nonlinear term and the pressure
term to vanish, leaving

γ‖∇ · δk+1‖2 + ν‖∇δk+1‖2 = −b∗(δk+1, uk, δk)

≤ M‖∇δk+1‖‖∇uk‖‖∇δk‖
≤ Mν−1‖f‖−1‖∇δk+1‖‖∇δk‖,

with the last step utilizing the stability bound for uk. This bound can be reduced
to

‖∇δk+1‖ ≤ α‖∇δk‖,
and thus since α < 1 is assumed, the sequence {δk}∞k=1 is contractive, and therefore
the Picard iteration converges, say to (ũ, p̃) ∈ (Xh, Qh). Since uk ∈ Xh and pk ∈ Qh

(due to the inf-sup condition), we have that (ũ, p̃) satisfies (2.3). Moreover, since
uk ∈ Vh for all k, the fact that ‖∇(uk − ũ)‖ → 0 implies that ũ ∈ Vh. But now
(ũ, p̃) satisfies (2.3)–(2.4), which thus must be the system’s unique solution. �

3. The incremental Picard-Yosida iteration

We now present and analyze our new incremental Picard-Yosida (IPY) method
for solving the discrete steady NSE.

Algorithm 3.1. The IPY for the steady NSE is defined by:

Step 1: Guess u0 ∈ Xh and p0 ∈ Qh.

Step k consists of the following 3 steps:

k.1 Find zk ∈ Xh satisfying for all v ∈ Xh,

γ(∇ · zk,∇ · v) + b∗(uk−1, zk, v) + ν(∇zk,∇v) = (f, v) + (pk−1,∇ · v).

k.2 Find (wk, δ
p
k) ∈ (Xh, Qh) satisfying for all (v, q) ∈ (Xh, Qh),

γ(∇ · wk,∇ · v)− (δpk,∇ · v) + ν(∇wk,∇v) = 0,

(∇ · wk, q) = −(∇ · zk, q).

k.3 Set pk := pk−1 + δpk and then find uk ∈ Xh satisfying for all v ∈ Xh,

γ(∇ · uk,∇ · v) + b∗(uk−1, uk, v) + ν(∇uk,∇v) = (f, v) + (pk,∇ · v).

After discussing its implementation, we prove that this iteration converges to
the discrete NSE solution (2.3)–(2.4), provided a small data condition holds.

Remark 3.2. A nonincremental version of Algorithm 3.1 can be shown to converge,
but need not converge to the steady NSE solution (2.3)–(2.4). The limit will satisfy
(2.3) but not necessarily (2.4) (theory can be shown with techniques similar to
below, but is omitted).
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8 LEO G. REBHOLZ, ALEX VIGUERIE, AND MENGYING XIAO

3.1. Implementation. At iteration k, Algorithm (3.1) yields the following se-
quence of discrete problems:

(νK + C(ûk−1) + γD) ẑk = F −BT p̂k−1,(3.1) [
νK + γD BT

B 0

] [
ŵk

δ̂pk

]
=

[
0

−Bẑk

]
,(3.2)

p̂k = δ̂k + p̂k−1,(3.3)

(νK + C(ûk−1) + γD) ûk = F −BT p̂k.(3.4)

Here the hat notation represents the vector representation of the corresponding
finite element function, K corresponds to the diffusive term matrix, C(ûk−1) to
the nonlinear term matrix, D to the grad-div stabilization term matrix, BT to the
gradient operator on the space Qh, and B to the divergence operator on the space
Xh. As we do not require wk in the iteration, ŵk can be eliminated from the system,
and we need only solve

B (νK + γD)
−1

BT δ̂k = −Bẑk,

instead of (3.2).
This sequence of problems has several advantageous numerical properties. The

computation of velocity and pressure is formally decoupled. This greatly reduces
both the size and condition number of our problem [35]. We also observe that the

Schur complement B (νK + γD)−1 BT in the equation above is SPD and spectrally
equivalent to the pressure mass matrix [5,19], allowing for easy preconditioning and
efficient computation using Krylov methods using short recurrences (such as CG).
Additionally, the Schur complement does not depend on the current iteration k and
hence the associated preconditioner need only be assembled once. This is a marked
advantage when compared to Usual Picard and Newton schemes, in which the Schur
complement is not SPD in general, and preconditioners often require updating [10].

We observe that the discrete problems (3.1)–(3.4) can be recombined into a

block linear system: writing Ak = (νK + C(ûk−1) + γD) and Ã = (νK + γD),

and setting p̂k = p̂k−1 + δ̂pk, yields precisely (1.9).

3.2. Convergence. We now prove convergence of the IPY iteration. The proof
requires a small data condition, a sufficiently good initial guess, and a grad-div
stabilization parameter γ ≥ ν. As discussed above, since ν is generally small for
problems of interest where fine meshes are required, and γ = O(1) is a good choice
for smaller error, this is a very weak assumption on γ in practice. The small data
condition we require for IPY convergence is

(3.5) α < min{1, (8(5ν + 2))−1β2, (16β−2 + 2)−1},

where β is the inf-sup constant. Comparing to the Usual Picard iteration, here
we observe a greater restriction on α, which seems unavoidable in the analysis due
to the approximation on the pressure, which must be handled in the analysis and
brings the inf-sup constant into the analysis. We note in our numerical tests that
there was no lack of robustness or in convergence of IPY compared to Usual Picard.

Theorem 3.1. Assume the small data condition (3.5) is satisfied, γ ≥ ν, and
ν‖∇(u− u0)‖2 + γ−1‖p− p0‖2 ≤ ‖∇u‖2, where (u, p) is the solution of (2.3)–(2.4)
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NONLINEAR ITERATION SCHEMES BASED ON ALGEBRAIC SPLITTING 9

and (u0, p0) ∈ (Xh, Qh) is the initial guess. For (uk, pk) ∈ (Xh, Qh) the Step k
solution of Algorithm 3.1, we have that:

γ−1‖p− pk‖2 + ν‖∇(u− uk)‖2 ≤ α
(
γ−1‖p− pk−1‖2 + ν‖∇(u− uk−1)‖2

)
.

Remark 3.3. If we additionally assume
(
8(5ν + 2)β−2α2 + (16β−2 + 1)

)
αε ≤ 1 for

ε > 0, then from (3.13) in the proof below, we can obtain

γ−1‖p− pk‖2 + ν‖∇(u− uk)‖2 ≤ α2−ε
(
γ−1‖p− pk−1‖2 + ν‖∇(u− uk−1)‖2

)
.

This implies a contraction ratio of “almost α”, which suggests under this data
condition that IPY should converge at approximately the same rate as Usual Picard.

Proof. Denote euk := u− uk and ezk := u− zk. Our proof will assume ν‖∇euk−1‖2 +
γ−1‖p−pk−1‖2 ≤ ‖∇u‖2, and by proving that the sequence defined by ν‖∇euk−1‖2+
γ−1‖p− pk−1‖2 is decreasing, this will imply the condition at the next iteration.

Subtracting Step k.1 from the unique steady solution equation (2.3), we obtain
for all v ∈ Xh,

γ(∇ · ezk,∇ · v) + ν(∇ezk,∇v) = (p− pk−1,∇ · v)− b∗(euk−1, u, v)− b∗(uk−1, e
z
k, v).

Choose v = ezk. This causes the last nonlinear term to vanish, and then applying
Cauchy-Schwarz and Young’s inequalities to the pressure term, and applying (2.2)
to the nonlinear term, we produce the bound

γ‖∇ · ezk‖2 + ν‖∇ezk‖2 = (p− pk−1,∇ · ezk)− b∗(euk−1, u, e
z
k)

≤ γ

2
‖∇ · ezk‖2 +

1

2γ
‖p− pk−1‖2 +M‖∇euk−1‖‖∇u‖‖∇ezk‖.

Using the a priori bound ‖∇u‖ ≤ ν−1‖f‖−1, Young’s inequality, and the definition
of α on the last term, we arrive at

(3.6) γ‖∇ · ezk‖2 + ν‖∇ezk‖2 ≤ γ−1‖p− pk−1‖2 + να2‖∇euk−1‖2.
Similarly, for Step k.3, we obtain

(3.7) γ‖∇ · euk‖2 + ν‖∇euk‖2 ≤ γ−1‖p− pk‖2 + να2‖∇euk−1‖2.
Next, we bound ‖p− pk‖. Begin by adding Steps k.1 and k.2, which gives for all

v ∈ Xh,

γ(∇ · (wk + zk),∇ · v) + ν(∇(wk + zk),∇v) = (pk,∇ · v)− b∗(uk−1, zk, v) + (f, v),

and we note that (wk + zk) ∈ Vh. Subtracting the unique steady solution equation
(2.3) from this, we obtain the error equation

(3.8) γ(∇ · (wk + zk − u),∇ · v) + ν(∇(wk + zk − u),∇v)

= (pk − p,∇ · v)− b∗(euk−1, e
z
k, v)− b∗(u, ezk, v)− b∗(euk−1, u, v) ∀v ∈ Xh.

Choosing v = (wk + zk −u) ∈ Vh causes the pressure term to vanish, and yields the
bound

(3.9) γ‖∇ · (wk + zk − u)‖2 + ν‖∇(wk + zk − u)‖2

≤ 2M2ν−1‖∇euk−1‖2‖∇ezk‖2 + να2‖∇ezk‖2 + να2‖∇euk−1‖2,
thanks to (2.2), Young’s inequality, and the bound on u. Using the assumption
that ν‖∇euk−1‖2 ≤ ‖∇u‖2, this reduces to
(3.10) γ‖∇·(wk+zk−u)‖2+ν‖∇(wk+zk−u)‖2 ≤ (ν+2)α2‖∇ezk‖2+να2‖∇euk−1‖2.
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10 LEO G. REBHOLZ, ALEX VIGUERIE, AND MENGYING XIAO

We now use this bound to bound the pressure error, after applying inf-sup to (3.8)
to find

β‖p− pk‖≤ γ‖∇ · (wk + zk − u)‖ + ν‖∇(wk + zk − u)‖
+ 2M‖∇u‖‖∇ezk‖+M‖∇u‖‖∇euk−1‖

≤ γ‖∇ · (wk + zk − u)‖ + ν‖∇(wk + zk − u)‖
+ 2αν‖∇ezk‖+ αν‖∇euk−1‖.

Squaring both sides, using that γ ≥ ν, and reducing yields

β2‖p− pk‖2 ≤ 4γ(γ‖∇ · (wk + zk − u)‖2 + ν‖∇(wk + zk − u)‖2

+ 4α2ν‖∇ezk‖2 + α2ν‖∇euk−1‖2).

Using the bound (3.10) reduces this estimate to

‖p− pk‖2 ≤ 4γβ−2
(
(5ν + 2)α2‖∇ezk‖2 + 2να2‖∇euk−1‖2

)
.(3.11)

Combining (3.11) with (3.6) and multiplying both sides by γ−1 yields
(3.12)
γ−1‖p− pk‖2

≤ 4β−2
(
(5ν + 2)α2

(
γ−1‖p− pk−1‖2 + να2‖∇euk−1‖2

)
+ 2να2‖∇euk−1‖2

)
≤ 4β−2

(
(5ν + 2)α2γ−1‖p− pk−1‖2 + (5ν + 2)να4‖∇euk−1‖2 + 2να2‖∇euk−1‖2

)
.

Next, use (3.12) in (3.7) to find that

γ‖∇ · euk‖2 + ν‖∇euk‖2

≤ 4(5ν + 2)β−2α2γ−1‖p− pk−1‖2

+
(
4(5ν + 2)β−2να4 + (8β−2 + 1)να2

)
‖∇euk−1‖2

= α2
(
4(5ν + 2)β−2γ−1‖p− pk−1‖2

+
(
4(5ν + 2)β−2να2 + (8β−2 + 1)ν

)
‖∇euk−1‖2

)
.

Add this bound with (3.12) to obtain

(3.13)

γ−1‖p− pk‖2 + γ‖∇ · euk‖2 + ν‖∇euk‖2

≤ 8(5ν + 2)β−2α2γ−1‖p− pk−1‖2

+
(
8(5ν + 2)β−2να4 + (16β−2 + 1)να2

)
‖∇euk−1‖2.

Now using the small data condition (3.5), we find that

γ−1‖p− pk‖2 + ν‖∇euk‖2

≤ α
(
γ−1‖p− pk−1‖2 + α

(
να+ (16β−2 + 1)ν

)
‖∇euk−1‖2

)
≤ α

(
γ−1‖p− pk−1‖2 + α(16β−2 + 2)ν‖∇euk−1‖2

)
≤ α

(
γ−1‖p− pk−1‖2 + ν‖∇euk−1‖2

)
.

We have thus proven that γ−1‖p− pk‖2 + ν‖∇euk‖2 is a contractive sequence in k,
and thus converges. Since the solution of the finite dimensional problem (2.3)–(2.4)
is unique and bounded by the data (since α < 1), we have that the limit of the IPY
iteration converges to the solution of (2.3)–(2.4). �
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NONLINEAR ITERATION SCHEMES BASED ON ALGEBRAIC SPLITTING 11

3.3. Numerical tests for IPY. We now test Algorithm 3.1, the IPY iteration, on
several benchmark problems. For a convergence criteria of the nonlinear solvers, we
use the L2 norm of successive iterates being below a tolerance, ‖uk − uk−1‖ < tol
(since the problems we consider below have O(1) velocities, this is equivalent to
using a relative tolerance). Due to the theory above, this is equivalent to monitoring
nonlinear residuals (which we did also, as a sanity check in our codes). For the 2D
tests and the Aneurisk 32 test case, Freefem++ software [18] was used, and for
3D tests, the authors’ Matlab codes were used. Unless otherwise noted, initial
conditions were taken to be zero. There are several properties of IPY that we test
in these experiments, including effectiveness as a nonlinear solver, the effect of the
various parameters on convergence, and also efficiency by comparing IPY to Usual
Picard. For clarity of exposition, for each numerical test, we investigate a subset of
these properties. Tests were run on the authors’ workstations, but all comparisons
were made on the same machine for each respective test.

We refer below to “outer solvers” and “inner solvers” for systems containing the
Schur complement matrices S = BTA−1B (or replace A with Ã). By “outer solver”
we refer to a linear solve routine for Sx = b. Since we cannot explicitly form S,
these solves are performed with an iterative method (e.g., CG or BICGSTAB), for
which at each iteration a matrix-vector multiply of S to a vector y is done. But to
calculate Sy, one has to apply the action of A−1 to By, which results in the need
to solve a linear system of the form Az = By. In this sense, the solver used to solve
this Az = By system is nested inside each iteration of the outer solver, and is thus
referred to as the inner solver.

Due to the use of grad-div stabilization, care must be taken when using itera-
tive linear solvers on systems with coefficient matrices A and Ã. Results from the
literature, e.g., [5, 19] suggest that GMRES or BICGSTAB with certain multigrid
preconditioners can be quite effective. While better solvers for these matrices exist
when γ = 0, the use of γ = O(1) improves error so that coarser meshes / smaller
matrices are often possible (for the same error tolerance of the finite element ap-
proximation) and improves solves with the Schur complement. Hence the trade-off

of having these “more difficult” A-block (or Ã-block) solves due to grad-div seems
well worth it. However, how to best precondition and solve linear systems contain-
ing these matrices when grad-div is used remains an open problem, and should get
more attention in the near future due to the more prevalent recent use of grad-div
in incompressible flow simulations.

3.3.1. Analytic solution test. We first test IPY on a problem with an analytic so-
lution, in order to analyze its convergence and its dependence on the mesh level h.

We consider here the steady NSE defined on Ω = [0, 1]2 with ν = 0.01 and
forcing

f = [−2ν sin(x) cos(y) +
1

2
sin(2x)+cos(x),−2ν cos(x) sin(y) +

1

2
sin(2y) + cos(y)]′.

It can be verified that the problem yields the following exact solution:

uex = [− sin(x) cos(y), cos(x) sin(y)]′; pex = sin(x) + sin(y).

This test illustrates linear convergence of IPY to the discrete NSE solution. It
also demonstrates how convergence is affected by the mesh level, in terms of both
accuracy and convergence rate. We run the iteration on three different mesh levels,
h=1/20, 1/40, and 1/80, with γ = 1, and compare our computed solutions with the
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12 LEO G. REBHOLZ, ALEX VIGUERIE, AND MENGYING XIAO

discrete NSE solution on the corresponding mesh; see Figure 1. The results are as
anticipated in the sense that linear convergence to the solution is observed. More-
over, no deterioration of the convergence is observed as h decreases. Interestingly,
on the coarser meshes, an inflection point appears around the tenth iteration, after
which the convergence is slowed, but still linear. This suggests a more complicated
analysis might be possible, where the contraction ratio can change in different re-
gions, based on problem parameters. However, this phenomenon is not significant
on the finest mesh, which allows for improved convergence in this case.

Figure 1. The error after each iteration of the IPY scheme,
comparing to the discrete NSE solution on the corresponding mesh,
for varying mesh widths.

3.3.2. 3D lid-driven cavity. Our next test problem is the 3D lid-driven cavity bench-
mark. The domain is (0, 1)3 and the problem has no forcing f = 0, homogeneous
Dirichlet boundary conditions on the bottom and side walls, and the Dirichlet con-
dition ulid = 〈1, 0, 0〉T on the lid (z = 1). We consider the case of Re = ν−1 = 100,
and refer to [39] and the references therein for a more detailed problem descrip-
tion. The purpose of this test is to investigate the effectiveness of IPY on a larger
and more difficult test problem, to test IPY using varying element choices, and to
compare the ability of IPY to solve the nonlinear problem to that of Usual Picard,
under the assumption of ideal linear solvers.

γ

Figure 2. Centerplane slices of the IPY velocity field, and the
centerline x-velocity for the IPY solution (as red dots) along with
the solution from [39], using Re=100, Scott-Vogelius elements, and
796,722 total degrees of freedom.

We test the IPY and Usual Picard methods using different element choices and
various meshes, grad-div parameter γ = 1, an initial velocity that is zero in the
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NONLINEAR ITERATION SCHEMES BASED ON ALGEBRAIC SPLITTING 13

interior but satisfies the boundary conditions, and an initial pressure p0 = 0. A non-
linear solver tolerance of 10−6 in the L2(Ω) norm was used for both methods. Uni-
form tetrahedral meshes were used, and for the Scott-Vogelius tests, a barycenter
refinement of the uniform mesh was used in order to guarantee inf-sup stability
[40]. We note that grad-div has no effect on solutions found with Scott-Vogelius
elements, but it is still necessary for IPY convergence; it does, however, have the
effect that it allows the IPY Schur complement to be effectively preconditioned
with the pressure mass matrix [5, 19].

Since the purpose of this test is to compare nonlinear solvers, we solve Steps
k.1 and k.3 of IPY with a direct solver, and use a direct solver for the inner solves
of Step k.2 (via an LUPQ factorization that gets created just once for IPY, and
once at each nonlinear iteration for Usual Picard). For the IPY Step 2 outer solver,
we use CG with tolerance 10−8 (here and below, iterative linear solver tolerances
refer to the relative residual), and precondition with the pressure mass matrix. For
simplicity, we solve the linear system of Usual Picard in a very similar way, by
treating the linear systems as in (1.8) and performing a three step solve process.
Steps 1 and 3 are the same as for IPY, and again we use direct solvers. For Usual
Picard Step 2, we use BICGSTAB with tolerance 10−8, as well as GMRES with
tolerance 10−8 (for comparison), precondition with the pressure mass matrix, and
use a direct solver for the inner solves.

Table 1 shows statistics from these computations. The key observation is that
in all cases, the number of nonlinear iterations needed by IPY is the same as for
Usual Picard. This is important for IPY to be useful, since even though the linear
solves of IPY have such nice properties, if too many nonlinear iterations are needed,
then IPY will not give overall improvement compared to Usual Picard. Our theory
shows that IPY may have a larger contraction ratio than Usual Picard, however,
from Remark 3.3 we know that under a data restriction, the contraction ratios of
IPY and Usual Picard are about the same, which is what we observe in this test.

Although timings and efficiency are solver / preconditioner dependent, Table 1
also shows average iteration counts and timings for the Schur complement system
solves (not including the LUPQ factorizations). We observe the number of outer
iterations are slightly lower for IPY compared to Usual Picard using BICGSTAB,
but significantly lower than for Usual Picard using GMRES. For timings, we ob-
serve IPY to be significantly faster than Usual Picard with either BICGSTAB and
GMRES (which take about the same amount of time even though GMRES needs
more iterations, which is likely due to BICGSTAB doing more matrix-vector prod-
ucts).

Figure 2 shows plots of the IPY solution from the 796,722 total degrees of freedom
(dof) Scott-Vogelius solution. Figure 2 shows the sliceplane plots of the velocity
field, and these agree well with those found in Wong and Baker’s results from [39].
Also shown is the centerline x velocity for the IPY solution and the Wong and
Baker solution, and they are in excellent agreement.

3.3.3. A 2D bifurcation flow. For our third test, we compute with IPY for different
values of γ and ν on a 2D bifurcation inspired by the geometry used in [20]. The
purposes of this test are to assess the robustness of IPY with respect to ν, to
investigate the impact of γ on convergence, and to compare the convergence of IPY
to that of Usual Picard. We choose parameters ν = 0.0133 and 0.00667 (which
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14 LEO G. REBHOLZ, ALEX VIGUERIE, AND MENGYING XIAO

Table 1. Re=100 3D driven cavity statistics for IPY and Usual
Picard solvers, using various element choices and meshes.

(P2, P1) Taylor-Hood elements (γ=1)

IPY Usual Picard

dof nonlin its avg PCG nonlin its avg BICGSTAB avg GMRES
its / sec its/sec its/sec

1,093 11 16 / 0.02 11 16 / 0.03 25 / 0.03

10,637 14 14 / 0.36 14 14 / 0.60 24 / 0.57

38,229 17 12 / 2.69 17 15 / 4.56 25 / 4.26

93,469 19 12 / 9.26 19 15 / 19.75 25 / 20.82

185,957 20 12 / 26.80 20 15 / 63.90 26 / 67.31

(P3, P disc
2 ) Scott-Vogelius elements (γ=1)

IPY Usual Picard

dof nonlin its avg PCG nonlin its avg BICGSTAB avg GMRES
its / sec its/sec its/sec

702 8 8 / 0.01 8 8.5 / 0.01 13 / 0.01

16,770 17 8 / 0.10 17 8.5 / 0.16 14 / 0.17

206,874 21 7 / 1.79 21 9.5 / 3.71 15 / 3.89

796,722 21 7 / 11.91 21 9.5 / 25.03 16 / 25.66

correspond to Re = 200 and 400) and γ =1 and 3. Plots of the velocity field for
these choices of ν are shown in Figure 3.

Figure 3. Reference solutions for ν = .0133 (top) and ν = .0067 (bottom).

We use (P2, P1) Taylor-Hood finite elements on a mesh with 3,493 elements, lead-
ing to 16,434 total dof. Along the walls, we prescribe no-slip boundary conditions,
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NONLINEAR ITERATION SCHEMES BASED ON ALGEBRAIC SPLITTING 15

Table 2. Iteration statistics for a 2D bifurcation test, with Usual
Picard using the linear solver from [19] .

2D Bifurcation Test, ν = .0133 (Re=200)

IPY Usual Picard

γ nonlin its avg PCG its / sec nonlin its avg GMRES its / sec

1.0 62 12 / 0.26 48 20 / 0.38

3.0 51 11 / 0.26 48 14 / 0.28

2D Bifurcation Test, ν = .00667 (Re=400)

IPY Usual Picard

γ nonlin its avg PCG its / sec nonlin its avg GMRES its / sec

1.0 96 12 / 0.26 72 20 / 0.38

3.0 73 11 / 0.25 75 14 / 0.28

at the inlet we prescribe a standard parabolic inflow profile with peak velocity 2,
and at the two outlets we assign zero-traction outflow conditions.

We use a different approach to linear system solving for Usual Picard in this test
and the next, solving the problem monolithically. At each iteration we solve the
full saddle point system using GMRES preconditioned with the following block-
triangular preconditioner found in [19]:

P−1 =

[
A BT

0 (ν + γ)−1Mp

]−1

,(3.14)

where Mp is the lumped pressure mass matrix and A the velocity block with grad-
div stabilization. This will allow for additional comparison of IPY vs. Usual Picard
with different solvers, since the efficiency of Usual Picard is more heavily dependent
on the linear solvers that are used. We use a tolerance of 10−6 for the outer GMRES
solver and solve the linear systems arising from the inner blocks in (3.14) directly.
For IPY we solve Steps 1 and 3 using a sparse direct solver and Step 2 with CG
preconditioned with the pressure mass matrix, with tolerance set to 10−6. The
inner solves of Step 2 are also computed with a sparse direct solver. A nonlinear
solver tolerance was chosen as 10−6 for both IPY and Usual Picard.

We report our results in Table 2. We note that while the value of γ did affect
aspects of the linear solve in Usual Picard, it did not have any discernible impact
on the convergence of the nonlinear iteration. For ν = .0133, the convergence of
Usual Picard was better than IPY for γ = 1 (48 vs. 62 iterations), but for γ=3 the
number of iterations needed for convergence was almost the same. Similar results
are observed for ν = .00667.

In terms of the numerical cost at each iteration, as reported in Table 2, we see
consistent solve times and outer iteration counts for the different values of ν for a
given γ, suggesting little dependence on ν for both methods. The changes in γ do
not appear to affect the cost of each iteration of IPY, though this has a mild but
observable positive effect on Usual Picard. Overall, from this test we conclude that
the convergence of IPY compared to Usual Picard depends on both ν and γ, with
improvement in IPY coming from slightly higher γ when using lower values of ν.

3.3.4. ANEURISK case 32. Our last test with the IPY method is for a nontrivial
application problem, illustrating the possible practical usefulness of the proposed
scheme. We compute the steady-state solutions on case 32 from the publicly avail-
able ANEURISK database [1] over a range of different Reynolds numbers with
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16 LEO G. REBHOLZ, ALEX VIGUERIE, AND MENGYING XIAO

varying flow rates and viscosities. This is a patient-specific reconstruction of a
basilar artery with an aneurysm at the terminal bifurcation. This case is intended
to demonstrate IPY’s viability for large-scale three-dimensional problems with com-
plex geometries over different flow configurations. Such problems represent an area
where the proposed approach may significantly reduce computational costs for the
reasons discussed above. For the case Re=40, we will compare the IPY solution to
the time-average of the benchmark (unsteady) computation. For the other cases,
Re=100 and 160, we do not have benchmark data and this test is strictly a com-
parison of solver efficiency.

We ran these simulations with Taylor-Hood elements on a moderately fine tetra-
hedral mesh, with 36,693 total elements and 224,180 total dof. In accordance with
the benchmark computation, we set ν = .04 g/cm-s and inflow Q=.4005 ml/s based
on the values found in [8, 9]. For Re=100 and 160 we run two configurations: one
in which we keep ν = .04 and vary Q, and one in which we keep Q=.4005 ml/s
and vary ν. We note despite the identical Reynolds numbers these configurations
are not the same, physically or numerically. We prescribe no-slip boundary condi-
tions along the vessel walls and homogenous Neumann conditions at the outflows
in all cases, using parabolic Poiseuille profiles for inflow, properly scaled to match
the desired Q. The IPY method is then used with γ = 1 to solve the nonlinear
problem, using a tolerance of 10−3, which is purposely chosen large (relative to
the usual small tolerance) since large measurement errors are already present in
the data. We ran the simulations in FreeFem++, computing each step of IPY and
Usual Picard with the same setup used in the bifurcation test problem above.

Figure 4. Wall shear stresses for Re = 40 from benchmark time
average data (left) and IPY steady solution (right).

In Table 3, we report performance statistics for both methods at each problem
configuration. For both IPY and Usual Picard, the number of required nonlinear
iterations increases as both ν decreases and Q increases. The number of nonlinear
iterations is identical for Usual Picard for cases with the same Reynolds number,
however for IPY we observe minor differences, with the high ν/highQ cases converg-
ing slightly slower. On the whole, we see that IPY requires a few extra iterations
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NONLINEAR ITERATION SCHEMES BASED ON ALGEBRAIC SPLITTING 17

Table 3. Avg. time/solve only includes the system solve time;
avg. total time includes assembly costs. Outer Krylov iterations
denotes avg. num. of outer GMRES iterations for GMRES and
outer PCG iterations for the Schur complement step for splitting
methods per nonlinear iteration.

3D BSA Aneurysm, 224,180 DOF: Q = 0.4005 ml/s, ν = .04 g/cm-s (Re=40)
Method nonlin its Outer Krylov its avg solve time (sec) total time (sec)
IPY 12 32 34.5 804.0

Usual Picard 7 48 47.9 713.6

3D BSA Aneurysm, 224,180 DOF: Q = 1.005 ml/s, ν = .04 g/cm-s (Re=100)
Method nonlin its Outer Krylov its avg solve time (sec) total time (sec)
IPY 19 31 32.2 1212.2

Usual Picard 11 66 113.2 1245.2

3D BSA Aneurysm, 224,180 DOF: Q = 0.4005 ml/s, ν = .016 g/cm-s (Re=100)
Method nonlin its Outer Krylov its avg solve time (sec) total time (sec)
IPY 15 28 31.4 955.5

Usual Picard 11 47 47.1 965.8

3D BSA Aneurysm, 224,180 DOF: Q = 1.6005 ml/s, ν = .04 g/cm-s (Re=160)
Method nonlin its Outer Krylov its avg solve time (sec) total time (sec)
IPY 30 31 32.5 1917.0

Usual Picard 28 90 95.3 3880.8

3D BSA Aneurysm, 224,180 DOF: Q = 0.4005 ml/s, ν = .01 g/cm-s (Re=160)
Method nonlin its Outer Krylov its avg solve time (sec) total time (sec)
IPY 28 26 28.6 1699.6

Usual Picard 28 45 47.7 2514.4

to converge compared to Usual Picard; over the set of simulations, IPY required
an average of four extra iterations. It is worth observing that the number of extra
necessary iterations did not appear related to the Reynolds number. We note that
IPY was able to find good results on this problem, and in Figure 4 we observe that
the IPY solution matches the long time average benchmark solution quite well.
Since our computation is steady, and the benchmark comes from time-averaging an
unsteady computation, we do not expect perfect agreement. Additional statistics
were calculated for the IPY solution, including wall shear stress along a vessel, and
these all matched the benchmark data quite well (these results are omitted).

We now turn our attention to the cost for each nonlinear iteration. For both our
method and the comparison, the dominant driver of costs are the solves in Xh (i.e.,

the solves with A and Ã), the total number of which is determined by the number
of outer GMRES iterations for Usual Picard and the number of outer iterations
in Step 2 in IPY (plus two more for Steps 1 and 3). Referring to the results in
Table 3, we see that while the preconditioner (3.14) for Usual Picard is robust
with respect to ν, confirming the findings in [19], its performance worsens as Q
increases. In comparison, IPY is robust with respect to both parameters, showing
no sensitivity at all to Q and a mild improvement in performance as ν decreases.
Although IPY requires a similar (or slightly larger) number of nonlinear iterations
to converge, the cost per iteration is much lower, reflected in the low number of
outer iterations. As the Reynolds number increases we see improved performance
of IPY with respect to total time, but the opposite with Usual Picard: IPY slightly
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18 LEO G. REBHOLZ, ALEX VIGUERIE, AND MENGYING XIAO

underperforms Usual Picard at Re=40, performs comparably for both cases with
Re=100, and significantly outperforms Usual Picard for both cases where Re=160.

4. The incremental Yosida-Newton iteration

We consider in this section similar ideas of section 3 for the IPY iteration, but
here apply them to the Newton iteration. That is, we develop a new iteration
based on using an incremental Newton algorithm combined with Yosida algebraic
splitting, and a grad-div stabilized finite element discretization. Like the IPY,
the incremental Newton-Yosida (INY) will have an SPD Schur complement that is
the same at each iteration, which is advantageous compared to the Usual Newton
linear systems which have nonsymmetric Schur complements that change at each
iteration. After presenting the algorithm, we prove it converges to the discrete NSE
solution, and finally give numerical results.

The INY iteration is defined as follows.

Algorithm 4.1. The incremental Newton-Yosida iteration for the steady Navier-
Stokes is given by:

Step 1: Guess u0 ∈ Xh, p0 ∈ Qh.
Step k consists of the following three steps:
k.1 Find zk ∈ Xh satisfying for all v ∈ Xh,

γ(∇ · zk,∇ · v) + b∗(uk−1, zk, v) + b∗(zk, uk−1, v) + ν(∇zk,∇v)

= (f, v) + (pk−1,∇ · v) + b∗(uk−1, uk−1, v).

k.2 Find (wk, δ
p
k) ∈ (Xh, Qh) satisfying for all (v, q) ∈ (Xh, Qh),

γ(∇ · wk,∇ · v)− (δpk,∇ · v) + ν(∇wk,∇v) = 0,

(∇ · wk, q) = −(∇ · zk, q).

k.3 Set pk = pk−1 + δpk and find uk ∈ Xh satisfying for all v ∈ Xh,

γ(∇ · uk,∇ · v) + b∗(uk−1, uk, v) + b∗(uk, uk−1, v) + ν(∇uk,∇v)

= (f, v) + (pk,∇ · v) + b∗(uk−1, uk−1, v).

The implementation should be done at the algebraic level, with the correspond-
ing finite element submatrices, analogous to the IPY implementation discussed in
section 3.

4.1. Convergence. We now prove convergence of the INY iteration. As expected,
due to the complexity of Newton compared with Picard, both the proof and the
data restriction are also more complex.

Theorem 4.1. Let ε > 0 and define

α̃ < min

{
1, (1 + 24β−2)−1, 1−

(
802(1 + ε)3M‖f‖3−1

ν2β4
− 24ν

β2
+

νβ2

80

)−1/2
}
.

Denote by (u, p) the solution of system (2.3)–(2.4), (u0, p0) ∈ (Xh, Qh) the ini-
tial guess for INY, and (uk, pk) the INY Step k solution. Then if γ ≥ ν and
ν(1− α̃)‖∇(u− u0)‖2 + γ−1‖p− p0‖2 ≤ ‖∇u‖2, the sequence (uk, pk) converges to
(u, p).
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Remark 4.2. Even though Newton’s method converges quadratically, we would not
expect Algorithm 4.1 to converge quadratically, since approximations are being
made. From the proof, in particular (4.8), observe that if the pressure terms are
small, then quadratic convergence of the velocity is essentially recovered. In our
numerical tests, we find sometimes the INY method performs about the same as
Newton, but sometimes exhibits linear convergence behavior. How well it performs
is pressure dependent, γ-dependent, and dependent on the initial condition. INY
dramatically outperforms Usual Picard and IPY on all of our tests.

Proof. We begin the proof with an induction hypothesis, that the sequence ‖u −
uk‖ ≤ min{ν−1/2(1 − α̃)−1/2, ε‖∇u‖} for all k ∈ N, where ε is some positive con-
stant. Hence for all k, we have

(4.1) ‖∇uk−1‖ ≤ ‖∇(u− uk−1)‖+ ‖∇u‖ ≤ (1 + ε)ν−1‖f‖−1

by using the triangle inequality, and the a priori upper bound of true solution u.
We further assume that

ν(1− α̃)‖∇(u− uk−1)‖2 + γ−1‖p− pk−1‖2 ≤ ‖∇u‖2,
and by proving that the sequence defined by ν(1−α̃)‖∇(u−uk−1)‖2+γ−1‖p−pk−1‖2
is decreasing, this will imply the condition at the next iteration.

Denote euk := u − uk and ezk := u − zk. Subtracting Step k.1 of Algorithm 4.1
from the unique steady solution from (2.3)–(2.4), we obtain for all v ∈ Xh,

γ(∇ · ezk,∇ · v) + ν(∇ezk,∇v)

= (p− pk−1,∇ · v)− b∗(euk−1, e
u
k−1, v)− b∗(ezk, uk−1, v)− b∗(uk−1, e

z
k, v).

Choosing v = ezk and applying upper bounds similar to the Picard case above,
causes the last term to vanish and leaves

(4.2) γ‖∇ · ezk‖2 + ν(1− α̃)‖∇ezk‖2 ≤ γ−1‖p− pk−1‖2 +
M2

ν(1− α̃)
‖∇euk−1‖4

thanks to the Young’s inequality, (4.1), and the definition of α̃.
Similarly, for Step k.3, we obtain

(4.3) γ‖∇ · euk‖2 + ν(1− α̃)‖∇euk‖2 ≤ γ−1‖p− pk‖2 +
M2

ν(1− α̃)
‖∇euk−1‖4.

Next, we give a bound of ‖p − pk‖. Begin by adding Steps k.1 and k.2, and
subtracting it from the unique steady solution equation (2.3). Then we obtain the
error equation for all v ∈ Xh,

(4.4) γ(∇ · (zk + wk − u),∇ · v) + ν(∇(zk + wk − u),∇v)

= (pk − p,∇ · v) + b∗(euk−1, e
u
k−1, v) + b∗(uk−1, e

z
k, v) + b∗(ezk, uk−1, v).

Choosing v = zk + wk − u ∈ Vh causes the pressure term to vanish and yields the
bound

(4.5) γ‖∇·(zk+wk−u)‖2+ν‖∇(zk+wk−u)‖2 ≤ 8να̃2‖∇ezk‖2+2M2ν−1‖∇euk−1‖4

thanks to the Young’s inequality, (4.1), and the definition of α̃. Now applying the
inf-sup condition to (4.4), we find

β‖pk − p‖ ≤ γ‖∇ · (zk +wk − u)‖+ ν‖∇(zk +wk − u)‖+M‖∇euk−1‖2 +2να̃‖∇ezk‖.

Licensed to Iowa St Univ. Prepared on Fri Jan 25 06:12:38 EST 2019 for download from IP 129.186.138.35.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



20 LEO G. REBHOLZ, ALEX VIGUERIE, AND MENGYING XIAO

Squaring both sides, using that γ ≥ ν, and reducing yields

β2‖pk − p‖2 ≤ 4γ
(
γ‖∇ · (zk + wk − u)‖2 + ν‖∇(zk + wk − u)‖2

+ν−1M2‖∇euk−1‖4 + 2να̃2‖∇ezk‖2
)
.

Using the bound (4.5) reduces this estimate to

(4.6) ‖p− pk‖2 ≤ 4γβ−2
(
10να̃2‖∇ezk‖2 + 3ν−1M2‖∇euk−1‖4

)
,

and combining (4.2) and (4.6) and multliplying both sides by γ−1 produces

γ−1‖p− pk‖2

≤ 4β−2

(
10α̃2

1− α̃
γ−1‖p− pk−1‖2 + ν−1M2

(
3 +

10α̃2

(1− α̃)2

)
‖∇euk−1‖4

)
.

(4.7)

Next combine the bound (4.3) with the pressure term bound (4.7) to find that

γ‖∇ · euk‖2 + ν(1− α̃)‖∇euk‖2

≤ 40β−2α̃2

1− α̃
γ−1‖p− pk−1‖2

+
ν−1M2

(1− α̃)2
(
ν−1 + 12β−2(1− α̃)2 + 40β−2α̃2

)
‖∇euk−1‖4,

and add this bound with (4.7) to get

γ−1‖p− pk‖2 + ν(1− α̃)‖∇euk‖2

≤ α̃

(
80β−2α̃

1− α̃
γ−1‖p− pk−1‖2

+
α̃−1ν−1M2

(1− α̃)2
(
ν−1 + 24β−2(1− α̃)2 + 80β−2α̃2

)
‖∇euk−1‖4

)
.

Now applying the small data assumption that α̃ < 1, we obtain
(4.8)

γ−1‖p− pk‖2 + ν(1− α̃)‖∇euk‖2

≤ α̃
(
γ−1‖p− pk−1‖2

+
α̃−1ν−3M2

(1− α̃)4
(
ν−1+24β−2(1!−α̃)2+80β−2α̃2) (

ν(1−α̃)‖∇euk−1‖2
)2)

≤ α̃
(
γ−1‖p− pk−1‖2

+
ν3

(1+ε)3M‖f‖3−1

α̃2

(1−α̃)4
(
ν−1 + 24β−2(1− α̃)2 + 80β−2α̃2)(ν(1− α̃)‖∇euk−1‖2

)2)

≤ α̃
(
γ−1‖p− pk−1‖2

+
ν3(80−1β2)2

(1 + ε)3M‖f‖3−1

(
ν−1

(1− α̃)2
+ 24β−2 + 80β−2(80−1β2)2

) (
ν(1− α̃)‖∇euk−1‖2

)2)

≤ α̃
(
γ−1‖p− pk−1‖2 +

(
ν(1− α̃)‖∇euk−1‖2

)2)
.

By the second assumption provided in the beginning, ν(1−α̃)‖∇(u−uk−1)‖2 ≤ 1.
We therefore have proven that ν(1− α̃)‖∇(u−uk)‖2+γ−1‖p−pk‖2 is a contractive
sequence in k, and thus converges. Since the solution of the problem (2.3)–(2.4)
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is unique and bounded by the data, we have that the limit of the INY iteration
converges to the solution of (2.3)–(2.4). �

4.2. Numerical tests for INY. We now test the INY method, and compare
its behavior to that of Usual Newton. We repeat the use of test problems from
the previous section on Picard solvers, and for simplicity use the same settings,
parameters, and tolerances as used above for these problems unless stated otherwise.

4.2.1. 3D lid-driven cavity. We repeat the test above for the 3D lid-driven cavity
with Re=100, but now solve with INY and the Usual Newton method. The purpose
of this test is to compare the ability of the two methods to solve the nonlinear
problem.

All tolerances, parameters, and solver settings are the same as in the Picard tests
above for this test problem. Statistics of the computations are shown in Table 4, for
different element choices, and on varying meshes, and we make several observations
from the table. First, the INY nonlinear iteration converges in the same (or 1 more)
number of iterations as Usual Newton. A second observation is that the average
number of outer iterations is smaller for INY compared to Usual Newton with
either outer solver, but the computation time for each solve was significantly faster
for INY. We note that the number of nonlinear iterations and Schur complement
outer iterations were not significantly affected by h, and also that the differences
between INY and Usual Newton were (relatively) the same for both Taylor-Hood
and Scott-Vogelius elements.

Table 4. Re=100 3D driven cavity statistics for INY and Newton
solvers, using various element choices and meshes.

(P2, P1) Taylor-Hood elements (γ=1)

INY Usual Newton

dof nonlin its avg PCG nonlin its avg BICGSTAB avg GMRES
its / sec its/sec its/sec

1,093 6 16 / 0.02 5 15.5 / 0.03 26 / 0.03

10,637 5 14 / 0.36 5 16 / 0.70 25 / 0.60

38,229 6 12 / 2.47 5 16 / 4.84 26 / 4.46

93,469 6 12 / 8.93 5 16.5 / 23.34 25 / 21.26

185,957 6 12 / 25.93 5 18 / 81.46 27 / 72.51

(P3, P disc
2 ) Scott-Vogelius elements (γ=1)

INY Usual Newton

dof nonlin its avg PCG nonlin its avg BICGSTAB avg GMRES
its / sec its/sec its/sec

702 6 8 / 0.01 4 8.5 / 0.01 13 / 0.01

16,770 5 7 / 0.08 5 8.5 / 0.18 14 / 0.18

206,874 6 7 / 1.74 5 9.5 / 4.03 15 / 4.04

796,722 6 7 / 11.16 5 9.5 / 26.77 16 / 25.94

4.3. 2D Bifurcation flow. We now test INY in the same two-dimensional bi-
furcation geometry as in the previous section, restricting to the case of Re=200
(ν = 0.0133). The purpose of this test is for an additional comparison of the vari-
ous solvers, and values of γ, as well as to show that INY need not always provide
quadratic convergence. Our view is that it is critical to know the drawbacks of
algorithms, as well as their strengths, and our proof shows that it may behave
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Table 5. Iteration statistics for a 2D bifurcation test, with Usual
Newton using the linear solver from [19].

INY 2D Bifurcation Test, ν = .0133 (Re=200)

INY Usual Newton

γ nonlin its avg PCG its / sec nonlin its avg GMRES its / sec

1 53 12 / 0.26 7 20 / 0.39

3 34 11 / 0.26 7 16 / 0.31

5 26 11 / 0.26 7 14 / 0.28

10 18 11 / 0.25 7 14 / 0.27

20 14 11 / 0.25 7 14 / 0.27

quadratically depending on the pressure convergence, and in this test example the
pressure is not small relative to the velocity.

Referring to Table 5, we see that for γ = 1, INY converges only slightly faster
than IPY and Usual Picard. As γ increases, this convergence improves significantly.
For γ=20, INY still converges more slowly than Usual Newton, though the difference
becomes much less pronounced. This is not surprising since the INY iteration’s
linear error term (the pressure term) in the analysis is scaled by γ−1, so as γ
increases this term’s effect is reduced. This test suggests that for problems with
large pressure, or bad initial guesses at pressure, INY may not perform much better
than IPY unless γ is taken relatively large. We reiterate that high values of γ can
lead to numerical difficulties, potentially limiting the applicability of INY for some
problems.

5. Conclusions

We have developed new, simple, easy to implement, and efficient nonlinear solvers
for the steady NSE: the IPY and INY. These methods are created as approxima-
tions of Picard and Newton methods, respectively, but use the same SPD Schur
complement at each iteration. This makes them more easily computable than the
typical methods, which need to resolve a different, nonsymmetric Schur complement
at each iteration. Moreover, the SPD Schur complement can effectively use CG for
both inner and outer solver, and the outer solver is easily preconditioned with the
pressure mass matrix. This makes the method easy to implement as well as efficient.
We performed several comparisons of various linear algebraic solvers and precondi-
tioners for solving the linear systems of the proposed methods, and compared them
to various linear algebraic solvers and preconditioners for linear systems arising in
Usual Picard and Usual Newton: we found overall a significant efficiency gain can
be expected by using the proposed methods (although we acknowledge there are
very many other interesting and relevant tests of various linear algebraic solvers
that could also have been done; we have tried to give a fair assessment using some
common linear solving methods).

We have provided theory for both methods that proves they converge, provided
conditions on the data. The small data conditions are somewhat worse than for
the usual methods, as it includes the inf-sup constant in the IPY and INY results.
However, it seems unavoidable for these additional terms to arise in the analysis,
since Yosida splitting alters the discrete pressure equation. For both methods, we
have shown results of extensive numerical experiments that show good convergence
behavior to the correct solution: IPY typically has the same or similar convergence
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behavior as a nonlinear iteration as Usual Picard, while INY compares well with
Usual Newton when pressure is small or γ is larger (otherwise, INY may only
converge linearly). No lack of robustness of the new methods is observed compared
to the usual methods, which the theory suggests might be possible due to the more
restrictive data conditions in the proofs.

There are at least two immediate directions for future work. First, one can try to
apply these ideas to multiphysics problems such as MHD, which have a block saddle
point structure. Second, one can further study the robustness of the methods, to
determine analytically and/or numerically, how the various methods behave for
higher Reynolds numbers.
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