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Numerous examples for a priori unexpected non-Gaussian behaviour for normal and anomalous
diffusion have recently been reported in single-particle tracking experiments. Here, we address the
case of non-Gaussian anomalous diffusion in terms of a random-diffusivity mechanism in the presence
of power-law correlated fractional Gaussian noise. We study the ergodic properties of this model via
examining the ensemble- and time-averaged mean-squared displacements as well as the ergodicity
breaking parameter EB quantifying the trajectory-to-trajectory fluctuations of the latter. For long
measurement times, interesting crossover behaviour is found as function of the correlation time τ of
the diffusivity dynamics. We unveil that at short lag times the EB parameter reaches a universal
plateau. The corresponding residual value of EB is shown to depend only on τ and the trajectory
length. The EB parameter at long lag times, however, follows the same power-law scaling as for
fractional Brownian motion. We also determine a corresponding plateau at short lag times for the
discrete representation of fractional Brownian motion. These analytical predictions are in excellent
agreement with results of computer simulations of the underlying stochastic processes. Our findings
can help distinguishing and categorising certain nonergodic and non-Gaussian features of particle
displacements, as observed in recent single-particle tracking experiments.

I. INTRODUCTION

Brownian motion (BM) describes ubiquitous physical
phenomena across multiple disciplines of natural science.
Based on multiple experimental findings and theoretical
frameworks [1–10], BM features two fundamental proper-
ties: (i) the linear growth of the mean-squared displace-
ment (MSD) with time and (ii) the Gaussian form of the
probability density function (PDF) of particle displace-
ments. Anomalous diffusion processes feature a nonlinear
MSD growth, typically of the power-law form [11–23]

〈
x2(t)

〉
∝ t2H . (1)

Subdiffusion is observed when the anomalous scaling ex-
ponent is in the range 0 < H < 1/2, while superdiffusion
is realised for 1/2 < H < 1. Especially, prompted by
modern technologies (such as superresolution microscopy,
fluorescence technologies, single-particle tracking and ad-
vanced computing methods), anomalous diffusion has
been detected in numerous physical and biological sys-
tems [19, 25–34]. Along with these experimental devel-
opments, the mathematical foundations of different mod-
els of anomalous diffusion have been intensively studied,
such as, for instance, for continuous-time random walks
[14, 20, 35–37], fractional BM (FBM) [38–45] (also with
tempered noise [46, 47]), and heterogeneous diffusion pro-
cesses [48–54].

∗Electronic address: rmetzler@uni-potsdam.de

Over the past years, a particular class of stochas-
tic processes—so-called ”Brownian yet non-Gaussian
diffusion”—has been reported in a representative num-
ber of soft-matter and cellular biological systems [55–
65]. These processes typically combine the linear BM-like
growth of the MSD in time with a highly non-Gaussian
(often close to exponential) PDF of particle displace-
ments for given time lags. These non-Gaussian PDFs
may emerge due to diffusion in inhomogeneous environ-
ments. In a first approach it was assumed that each
particle is moving on a spatial patch with a given dif-
fusivity, D. Measuring the displacement-PDF of an en-
semble of particles, imagined to be distributed over a set
of local patches, is then taken to be a weighted mean of
individual Gaussians with a given diffusion coefficient,
where the weight function is the PDF p(D) of diffu-
sion coefficients. This is in fact the classical approach
of ”superstatistics” [66, 67]. For instance, in the exper-
iment of Granick and coworkers, for colloidal beads dif-
fusing on lipid-bilayer tubes an exponential distribution
p(D) was obtained [55, 56]. However, the superstatisti-
cal model with time-independent p(D) cannot predict the
crossover from short-time non-Gaussian to long-time ef-
fective Gaussian PDFs observed experimentally [55, 56].

To allow for such a crossover, the concept of ”diffus-
ing diffusivity” (DD) was introduced [68]. Introducing a
fluctuating instantaneous D(t), in this model exponen-
tial PDFs at short times and Gaussian PDFs at long
times emerge, while the process still features a linear
MSD with time-independent effective diffusivity. The
crossover is characterised by the correlation time inher-
ent to the diffusivity dynamics. A similar concept of
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distributed diffusivities was previously developed in Ref.
[69] (see also Ref. [70]. The DD approach helps mimick-
ing and rationalising the impact of static and dynamical
heterogeneities [71–76] on various statistical quantifiers
of particle-spreading dynamics.

Recently, various modifications and extensions of the
DD model [68] were developed [77–99]. Specifically, a
minimal DD model [88] provided the general analytical
subordination-based framework for Brownian yet non-
Gaussian processes. Persistent and antipersistent anoma-
lous diffusion processes of the FBM or generalised mas-
ter equation family are normally also Gaussian. How-
ever, antipersistent non-Gaussian dynamics have been
observed [100, 101].

To accommodate this dynamics, recent advances of the
DD model include the superstatistical FBM approach
[100] describing the exponential PDFs as observed, e.g.,
for cytoplasmic RNA-protein diffusion in bacterial and
eukaryotic cells [100]. A more general approach for
the superstatistical generalised Langevin equation was
developed in Ref. [102]. The link between the DD-
model and random-coefficient autoregressive model for
non-Gaussian diffusion was established [103] and a DD
model for generalised grey BM was developed [89].

Strongly non-Gaussian behaviours were reported for a
number of complex systems, such as, e.g., molecular dif-
fusion of lipid molecules or embedded proteins in protein-
crowded lipid membranes [101, 104, 105], dynamics of
polymers transiently adsorbed at solid-liquid interfaces
[107, 108], spreading dynamics of micron-size tracers in
mucin-polymer gels [106, 109], transiently superdiffusive
spreading of amoeboid cells in heterogeneous populations
[110], anomalous transport of tracers in amoeboid cells
[111], dynamics of colloidal particles near a wall [112], in
dense matrices of micropillars [72] and anisotropic liquid
crystals [113], diffusion in narrow corrugated channels
with fluctuating cross-sections [114], and the dynamics
of acetylcholine receptors on live muscle-cell membranes
[115].

The paper is organised as follows. In Sec. II we in-
troduce the physical observables used in the description
and the basic equations solved in the text. In Secs. IIIA
and III B the time-averaged MSD (TAMSD) and the EB
parameter of the DD-FBM model, respectively, are cal-
culated analytically and supported by computer simula-
tions. We provide analytical expressions for EB for the
BM case H = 1/2 and numerical results for the whole
range H ∈ (0, 1). The discussion and conclusions are
summarised in Sec. IV.

II. PHYSICAL OBSERVABLES AND
FORMULATION OF THE DD-MODEL

A. Ensemble- versus time-averaging

Single-particle tracking (SPT) routinely measures the
trajectories of submicron or even single-molecular trac-

FIG. 1: Physical interpretation and schematic of the DD-
FBM diffusion model. The position x(t) is driven by frac-
tional Gaussian noise ζH(t), whose amplitude is modulated
by stochastic diffusivity D(t). The latter is taken to be the
square of the Ornstein-Uhlenbeck process y(t).

ers in the form of time series of the particle position at
unprecedented spatial and temporal resolution. SPT is
by now an established powerful tool to study ”micro-
scopic” diffusion in a broad spectrum of physical systems,
at different length- and time-scales. For a large number
of SPT trajectories, the ensemble-based MSD is a well
suited statistical measure. The dynamics is, however,
often assessed from a limited number of long SPT tra-
jectories in terms of the TAMSD. In accord with the er-
godic hypothesis [20], the TAMSD for a given trajectory
of a particle exploring the entire system for long times is
equivalent to the MSD computed for a large ensemble of
identical particles diffusing in the same system. In con-
trast, when the system features weak ergodicity breaking
[116, 117] the MSD and TAMSD cease to coincide, even
for long measurement times T [16, 20]. However, even
for ergodic processes an ensemble of TAMSDs features a
finite spread for finite trajectories. This spread is quanti-
fied by EB, which has been studied for many normal and
anomalous stochastic processes [20, 30, 40, 45, 118–122].

The normal-diffusion DD model [88] and the DD-FBM
model driven by power-law correlated noise ζH(t) [39, 40]
are central for the current study, see Fig. 1. The er-
godic properties of the DD-FBM process—defined be-
low in the Boltzmann-Khinchin sense of the equivalence
of the long-time limit of the MSD (2) and TAMSD
(3) [16, 20, 123]—are investigated via analysing the
realisation-to-realisation amplitude variation of individ-
ual TAMSDs quantified by EB, see Eq. (6) below. This is
also a practical definition of ergodicity used, for instance,
in statistical physics dealing with SPT data, as experi-
mentalists often measure time averages. We do not talk
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about rigourous conditions of ergodicity, for instance, in
the sense discussed in Ref. [124]. A detailed compari-
son of the dynamics and the (non-)ergodicity to the be-
haviours of pure FBM and the DD-model is provided and
the discrepancies are quantified below. In particular, we
identify a fundamental time-scale below which EB fea-
tures a plateau and we determine the residual EB value.

B. Definition of main observables

The MSD—the standard observable for a stochastic
process [16, 18–20]—is the average of the squared particle
position with the PDF of its displacements at time t,

〈
x2(t)

〉
=
∫ +∞

−∞
x2P (x, t)dx. (2)

Here and below we consider one-dimensional systems;
component-wise extension to higher dimensions is possi-
ble. The TAMSD for a time series xi(t) of the ith particle
is typically defined as

δ2
i (Δ) =

1
T − Δ

∫ T−Δ

0

[xi(t + Δ) − xi(t)]
2
dt, (3)

where Δ is the lag time and T is the total measurement
time. In contrast to the ”statistically averaged” MSD,
each TAMSD is an inherently random quantity (even for
BM) [16, 20]. Therefore, averaging over N independent
TAMSDs is often performed to compute the mean

〈
δ2(Δ)

〉
=

1
N

N∑

i=1

δ2
i (Δ). (4)

For a fixed lag time Δ, a stochastic process is called er-
godic if its MSD and TAMSD are identical in the limit
of long observation times [16, 20], i.e. when

lim
Δ/T→0

δ2(Δ) =
〈
x2(Δ)

〉
. (5)

The randomness of each TAMSD realisation at a finite
T gives rise to a certain amplitude scatter of δ2

i (Δ, T )
around the average (4). This scatter can be quantified
by the EB parameter [16, 20, 40],

EB(Δ) =
〈
ξ(Δ)2

〉
− 1, (6)

where ξ(Δ) = δ2(Δ)
/〈

δ2(Δ)
〉

. Similar to the TAMSD,

the EB parameter is clearly also a function of the tra-
jectory length, EB(Δ, T ). Hereafter, however we write
EB as a function of its most relevant variable (often, the
lag time Δ). For ergodic processes, EB approaches zero
for long observation times T and the distribution of nor-
malised TAMSDs [43, 44, 125, 126] (named below φ(ξ)),
approaches the Dirac δ-function in the asymptotic limit
[16, 20, 45], φ(ξ) → δ(ξ − 1). In that limit, the results of
all individual measurements coincide. For example, for

paradigmatic BM (in the continuous-time limit) one gets
[40, 119, 122]

lim
Δ/T→0

EBcont
BM (Δ) =

4Δ
3T

, (7)

see also below. For nonergodic stochastic processes—
such, e.g., as continuous-time random walks and het-
erogeneous diffusion processes—EB attains finite values
at Δ/T → 0 [16, 20, 30, 48, 51]. We refer the reader
to some examples of transiently nonergodic [44, 126]
and non-Gaussian [71, 127] behaviour. Note also that
the spectral content of single non-Brownian trajectories
was recently investigated [23, 128, 129] and extended to
random-diffusivity dynamics [130].

C. Main equations of the DD model

In what follows we employ the minimal DD model de-
fined by the system of equations (following Ref. [88])

dx(t)
dt

=
√

2D(t)ζH(t)

D(t) = y2(t)
dy(t)
dt

= −
y(t)
τ

+ ση(t). (8)

Here σ is a noise intensity, while ζH(t) and η(t) are frac-
tional Gaussian [39, 40] and white Gaussian [16, 20] noise,
respectively. Both noises have zero means and correlation
functions

〈ζH(t1)ζH(t2)〉 ' 2D2HH(2H − 1)|t1 − t2|
2H−2 (9)

(for t1 6= t2) and

〈η(t1)η(t2)〉 = δ(t1 − t2). (10)

Here D2H is the generalised diffusion coefficient. Extend-
ing the minimal DD model [88, 89] the diffusivity D(t)
in the system of equations (8) is set to be the square of
the Ornstein-Uhlenbeck process [131] with the correla-
tion time τ . This guarantees non-negative diffusivities,
D(t) = y2(t). The physical units of some model param-
eters and quantities are: [y] = [D1/2] = [K1/2]=m/sH ,
[σ]=m/sH+1/2, [η] = 1/

√
s, [ζH(t)] = sH−1, and [D2H ] =

1. We note here that the approach combining the features
of both the FBM and DD models is pioneered here and,
to the best of our knowledge, has not been considered in
the literature before.

III. MAIN RESULTS: TAMSD AND EB

A. Magnitude and distribution of the TAMSDs for
the DD-FBM model

Here, we compute the mean TAMSD for the DD-FBM
model for H ∈ (0, 1) and check the MSD-TAMSD equiva-
lence. To be able to use the stationarity of the DD model,
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(a)

(b)

(c)

FIG. 2: MSD (filled orange circles) and mean TAMSD (blue
thick curves) as well as individual TAMSDs (red thin curves)
for the DD-FBM model obtained from computer simulations
for H = 9/10 (panel a), 1/2 (b), and 1/10 (c). The short-
time MSD asymptote (19) and long-time scaling relations (20)
and (21) are shown as the dashed lines. Parameters: the
correlation time is τ = 1, the noise intensity is σ = 1, the
total trace length is T = 102, the integration time-step is
δt = 10−3, and the number of independent trajectories for
averaging is N = 103. The same values of δt and N are
used in all other plots. The values of the generalised diffusion
coefficient in all our simulations and in the theoretical results
shown above was fixed to DH = 1/2.

the initial condition for y(t) is chosen from the equilib-
rium distribution (see Sec. IVC for nonequilibrium con-
ditions). The mean TAMSD can be obtained via ex-
panding Eq. (4) and calculating the position-correlation
function (see App. A for details), to give

〈
δ2(Δ)

〉
= 4

∫ Δ

0

(Δ − s12)G(s12)ds12, (11)

where the velocity autocorrelation function of the DD
model is

G(s12) =
〈√

D(s1)
√

D(s2)
〉
〈ζH(s1)ζH(s2)〉 , (12)

and

s12 = |s1 − s2|. (13)

For H = 1/2 the TAMSD (11) reduces to
〈
δ2(Δ)

〉
= (σ2τ) × Δ = 2DeffΔ, (14)

in agreement with the results of Refs. [88, 89].
The MSD for the DD-FBM model is obtained via in-

tegrating (8) with initial condition x(0) = 0, yielding

〈
x2(t)

〉
=2
∫ t

0

ds1

∫ t

0

ds2

〈√
D(s1)

√
D(s2)

〉

× 〈ζH(s1)ζH(s2)〉 = 4
∫ t

0

(t − s12)G(s12)ds12.

(15)

From Eqs. (11) and (15) follows that the MSD and mean
TAMSD are identical in the entire range of (lag) times,

〈
δ2(Δ)

〉
=
〈
x2(Δ)

〉
. (16)

As the DD-FBM process is self-averaging for T → ∞,
the equivalence holds on the level of single TAMSD tra-
jectories and the diffusion process is therefore ergodic.

These theoretical predictions and results of computer
simulations for the MSD and TAMSD in the DD-FBM
model are presented in Fig. 2 for three values of the
Hurst exponent H. Expression (15) for the MSD states
that for persistent fluctuations (1 > H > 1/2) both for
short and long times one obtains

〈
x2(t)

〉
∼ t2H , (17)

while for the antipersistent situation (0 < H < 1/2) a
crossover from subdiffusive to Brownian behaviour is ob-
served at long times, see Fig. 2. This behaviour observed
in simulations is consistent with the analytical predic-
tions stemming from the general MSD expression (15),
as clarified in detail in Ref. [132].

Mathematically, repeating the arguments of Ref. [132],
at short times (s12 � τ) the diffusivity correlator

K(s12) =
〈√

D(s1)
√

D(s2)
〉

(18)
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in Eq. (15) approaches (1/2)σ2τ , see Ref. [132] and Fig.
S1. This yields the anomalous MSD scaling

〈
x2(t)

〉
≈ (D2H/2)σ2τ × t2H (19)

at short times, both for the persistent and antipersistent
situations. At long times we have to separate persis-
tent and antipersistent motion. In the persistent case,
1 > H > 1/2, the leading contribution to the integral
(15) at long times comes from large s12, owing to a slow
decay of the noise-autocorrelation function. We thus
have a monotonically decreasing correlator (18) with the
limit K(s12 � τ) → (1/π)σ2τ (see Fig. S1) that yields
anomalous MSD growth [132]

〈
x2(t)

〉
= (2D2H/π)σ2τ × t2H . (20)

In the antipersistent case, via splitting the inte-
gral (15) we arrive at the leading MSD contribution
4t
∫∞
0

K(s12) 〈ζH(s1)ζH(s2)〉 ds12, where (due to conver-
gence of the integrand) the upper limit was set to infinity,
t → ∞ [132]. This leading MSD term at long times yields
the linear growth,

〈
x2(t)

〉
≈ 2D̄t, (21)

with the effective diffusivity being D̄ =
lim
δ→0

2
∫ +∞
0

K(s12) 〈ζH(s1)ζH(s2)〉 ds12 (where δ is

the smoothening parameter of the correlation function,
see Ref. [39, 132]). Here, the crossover time from the
short-time law (19) to the long-time linear diffusion
scaling laws (20) and (21) is always the correlation
time τ , independent on the actual value of the Hurst
exponent H.

Physically, the absence of the crossover and MSD scal-
ing (19) in the entire rage of times for persistent motion
and the crossover from the short-time behaviour (19) to
the long-time linear MSD behaviour (21) for antipersis-
tent noise is owing to the fact that antipersistent motion
for FBM delicately depends on the exact vanishing of the
cumulative correlation, in contrast, e.g., to an analogous
process with cut-off noise correlator [47].

Specifically, from our simulations at Δ ≈ τ and H =
1/10 this crossover is distinct both for the MSD and mean
TAMSD, see Fig. 2. We observe that the spread of in-
dividual TAMSDs for short lag times is larger for sub-
diffusion. From Eq. (A5) we also see that the mean
TAMSD is independent of the total time T for all values
of H. This is in contrast to aging nonstationary processes
[17, 24, 133, 134]. Note that experimentally short-time
plateaus for MSD and mean TAMSD can emerge due to
localisation errors of particle positions [135, 136]. We
also refer to the recent analysis of the effect of particle-
localisation errors [137] on deviations of the short-time
EB behaviour, above the BM asymptote (7).

B. Plateau values of EB

Here, we present the results for the EB parameter of
the DD-FBM model in the limit of long traces, such

that T � τ . As for H = 1/2 the correlation function
for fractional Gaussian noise, Eq. (9), reduces to the
δ-function, we get exact analytical results for EB. For
arbitrary H ∈ [0, 1] the complicated correlation function
(9) hampers an exact analytical expression for EB in the
DD-FBM model and, thus, we resort to simulations.

1. Brownian case H = 1/2 for the DD-FBM model

The EB parameter of the DD-FBM model at H =
1/2 is calculated separately in the domains of lag times
0 < Δ < T/2 and T/2 < Δ < T , similarly as in Refs.
[119, 122], and for long trajectories (T � τ). For 0 <
Δ < T/2 we get (see App. B)

EBDD+BM(Δ) =

(
4Δ
3 + 6τ − 4τ2

Δ − 2τ3

Δ2 e−
2Δ
τ + 2τ3

Δ2

)

(T − Δ)

+
τ4

(T − Δ)2Δ2

(
3
2
−

3Δ
τ

+
2Δ2

τ2
−

2Δ3

τ3
−

Δ4

3τ4

−
3e−

2Δ
τ

2
+

e−
2(T−2Δ)

τ

4
−

e−
2(T−Δ)

τ

2
+

e−
2T
τ

4

)

. (22)

From Eq. (22), the leading order in 1/T yields

EBDD+BM(Δ) ∼
4Δ
3T

+
6τ

T
−

4τ2

ΔT
−

2τ3e−
2Δ
τ

Δ2T
+

2τ3

Δ2T
(23)

and we get the respective asymptotes as

EBDD+BM(Δ) ≈

{
2τ/T, Δ � τ

4Δ/(3T ), Δ � τ
. (24)

We thus find that the standard result for BM [119, 122] is
reached at Δ � τ , while a remarkable plateau is reached
for EBDD+BM(Δ) at short lag times. As follows from
Eqs. (22) and (24), the correlation time τ emerges as
the fundamental time-scale that controls the crossover
behaviour of EBDD+BM(Δ).

For T/2 < Δ < T the EB parameter is (see App. B)

EBDD+BM(Δ) =
T 2 − 6TΔ − 6Tτ + 11Δ2 + 24Δτ − 6τ2

3Δ2

−
τ3
(
1 + 2e−2Δ/τ

)

(T − Δ)Δ2
+

τ4

4(T − Δ)2Δ2

×
(
2 − 2e−

2(T−Δ)
τ + 5e

2(T−2Δ)
τ + e−

2T
τ − 6e−

2Δ
τ

)
. (25)

For long enough T the first term in expression (25) gives

EBDD+BM(Δ) ∼
T 2/3 − 2TΔ − 2Tτ + 11Δ2/3 + 8Δτ − 2τ2

Δ2
.

(26)
At τ � Δ and τ � (T − Δ) this expression yields

EBDD+BM(Δ) ∼
11(Δ/T )2 − 6(Δ/T ) + 1

3(Δ/T )2
, (27)

Page 5 of 20 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-113867.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



6
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FIG. 3: Analytical (solid coloured curves) and numerical
(coloured circles) results for the EB parameter of the DD-
FBM model for H = 1/2. The thick black dashed line is
the continuous-time analytical result for BM, Eq. (7). The
terminal value of EB(Δ = T ) = 2 is the thin dashed line.
Parameters: H = 1/2, σ = 1, T = 102.

similar to EB of standard BM [119, 122]. Towards the
end of the trajectories, at Δ → T , the value

EB = 2 (28)

is reached and from Eq. (27) one gets the first-order
correction to this value as

EBDD+BM(Δ) ≈ 2 − 4(T − Δ)/(3T ). (29)

We note that Eqs. (27) and (29) also hold for BM in the
respective range of lag times [119].

In Fig. 3 the analytical and numerical results for the
EB parameter of the DD-FBM model at H = 1/2 are
presented. For the case τ � T , EBDD+BM(Δ) starts
from the plateau value 2τ/T (thin dashed lines in the
plot, Eq. (24)) at short enough lag times, Δ � τ . The
BM EB asymptote (7) is approached for Δ � τ , as Eq.
(24) predicts. In Fig. 3 the results for varying correlation
times are plotted. We find that, as for longer τ the EB
plateau value increases (see Eq. (24)) and the region
of lag times where EBDD+FBM(Δ) stays nearly constant
becomes more extended. Concurrently, for larger τ values
the region of lag times where EBDD+BM(Δ) follows the
BM law (7) shifts towards larger Δ values, see the curve
for τ = 1 in Fig. 3.

2. General case of H ∈ (0, 1) for ordinary FBM:
discreteness effects

We start by discussing the ergodic properties of free
(unconstrained) ordinary or standard FBM. The expres-
sion for EBFBM(Δ) at short lag times Δ/T � 1 was

derived analytically in Ref. [40] in the continuous-time
representation, namely

EBcont
FBM(Δ) ∼

{
C1 × (Δ/T )1 , 0 < H < 3/4

C2 × (Δ/T )4−4H , 1 > H > 3/4
,

(30)

where the coefficients are

C1(H) =
∫ ∞

0

[
(1 + s)2H + |1 − s|2H − 2s2H

]2
ds (31)

and

C2(H) = [2H(2H − 1)]2
(

1
4H − 3

−
1

4H − 2

)

. (32)

The variation of C1(H) is presented in Fig. S2. The
main conclusion is that for short lag times EBcont

FBM(Δ)
scales linearly with Δ/T for H < 3/4, while the scaling
of EB(Δ/T ) is sublinear for 1 > H > 3/4 (H = 3/4
is a ”critical point” [40, 45], see Figs. 5 below and the
detailed behaviour in Fig. S3). In other words, the de-
gree of reproducibility of individual TAMSD realisations
increases linearly with the trace length for H < 3/4 and
the statistical uncertainties decrease slower than linearly
with T in the range of Hurst exponents 1 > H > 3/4
(and it was predicted in Ref. [40] to diverge at H = 3/4,
see below). The canonical continuous-time result for free
BM, Eq. (7), follows from Eq. (30) at H = 1/2.

In the continuous-time formulation, the original EB re-
sults for FBM [40] were recently reexamined [45]. Specif-
ically, within a more rigourous analytical framework for
EBFBM(Δ) it was revealed that the ”critical point” at
H = 3/4 disappears and the behaviour of EB is in fact
continuous as function of H across this point, see Fig. 1
in Ref. [45]. This continuity agrees with the results of our
FBM simulations presented in Fig. 5. Moreover, some
unexpected results from computer simulations of FBM
regarding the longer-tailed, non-Gaussian distributions
φ(ξ) of individual TAMSDs—in particular, for progres-
sively superdiffusive FBM and at longer lag times—were
reported in Fig. 3 of Ref. [45].

The analytical predictions and the results of our com-
puter simulations of FBM for EBFBM(Δ) are shown in
Fig. 4. We find that for H > 3/4 the continuous-time
theory [40] and our computer simulations coincide in a
large range of the lag times studied. However, due to
the innate limitations of the short-lag-time EB expansion
(30), towards the end of the trajectory the simulations
yield EB→2 (28), while the (extrapolated) continuous-
time prediction [40] would give EB(Δ → T ) ≈ C2(H), as
follows from Eq. (32).

In contrast, for H < 3/4 at short lag times a plateau-
like, saturation behaviour of EB is found, while the
continuous-time theory [40] predicts a linear scaling with
(Δ/T ), see Eq. (30). This is the vital effect of a finite
time-step in computer simulations, δt. The region of EB
saturation with Δ is particularly pronounced for small
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Hurst exponents, at which the EB plateau can occupy a
considerable range of lag times (see, e.g., the curve for
H = 1/100 in Fig. 4 and also the results of Fig. S4).

From the general discrete-time expression (C4) for
EBdisc

FBM(Δ) we find that at Δ1 = δt and H = 1/2 the
residual value

EBdisc
BM(Δ1) ∼ 2/(N − 1) (33)

is approached, while for H = 0 one gets (see also Ref.
[139])

EBdisc
FBM(Δ1) ∼

2
N − 1

(
3
2
−

1
2(N − 1)

)

. (34)

Here N = T/δt is the number of elementary time-
intervals in the trajectory. In the region

0 < H . 1/2 (35)

we get the approximate, rather weak variation of the
residual EB value with H (see App. C),

EBdisc
FBM(Δ1) ∼

2
N − 1

+
(N − 2)

(
22H − 2

)2

(N − 1)2
. (36)

Note that (33) follows from this expression at H = 1/2.
The lag up to which this saturating EB behaviour is de-
tected can be estimated as

Δdisc
pl (H) ∼ 2 × δt/C1(H), (37)

(see App. C and Fig. S4 for details), where C1(H) is
given by Eq. (31). In the range

1 > H > 3/4 (38)

from Eq. (C4) we get (in the leading order)

EBdisc
FBM(Δ1) ∼ C2(H)/(N − 1)4−4H , (39)

that is identical to the result of continuous-time theory
[40], see Eq. (30).

In Fig. 4 we plot the result for EBFBM(Δ) starting
from the shortest lag time, Δ1 = δt. For H > 3/4
the results for EB from computer simulations are in full
agreement with the predictions of the continuous-time
theory (30) and the discrete-time framework (39) for all
lag times. At the end of the trajectories EB approaches
the expected value EB=2 (see Eq. (C7)). At short lag
times EBFBM(Δ) in the discrete-time framework features
a plateau for 0 < H < Hpl ≈ 0.64 (as given by Eq.
(C12)), as follows from the theoretical estimations (C9)
and (C10). This plateau trend is most pronounced for
the smallest Hurst exponents, extending towards longer
lag times (as Fig. S4 explicitly quantifies). All these
features are also consistent with the results of computer
simulations, as illustrated in Fig. 4 for the time-step
δt = 10−3 and in Fig. S5 for δt = 10−6. Note, however,
that for a nearly ballistic Hurst exponent, at H = 0.99,

in the region of extremely small lag times a rapid and
unexpected reduction of EB for FBM is observed. This
effect requires additional future consideration.

The results of computer simulations and the discrete-
time-induced EB plateau (33) at Δ1 are superimposing
in the region 0 < H . 1/2, see Fig. 5. The predictions of
the continuous-time theory [40] deviate from the results
of computer simulations in the range 0 < H . 1/2, and,
most pronouncedly, for very small values of the Hurst
exponent.

In the region 0 < H < 3/4 the continuous-time
EB(Δ) results for BM and FBM are linear in Δ/T ,
see Eq. (30). This linearity yields the universal, T -
independent behaviour for the normalised parameter
EBcont

FBM(Δ)/EBcont
BM (Δ) at short lag times in this region

of H exponents, see the coloured dashed curves in Fig.
5. On the contrary, because of the sublinear scaling of
EBcont

FBM(Δ) with Δ/T in the region 3/4 < H < 1 the
predictions for the ratio EBcont

FBM(Δ)/EBcont
BM (Δ) split up

as T is being varied, see Fig. 5.
We also find that the H-dependent residual values of

the rescaled EB parameter, EBFBM(Δ1)/EBcont
BM (Δ1), at

0 < H . 1/2, Eq. (36), are nearly independent on the
trajectory length T , while in the range of Hurst expo-
nents 1/2 . H < 1 the ratio EBFBM(Δ1)/EBcont

BM (Δ1)
is highly sensitive to T . The values of the ratio
EBFBM(Δ1)/EBcont

BM (Δ1) decisively split up for different
trajectory lengths in the range 1 > H & 1/2, as demon-
strated in Figs. 5 and S3. As all EBFBM(Δ1) data in Fig.
5 are renormalized to the continuous-time classical result
for the EB parameter of BM, EBcont

BM (Δ1), at H = 1/2
we find that the result of the discrete-time theory is a
factor of 3/2 higher than that of the continuous-time EB
calculation, while at H = 0 the EB value in the dis-
crete model EBdisc

FBM(Δ1) is a factor (3/2)2 larger than
EBcont

BM (Δ1) (see Eqs. (7), (33), and (34)).
Physically, the nonmonotonicity of the rescaled pa-

rameter EBFBM(Δ1)/EBcont
BM (Δ1) as a function of H pre-

sented in Fig. 4 is owing to the fact that for pure BM (at
H = 1/2) the EB parameter attains the smallest value
(natural for the most ergodic situation). The system be-
comes slightly less ergodic as H decreases from H = 1/2
towards H = 0 and the deviations from ergodicity turn
much more dramatic as the Hurst exponent grows in the
opposite direction from H = 1/2 towards H = 1 (the
ultimate ballistic regime). This physically intuitive be-
haviour is consistent with all relevant limits clarified in
Fig. 4, both within the continuous-time [40] and discrete-
time (Ref. [139] and the current study) approaches.
The overall dependence of EBFBM(Δ1)/EBcont

BM (Δ1) for
FBM—for the results of continuous-time theory, the
discrete-time analytical theory, and the innately dis-
cretized computer simulations—as a function of exponent
H (see Fig. 4) as well as the universality of the ratio
EBdisc

FBM(Δ1)/EBcont
BM (Δ1) for varying trajectory lengths

in the region 0 < H . 1/2 (see Fig. 5) are simi-
lar to those trends we observed for another Gaussian
anomalous-diffusion process, namely so-called scaled BM
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FIG. 4: Analytical predictions (dashed coloured lines, Eq.
(30)) and results of computer simulations (coloured circles)
for the EB parameter of free ordinary FBM. Theoretical pre-
dictions of the continuous-time theory [40], Eq. (30), are the
dashed coloured lines. The thin dashed lines indicate the
residual EB values (33) and (34) as well as the terminal value
EB=2 reached at Δ → T . Parameters: T = 102, δt = 10−3,
DH = 1/2.

(e.g., see Fig. 3a of our recent study [138]).
After the current study was finished, we became aware

of Ref. [139] presenting detailed calculations of EB in
the discrete-time scheme both for standard BM as well
as for FBM. In Fig. 5 we show that the analytical results
of Eq. (37) in Ref. [139]—which are identical to our
EB derivation in Eq. (C4)—agree excellently with the
results of our computer simulations. Note also that the
emergence of the residual EB value for the discrete-time
simulations was already presented (but not rationalised)
in Fig. 6 of the original study [40].

3. General case H ∈ (0, 1) for the DD-FBM model

We now consider the situation of FBM-driven DD mo-
tion. We present results from computer simulations for
EBDD+FBM(Δ) at different H in Fig. 6 and compare
them to the results for EBFBM(Δ) obtained in Fig. 4.
For short lag times (Δ � τ) and for all values of H, EB
is found to approach a plateau (subscript ”pl”) with the
residual value

EBpl,DD+FBM ≈ 2τ/T. (40)

In Fig. S6 we check this functional form via examining
the plateau values for varying correlation time τ . The

0 0.2 0.4 0.6 0.8 1

100

101

102

103

104

105

FIG. 5: EBFBM(Δ) normalised to the BM behaviour
EBcont

BM (Δ) (Eq. (7)) plotted versus the Hurst exponent H
at the shortest lag time Δ1 ≡ δt = 10−3. The results of our
computer simulations are the filled symbols. The analytical
results of the continuous-time theory [40], see Eq. (30), are
the dashed coloured curves. The results of the discrete-time
EB-derivation scheme—see Eq. (C4) and also Ref. [139]—is
the solid black curve (shown for T = 102 only, not to cover
the dashed coloured curves of Ref. [40] for H > 1/2). The
thin dashed black lines are the discreteness-induced plateaus,
Eqs. (33) and (34). The thin vertical dotted line indicates the
”critical point” of the continuous-time EB theory for FBM of
Ref. [40]. The behaviour of EB near H = 3/4 is detailed
in Fig. S3. Parameters: T = 100, 101, 102 for the respective
colours, DH = 1/2.

magnitude of EB at Δ � τ approaches the plateau (33)
(thin dashed line in Fig. 6) and it shows the FBM-like
asymptotic law (30) at long lag times Δ � τ (thick
dashed lines in Fig. 6). As Figs. 6 and S6 show, EB for
larger H approaches this plateau at progressively shorter
lag times. This trend is similar to that of Δdisc

pl for the
discreteness-induced EB plateau for pure FBM, shown
in Fig. S4. Performing computer simulations at varying
values of the correlation times τ for the relatively large
Hurst exponent H = 9/10 we confirmed the universal EB
plateau within the DD-FBM model, see Fig. S7, which
is realised also (at even shorter lag times) for H = 9/10
in Fig. 6. The EB plateau for the DD-FBM model is
reached at shorter lag times also for larger Hurst expo-
nents. To make this region visible, in Fig. S8 we present
results of simulations for shorter trajectories and shorter
elementary lag-time-step used in simulations.

We observe three clear differences between the FBM
and DD-FBM models. (i) At short lag times, in the DD-
FBM model the DD-induced EB plateau (40) is differ-
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ent from the discreteness-induced residual value (33) for
FBM. Moreover, while Eq. (40) is valid for all H, the
EB of FBM approaches the plateau at H . 1/2 only. (ii)
For lag times Δ ' τ and small H values (see the results
for H = 1/100 in Fig. S9), EBDD+FBM(Δ) grows non-
monotonically in Δ and shows a minimum at Δ ≈ τ . We
quantify the position of this minimum in Fig. S9, also
verifying the minimum via examining the width of the
distributions of individual TAMSDs in Fig. S10. Near
this minimum, at intermediate lag times, EBDD+FBM(Δ)
also features a drop below the paradigmatic BM asymp-
tote (7). (iii) For long lag times, Δ � τ , EBDD+FBM(Δ)
at H < 1/2 approaches the continuous BM result, while
for 1/2 < H < 1 the FBM limit for the EB parameter
(Eq. (30)) is obtained, see Fig. 6.

To quantify inaccuracies of the numerical computation

of the means
〈
δ2(Δ)

〉
and

〈(
δ2(Δ)

)2
〉

, in Fig. S11 we

present the respective error bars versus lag time for the
computations within the DD-FBM model. We find that,
as expected, the error bars grow in magnitude at later
lag times, due to worsening statistics in the averaging.
In the plateau-like region of EBDD+FBM(Δ) versus H,
however, the error bars are small enough for us to be
confident in the existence of the plateau region itself and
of the dip in EBDD+FBM(Δ) at Δ ∼ τ for very small H
values (see Fig. 6). These features are not artifacts of
poor averaging. Moreover, the magnitude of the error
bars increases for larger exponents H, in agreement with
Eq. (39).

IV. DISCUSSION AND CONCLUSIONS

A. Summary of the main results

We considered the combination of DD dynamics [68,
88] and canonical FBM. Our main focus was to quantify
the TAMSD fluctuations naturally occurring in exper-
iments and gauged by the EB parameter. In particu-
lar, we analysed the plateau-like residual EB behaviour.
Specifically, assuming the stationarity of the diffusiv-
ity distribution, the MSD and TAMSD of the DD-FBM
model were studied. We found that the MSD and mean
TAMSD are equal for both normal and anomalous diffu-
sion in the entire range of (lag) times. For H < 1/2 we
described a crossover in the TAMSD from subdiffusion
to normal diffusion at lag times of the order of the DD
correlation time τ , Fig. 2. From this TAMSD behav-
ior, the correlation time of heterogeneous environments
featuring DD properties can potentially be extracted for
SPT data sets.

We revealed an intricate nonergodic behaviour in this
DD-FBM model. Specifically, considering long trajecto-
ries with T � τ , a crossover behaviour was found: for
short lag times, Δ � τ , the EB parameter was shown to
approach a plateau with a residual value EBpl,DD+FBM ∼
2(τ/T ), which scales linearly with the ratio of the DD

10-3 10-2 10-1 100 101 102

10-3

10-2

10-1

100

101

0.9,0.8,0.7,0.5,0.3,0.1,0.01

FIG. 6: EB parameter of the DD-FBM model as obtained
from computer simulations for varying Hurst exponents (the
values are indicated in the plot). The result for BM, Eq. (7),
is shown as the thick dashed line. The plateau value (40) and
the limiting value of EB=2 at Δ → T are the thin dashed
lines. The asymptotes of FBM at long lag times, Eq. (30),
are the dashed lines at long lag times. Parameters: τ = 0.1,
σ = 1, T = 102, DH = 1/2, and N = 103.

correlation time τ and the total measurement time T .
Conversely, for long lag times Δ � τ, EBDD+FBM(Δ)
behaved the same way as for ordinary or standard FBM,
see Fig. 6. The residual value of EBDD+FBM(Δ) was
shown to be universal for all values of the Hurst expo-
nents H.

Moreover, we demonstrated that for small values of H
the variation of EBDD+FBM(Δ) was nonmonotonic, fea-
turing a clear systematic minimum at Δ ≈ τ , see Fig. 6.
Towards the end of the trajectories, at Δ → T, we found
the expected value EB=2. When simulating standard
FBM, we found a plateau-like behaviour for EBFBM(Δ)
at H . 1/2 that scaled as the ratio of the time-step
to the total trace length and depended weakly on the
Hurst exponent, see Fig. 4. The plateau-like behaviour
of EBpl,DD+FBM and EBdisc

pl,FBM (both analytically and via
computer simulations) is the key result of the current
study. The correlation time τ in the DD and DD-FBM
models is, therefore, a fundamental time-scale for the er-
godic behaviour, similar to the single time-step in the
free discrete-time dynamics.

B. Other DD-related models

The relative standard deviation of fluctuations of in-
dividual TAMSDs (

√
EB in our notations) was ratio-
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nalised for a model of the Langevin equation with time-
dependent and fluctuating diffusivity in Ref. [81]. This
model of multiplicatively coupled Langevin equations en-
ables one to assess EB via studying the relaxation be-
haviour of the noise-coefficient matrix (or the matrix of
instantaneous diffusion coefficients). In this approach the
process B(t) =

√
2D(t) × 1 in the (multidimensional)

Langevin equation

dr/dt =
√

2D(t) × w(t) (41)

was assumed to be ergodic. The general expression for
EB was derived [81] in the continuous limit for arbi-
trary two-time-point correlation functions of the diffu-
sivity matrix. For the one-dimensional case, in the limit
of long observation times and short lag times—and, addi-
tionally, when the relaxation time of the diffusivity (de-
noted below τ1) is much longer than the lag time, the
diffusivity relaxation function ψ1(t) decays fast enough,
and the relaxation time is much shorter than the tra-
jectory length (i.e., when τ1 � Δ and τ1 � T )—the
approximate EB expression was derived as (see Eq. (33)
in Ref. [81])

EB(Δ) ≈
2
T

∫ ∞

0

ψ1(s)ds. (42)

For the simplest (and most common) situation of expo-
nential relaxation, ψ1(t) = ψ1(0)e−t/τ1 ∝ e−t/τ1 , from
(42) it follows that when the lag time is the shortest
time-scale in the problem EB saturates at

EB(Δ1) ≈ 2τ1/T. (43)

This value is identical to our predictions for the EB
plateau in the DD-FBM model, Eq. (40).

As derived in Ref. [81], for the (Markovian) two-state
diffusion model—the Kärger model [140] (see also Refs.
[141, 142] for its recent applications)—with the diffusion
coefficients D1 and D2 > D1 a dependence similar to
Eq. (43) can be obtained for the EB parameter in Ref.
[81]. Namely, for the transition rates from the state with
diffusivity D1 to the state with D2 being k12 (and vice
versa for k21), the equilibrium probabilities of the re-
spective diffusion states are p1 = k21/(k12 + k21) and
p2 = k12/(k12 + k21). The characteristic relaxation time
is

τ1,2 = 1/(k12 + k21) (44)

and in the same limit (at τ1,2 � Δ and τ1,2 � T ) EB has
the same functional dependence on τ1,2/T , that is [81]

EB(Δ1) ≈ ψ1(0) × 2τ1,2/T, (45)

where ψ1(0) = p1p2(D2 −D1)2/(p1D1 + p2D2)2 (see Eq.
(57) in Ref. [81]). These results were also confirmed by
computer simulations in Ref. [81]. The generalisation of
these EB calculations for such a dichotomic stochastic-
diffusivity model for the situation when switching be-
tween the diffusion states is governed by a power-law
distribution was developed in the same group [82, 83, 85].

The short-lag-time plateau of EB appears to be univer-
sal for the models of diffusing or fluctuating diffusivity,
also in the presence of anomalous underlying dynamics,
as we demonstrated above for the DD-FBM model. The
model of temporally fluctuating diffusivity has recently
been applied by the same group to rationalise the dy-
namic interactions between membrane-binding proteins
and lipids in model biomembranes [105]. Finally, we re-
fer the reader also to the discussion of short measure-
ment times and ”apparent” ergodicity breaking for the
two-state switching diffusion, recently presented in Ref.
[99].

C. Effects of nonequilibrium initial conditions

Finally, the TAMSD and EB results obtained and dis-
cussed above involve the stationarity of the DD distri-
bution. Nonequilibrium conditions can, however, also
be relevant. For instance, recently the MSD of the DD
model of normal diffusion with initial condition D(0) = 0
was discussed [89]. The MSD was demonstrated to be
ballistic for t � τ and linear for long times [89]. We
found in the model (8) that the mean TAMSD for the
initial condition D(0) = y(0)2 = 0 and for H = 1/2
follows

〈
δ2(Δ)

〉
= σ2τΔ +

σ2τ3

4(T − Δ)

×
(
e−2(T−Δ)/τ − e−2T/τ + e−2Δ/τ − 1

)
, (46)

see Fig. S12. This expression converges to Eq. (14) as
T → ∞ that is physically clear: the long measurement
time eliminates effects of initial conditions in this system.
The nonequilibrium initial DD conditions have no effect
on EB, also in the general case H ∈ (0, 1).

D. Conclusions

Concluding, we here highlighted the role of the cor-
relation time in the stochastic dynamics with random
diffusivities. Similar to a finite elementary time-step
in discrete-time diffusion models of free, unconstrained
motion (BM, FBM), the correlation time represents the
fundamental time-scale in the random-diffusivity dynam-
ics: for lag times shorter than this correlation time the
fluctuations of the TAMSDs reach a finite asymptotic
spread, i.e., a finite residual value of the ergodicity break-
ing parameter EB. This effect is expected to be relevant
for modern high-resolution singe-particle-tracking exper-
iments, to be considered in the data analysis. It will
be interesting to analyse whether nonergodic anomalous-
diffusion processes will exhibit similar features.
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Appendix A: TAMSD of the DD-FBM model

Here, we present the details of the TAMSD calculations
for the DD-FBM model, applicable for all values of the
Hurst exponent H. Starting from the TAMSD definition
(3),
〈
δ2(Δ)

〉

=

∫ T−Δ

0
[
〈
x2(t + Δ)

〉
+
〈
x2(t)

〉
− 2 〈x(t + Δ)x(t)〉]dt

T − Δ
,

(A1)

and using the MSD (15), we have

〈
x2(t + Δ)

〉
= 4

∫ t+Δ

0

(t + Δ − s12)G(s12)ds12. (A2)

Next, we compute the position autocorrelation function
with

s12 = |s1 − s2| (A3)

and G(s12) defined in Eq. (12) as

〈x(t + Δ)x(t)〉 = 2
∫ t+Δ

0

ds1

∫ t

0

ds2G(|s1 − s2|)

=2
∫ t

0

(t − s12)G(s12)ds12 + 2
∫ t+Δ

0

(t − s12)G(s12)ds12

+2
∫ Δ

0

s12G(s12)ds12 + 2
∫ t+Δ

Δ

ΔG(s12)ds12. (A4)

Substituting (A4) into (A1) we get Eq. (15), namely

〈
δ2(Δ)

〉
=

4
T − Δ

∫ T−Δ

0

[∫ Δ

0

(Δ − s12)G(s12)ds12

]

dt

=4
∫ Δ

0

(Δ − s12)G(s12)ds12 =
〈
x2(Δ)

〉
. (A5)

Appendix B: EB for the DD-FBM model at H = 1/2

For H = 1/2 the second moment of the TAMSD (after
splitting the integrals into two parts),

〈(
δ2(Δ)

)2
〉

=
1

(T − Δ)2

∫ T−Δ

0

dt1

∫ T−Δ

0

dt2

×
〈
(x(t1 + Δ) − x(t1))

2 (x(t2 + Δ) − x(t2))
2
〉

=
2

(T − Δ)2

∫ T−Δ

0

dt1

∫ t1

0

dt2

×
〈
(x(t1 + Δ) − x(t1))

2 (x(t2 + Δ) − x(t2))
2
〉

, (B1)

is the most challenging quantity to compute. Using the
Isserlis-Wick theorem for Gaussian processes with zero
mean,

〈x(t1)x(t2)x(t3)x(t4)〉 = 〈x(t1)x(t2)〉 〈x(t3)x(t4)〉

+ 〈x(t1)x(t3)〉 〈x(t2)x(t4)〉 + 〈x(t1)x(t4)〉 〈x(t2)x(t3)〉 ,
(B2)

we expand all higher-order correlators via the pair corre-
lators to get

〈
(x(t1 + Δ) − x(t1))

2 (x(t2 + Δ) − x(t2))
2
〉

=

{
4A1(t1, t2), t2 ≤ t1 − Δ

4(A1(t1, t2) + 2A2(t1, t2)), t2 ≥ t1 − Δ
, (B3)

where

A1(t1, t2) =
∫ t1+Δ

t1

ds1

∫ t2+Δ

t2

ds2 〈D(s1)D(s2)〉 , (B4)

A2(t1, t2) =
∫ t2+Δ

t1

ds1

∫ t2+Δ

t1

ds2 〈D(s1)D(s2)〉 , (B5)

〈D(s1)D(s2)〉 =
σ4τ2

4

(
1 + 2e−2|s1−s2|/τ

)
. (B6)

To evaluate the integral (B1), we split the consideration
into two cases, 0 < Δ < T/2 and T > Δ > T/2, that
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yields
〈(

δ2(Δ)
)2
〉

0<Δ<T/2

=
8

(T − Δ)2

[∫ T−Δ

Δ

dt1

∫ t1−Δ

0

dt2A1(t1, t2)

+
∫ Δ

0

dt1

∫ t1

0

dt2(A1(t1, t2) + 2A2(t1, t2))

+
∫ T−Δ

Δ

dt1

∫ t1

t1−Δ

dt2(A1(t1, t2) + 2A2(t1, t2))

]

(B7)

and
〈(

δ2(Δ)
)2
〉

T>Δ>T/2

=
8

(T − Δ)2

∫ T−Δ

0

dt1

∫ t1

0

dt2 (A1(t1, t2) + 2A2(t1, t2)) .

(B8)

Combining Eqs. (B4), (B7), (B8) with Eq. (6), we
straightforwardly obtain the EB expressions of Eqs. (23)
and (25) in the main text.

Appendix C: EB for ordinary FBM

Here, we analyse the discrepancy between the theory
and simulations of the EB parameter for FBM at short
lag times, Δ � T , arising from a discrete-time scheme
employed in our simulations. Specifically, the TAMSD at
the discrete points

Δn = n × δt (C1)

is
〈(

δ2 (Δn)
)2
〉

=

δt2

(T − n × δt)2

〈
T/δt−n∑

i=1

(
x(ti + n × δt) − x(ti)

)2

×
T/δt−n∑

j=1

(
x(tj + n × δt) − x(tj)

)2
〉

. (C2)

Using the Isserlis-Wick theorem (B2), from (C2) we get—
as obtained initially in Eq. (A2) of Ref. [40]—that

〈(
x(ti + Δn) − x(ti)

)2(
x(tj + Δn) − x(tj)

)2〉

= 4D2
HΔ4H

n +
4D2

H

2

(
|ti − tj − Δn|

2H

−2|ti − tj |
2H + |ti − tj + Δn|

2H
)2

, (C3)

where ti − tj = (i− j)× δt. From Eqs. (6) and (C2), the
EB parameter for this discrete-time FBM scheme can be

expressed as

EBdisc
FBM(Δn) =

2δt

T − n × δt
+

δt2

(T − n × δt)2n4H

×

T
δt−n−1∑

k=1

(
|k − n|2H + |k + n|2H − 2k2H

)2
(

T

δt
− n − k

)

.

(C4)

At k � n, using the Taylor expansion

|k − n|2H + |k + n|2H − 2k2H ≈ 2H(2H − 1)k2H(n/k)2,
(C5)

one can show that for the case H > 3/4 the second term
in Eq. (C4) dominates. The sum in this term can be
approximated by a continuous integral so that

EBdisc
FBM(Δn) ∼ C2 × (T/Δn)4H−4

, (C6)

both for n = 1 or n � 1, that coincides with Eq. (27),
see also Fig. 4. At Δ1 = δt and at H = 0 from Eq.
(C4) we obtain expression (34) in the main text, while at
H = 1 one gets

EBFBM(Δ) = 2. (C7)

For the Hurst exponents 0 < H . 1/2 the first term
in expression (C4) dominates and at Δ1 = δt one gets
the approximate expression (36). We checked these the-
oretical EB predictions at Δ1 = δt versus FBM-based
computer simulations in Fig. 5. From Eq. (C4) we also
find that at Δ1 = δt for H = 1/2 the EB parameter is

EBdisc
FBM(Δ1) ∼ 2/(N − 1). (C8)

For the case 0 < H < 3/4 in the limit n � 1 via ap-
proximating the sum in Eq. (C4) by a continuous integral
we obtain

EBdisc
FBM(Δn) ∼

2
T/δt − n

+
n × C1(H)
T/δt − n

. (C9)

For H < 3/4 at n = 1 the sum is approximated by the
leading term (at H < 1/2 only one term is enough).
This ansatz works well for small Hurst exponents, while
as H →3/4 a progressively larger number of terms is to
be accounted in the sum for an adequate approximation
for the EB parameter. The condition of equality of the
first and second term in Eq. (C9) provides a rough, H-
independent estimate for the lag time, see Eq. (37) in
the main text and Eq. (C10) below, below which the
plateau-like, ”saturation” behaviour of EBdisc

FBM(Δ) is ex-
pected to occur. The analytical threshold for this lag
time given by Eq. (37) is plotted in Fig. S4 versus H

and shows that longer saturating regimes of EBdisc
FBM(Δ)

emerge for smaller H values, consistent with the results
of our simulations, as presented in Fig. 4.

In reality, however, the situation is more involved. If
the plateau of EB persists in simulations for a long lag
time, the first term in Eq. (C9) is typically much larger
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than the second one. This scenario is realised in the
region 0 < H < 1/2 for Δ = Δ1. When the Hurst
exponent increases and as H → 3/4 the two terms in
Eq. (C9) become comparable in magnitude. Technically,
based on Eq. (14) and Fig. 1 of Ref. [40] both illustrating
the behaviour of the coefficient C1(H) versus H, we find
that equating the two terms in expression (C9) yields in
this discrete-time scheme the following condition for the
lag time

Δdisc
pl (H)

δt
=

Δn

δt
≈

2
C1(H)

. (C10)

This gives a universal, δt-independent condition for the
critical lag-time value below which the EB plateau is re-
alised. The value of the Hurst exponent via C1(H) fully
controls the EB plateau existence and the lag-time-range
over which it persists. Therefore, if

C1(H) & 2 (C11)

a plateau of EBdisc
FBM(Δ) is expected for lag times shorter

than the elementary time step, at Δ < δt. This effect
is thus ”undetectable” in our simulations (see Fig. 4).
The condition (C11) is satisfied for large Hurst exponents
1 > H > 3/4 and also for

0.64 ≈ Hpl < H < 3/4 (C12)

in the region of small H (with H =3/4 being the tran-
sition point between ”large” and ”small” H values).
The shaded region in Fig. S4 demarcates the plateau-
containing region of the EB behaviour for canonical
FBM. Therefore, in the framework of this discrete-time
FBM scheme we conclude using (C10) that at short lag
times no plateau of EBdisc

FBM(Δ) is expected for the Hurst
exponents in the range 1 > H & Hpl. This theoretical
expectation is supported by the results of our computer
simulations presented in Fig. 4.

Appendix D: Supplementary figures

Below, we include additional figures supporting the
claims presented in the main text.

FIG. S1: Correlator of the diffusion coefficients (18), as pre-
dicted theoretically [132] and calculated from simulations,
computed for the same parameters as in Fig. 2.

0 0.2 0.4 0.6
0

1

2

3

4

5

6

FIG. S2: Variation of C1(H) computed via numerical integra-
tion of (31) (blue curve) and results of analytical calculations
(red dots). The latter yield C1(H) ∝ 4π2H2 as the leading-
order expansion for (very) small H and the following values for

some representative H values: C1(1/8) =
8(3

√
2−4) Γ(5/4)2

3
√

π
≈

0.30, C1(1/6) =
11(21/3−1)

√
π Γ(7/3)

8Γ(17/6)
≈ 0.44, C1(1/4) =

log(2) ≈ 0.69, C(1/3) =
27(2−22/3)

√
π Γ(11/3)

80 Γ(13/6)
≈ 0.91,

C1(3/8) =
√

π
2

Γ(7/4)
Γ(9/4)

≈ 1.02, C1(1/2) = 4/3 ≈ 1.33,

C1(5/8) =
(3+

√
2)

√
π

2
√

2

Γ(9/4)
Γ(11/4)

≈ 1.95.
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0.7 0.72 0.74 0.76 0.78 0.8
100

101

102

FIG. S3: Detailed variation of the normalised EB parameter
near the critical point H = 3/4. Notations for the curves are
the same as in Fig. 5: the results of computer simulations
of FBM equation (8) are the filled symbols, the results of
numerical integration of Eq. (11) of Ref. [45] are the solid
curves, the approximate analytical results of Eq. (12) of Ref.
[45] are the asterisks and the results of the continuous-time
infinite-trajectory-length theory of EB for FBM [40] are the
dashed lines. All symbols and lines have the respective colours
for varying lengths of the trajectory (see the legend). Other
parameters are: Δ1 = 10−3 and DH = 1/2.

0 0.2 0.4 0.6
10-4

10-3

10-2

10-1

100

FIG. S4: Variation of Δdisc
pl for the FBM model, as ob-

tained from Eq. (37). The Hurst exponent Hpl ≈ 0.64 from
Eq. (C12) and the value of δt are the dotted lines defining
the region of existence of a plateau-containing behaviour of
EBFBM(Δ). Parameters: DH = 1/2, T = 102, and δt = 10−3.

10-6 10-4 10-2 100

10-5

100

0.99,0.9,0.8,0.7,0.5,0.3,0.1,0.01

FIG. S5: EBFBM(Δ) is illustrated for the same parameters
and the same meaning for the asymptotes as in Fig. 4, except
a smaller time-step (δt = 10−6) and shorter trace length (T =
10) were used here.

10-3 10-2 10-1 100 101 102
10-5

10-4

10-3

10-2

10-1

100

101

0.1,1,10

FIG. S6: Numerical EB parameter of the DD-FBM process
plotted versus the lag time for different DD correlation times,
τ . For Δ � τ the curves approach the plateau value 2τ/T
(thin dashed lines). The thick dashed line is the BM asymp-
tote (7). Parameters: H = 1/5, σ = 1, DH = 1/2, T = 102.
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10-3 10-2 10-1 100 101 102
10-3

10-2

10-1

100

101

0.1,1,10,20

FIG. S7: Results of stochastic simulations for the
discreteness-induced plateau for EBpl,DD+FBM for varying
correlation times (as indicated in the plot). The dashed lines
correspond to Eq. (40). Parameters: H = 9/10, T = 102.

10-6 10-4 10-2 100

10-2

10-1

100 0.9,0.8,0.7,0.5,0.3,0.1,0.01

FIG. S8: EB parameter for the DD-FBM model, computed
for shorter trajectories (T = 101) and shorter lag-time steps
used in simulations (δΔ = 10−6), for τ = 10−1. The colour-
scheme for the curves and the meaning of the asymptotes are
as in Fig. 6.

10-3 10-2 10-1 100 101 102
10-5

10-4

10-3

10-2

10-1

100

101

 0.01,0.1,1

FIG. S9: EB for the DD-FBM model obtained by simulations
for different values of the DD correlation time τ . The thin
dashed lines is the plateau value (40), while the thick dashed
line is the EB result for BM, Eq. (7). Parameters: H = 1/100,
T = 102.

0.4 0.6 0.8 1 1.2 1.4 1.6
10-4

10-2

100

102

0.01,0.1,1

FIG. S10: Distributions of individual TAMSDs obtained
in our simulations that verify the nonmonotonicity of
EBDD+FBM(Δ) with the lag time shown in Figs. 6 and S9.
Parameters: H = 1/100, τ = 0.1, σ = 1, T = 102.
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10-3 10-2 10-1 100 101 102
10-3

10-1

101

103

105

10-3 10-2 10-1 100 101 102
10-8

10-6

10-4

10-2

100

102

104

10-3 10-1 101 102
10-14

10-9

10-4

101

106

FIG. S11: Error bars for the second and fourth moments
of the displacement (used for computation of EB, Eq. (6))
as obtained from our computer simulations. The bars are
symmetric about the means (asymmetric in log-log scale). For
error bars larger than the mean only the values above the
mean are shown in logarithmic scale. Parameters are the same
as in Fig. 6 and H=1/100, 1/2, and 9/10 (for the graphs from
top to bottom, respectively).

FIG. S12: Numerical MSD (filled green circles), analytical
MSD (black solid line) and TAMSD (blue solid line), as well as
the individual TAMSDs (red curves) for the DD-FBM model
with nonequilibrium initial conditions, namely D(0) = 0. Pa-
rameters: H = 1/2, τ = 1, σ = 1, DH = 1/2, T = 102.
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[3] A. Einstein, Über die von der molekularkinetischen The-
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[76] J. Ślezak and S. Burov, From diffusion in com-
partmentalized media to non-Gaussian random walks,
arXiv:1909.11395 (2019).

[77] R. Jain and K. L. Sebastian, Diffusion in a crowded,
rearranging environment, J. Phys. Chem. B 120, 3988
(2016).

[78] R. Jain and K. L. Sebastian, Diffusing diffusivity: a new
derivation and comparison with simulations, J. Chem.
Sci. 126, 929 (2017).

[79] R. Jain and K. L. Sebastian, Diffusing diffusivity: frac-
tional Brownian oscillator model for subdiffusion and its
solution, Phys. Rev. E 98, 052138 (2018).

[80] N. Tyagi and B. J. Cherayil, Non-Gaussian Brown-
ian diffusion in dynamically disordered thermal environ-
ments, J. Phys. Chem. B 121, 7204 (2017).

[81] T. Uneyama, T. Miyaguchi, and T. Akimoto, Fluctu-

Page 18 of 20AUTHOR SUBMITTED MANUSCRIPT - JPhysA-113867.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



19

ation analysis of time-averaged mean-square displace-
ment for the Langein equation with time-dependent and
fluctuating diffusivity, Phys. Rev. E 92, 032140 (2015).

[82] T. Miyaguchi, T. Akimoto, and E. Yamamoto, Langevin
equation with fluctuating diffusivity: A two-state model,
Phys. Rev. E 94, 012109 (2016).

[83] T. Akimoto and E. Yamamoto, Distributional behav-
iors of time-averaged observables in the Langevin equa-
tion with fluctuating diffusivity: Normal diffusion but
anomalous fluctuations, Phys. Rev. E 93, 062109
(2016).

[84] T. Miyaguchi, Elucidating fluctuating diffusivity in
center-of-mass motion of polymer models with time-
averaged mean-square-displacement tensor, Phys. Rev.
E 96, 042501 (2017).

[85] T. Miyaguchi, T. Uneyama, and T. Akimoto, Brow-
nian motion with alternately fluctuating diffusivity:
stretched-exponential and power-law relaxation, Phys.
Rev. E 100, 012116 (2019).

[86] T. Uneyama, T. Miyaguchi, and T. Akimoto, Relax-
ation functions of the Ornstein-Uhlenbeck process with
fluctuating diffusivity, Phys. Rev. E 99, 032127 (2019).

[87] A. G. Cherstvy, and R. Metzler, Anomalous diffusion in
time-fluctuating non-stationary diffusivity landscapes,
Phys. Chem. Chem. Phys. 18, 23840 (2016).

[88] A. V. Chechkin, F. Seno, R. Metzler, and I. M. Sokolov,
Brownian yet non-Gaussian diffusion: from superstatis-
tics to subordination of diffusing diffusivities, Phys. Rev.
X 7, 021002 (2017).

[89] V. Sposini, A. V. Chechkin, F. Seno, G. Pagnini, and
R. Metzler, Random diffusivity from stochastic equa-
tions: comparison of two models for Brownian yet non-
Gaussian diffusion, New J. Phys. 20, 043044 (2018).

[90] V. Sposini, A. V. Chechkin, and R. Metzler, First pas-
sage statistics for diffusing diffusivity, J. Phys. A 52,
04LT01 (2019).
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