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Abstract. In this work it is argued that in order to improve our understanding of gravity
and spacetime our most successful theory, general relativity, must be destructured. That is,
some geometrical assumptions must be dropped and recovered just under suitable limits. Along
this line of thought we pursue the idea that the roundness of the light cone, and hence the
isotropy of the speed of light, must be relaxed and that, in fact, the shape of light cones must
be regarded as a dynamical variable. Mathematically, we apply some important results from
affine differential geometry to this problem, the idea being that in the transition we should
preserve the identification of the spacetime continuum with a manifold endowed with a cone
structure and a spacetime volume form. To that end it is suggested that the cotangent indicatrix
(dispersion relation) must be described by an equation of Monge-Ampère type determining a
hyperbolic affine sphere, at least whenever the matter content is negligible. Non-relativistic
spacetimes fall into this description as they are recovered whenever the center of the affine
sphere is at infinity. In the more general context of Lorentz-Finsler theories it is shown that
the lightlike unparametrized geodesic flow is completely determined by the distribution of light
cones. Moreover, the transport of lightlike momenta is well defined though there could be no
notion of affine parameter. Finally, we show how the perturbed indicatrix can be obtained from
the perturbed light cone.

1. Introduction
In this work we are going to present some recent results on anisotropic gravity theories obtained
in [1,2]. Although, ultimately the theory is of Lorentz-Finsler type we wish to introduce it from
a different angle, emphasizing the role of affine differential geometry in its development.

The author was motivated by some general ideas and principles on how Physics should be
expected to evolve. The history of Physics is intimately connected with that of Geometry and
more, broadly, with that of Mathematics. With the work of Albert Einstein we learned that
the gravitational phenomena are manifestations of a dynamical metric manifold. The special
relativistic spacetime had to be replaced by a more dynamical structure which broke the, at the
time undisputed, property of translational invariance.

Similarly, if our not so humble aim is that of trying to anticipate the next physical revolution,
it seems a good idea to look for other tacit “rigidity” assumptions and to work to relax them.
Some authors have focused on the topology of the manifold. Since one of the main goals
remains the unification of the gravitational dynamics with that of quantum fields, and since
the latter display peculiar phenomena of quantization in the observables, it has been suggested
that, perhaps, the hidden assumption which has to be removed is contained in the very use of
differentiable manifolds. Some authors suggested that manifolds should be replaced by graphs,
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since graphs, being by their very nature quantized, are philosophically compatible with the hints
coming from the quantum work. The most notable program in this direction is that of “Causal
Set Theory”, for which the spacetime manifold, with its causal structure is replaced by a directed
graph [3]. The directed links provide a primitive notion of causality.

Although we shall not be concerned with quantum gravity, we wish to mention Causal Set
Theory because it recognizes that two spacetime ingredients of general relativity should be
preserved in the transition to the quantum world. They are the notion of causality and the
notion of spacetime volume. There are good reason to do so; reasons that might be better
understood by briefly recalling the geometrical assumptions behind general relativity.

We recall that in general relativity the spacetime is modeled by a Lorentzian time-oriented
manifold (M, g). At each even x ∈M we have a Lorentzian bilinear form on TxM as in special
relativity

gx = −(y0)2 + (y1)2 + (y2)2 + (y3)2.

where {yµ} are coordinates induced on TxM by the local coordinates {xµ} on M .

Figure 1. Light cone and velocity
space in special and general relativity.

The cone of timelike vectors is, see Fig. 1,

Ω = {y : gx(y, y) < 0, y0 > 0}

The set of lightlike vectors is

∂Ω = {y : gx(y, y) = 0, y 6= 0}

The velocity space of massive particles/observers is

H = {y : gx(y, y) = −1}.

This is the usual hyperboloid. As a consequence on
spacetime we have a distribution x → Ωx of timelike
cones and a distribution x→ Hx of hyperboloids.
A curve x : t 7→ x(t) is

• Timelike: if g(ẋ, ẋ) < 0, (massive particles ),

• Lightlike: if g(ẋ, ẋ) = 0, (massless particles).

It is causal if at every point it is timelike or lightlike. The proper time of a massive particle is

τ =

∫
x(t)

√
−g(ẋ, ẋ)dt.

A simple algebraic results tells us that any Lorentzian bilinear form is almost completely
characterized by its light cone [4, App. D].

Proposition 1.1. On a vector space of dimension n ≥ 3 two Lorentzian bilinear forms η1, η2
are proportional if and only if they have the same timelike cone Ω.

Ω1 = Ω2 ⇔ ∃a ∈ R : η1 = a2η2.

Since the volume form induced by the bilinear form is
√
−det η dy0 ∧ · · · ∧ dyn we have

Corollary 1.2. On a vector space of dimension n ≥ 3 two Lorentzian bilinear forms η1, η2
coincide if and only if they share the same timelike cone and they induce the same volume form.

So, introducing the x-dependence of general relativity we arrive at
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Corollary 1.3. Two spacetime metrics g1 and g2 coincide if and only if they induce the same
distribution of timelike cones x→ Ωx and the same volume form dµ =

√
−det g dx0 ∧ · · · ∧dxn.

The distribution of light cones defines the causal relation

J = {(x, y) ∈M2 : x = y or there is a future directed causal curve from x to y}

so as a minimal requirement the transition from the non-quantum to the quantum world must
preserve the notions of causal relation and spacetime volume. Causal Set Theory has this feature.
The spacetime volume is obtained from the number of vertices of the graph while the causal
relation is obtained from the direction of the links. While we share the opinion that the pair

spacetime measure + causal order

is central and must be preserved we do not believe that the transition to the quantum world
could be accomplished in one big step, by working directly with discretized objects such as
graphs. In a sense, it would be like pretending to do Quantum Mechanics by working with the
spectra of operators. In Quantum Mechanics the discretized features are a byproduct of the
operator theory in Hilbert spaces, so the mathematics must evolve into something richer rather
than simpler.

Furthermore, in this work we do not ask: what are the physical quantum theories which
accommodate reasonable concepts which can be interpreted as causal relation and spacetime
volume. Rather we stay in the non-quantum world and ask: what is the most general non-
quantum theory which embodies these notions? So we are really looking for non-quantum
modifications of general relativity.

Figure 2. Usual light cones are round.

In order to ask this question we have to
look for some “rigidity” assumption, with the
idea of dropping it. We shall focus on the
rigidity assumption that light cones are round,
namely have ellipsoidal sections, see Fig. 2. So
the new dynamical variable will be the shape
of the light cones. Since they are no more
round, the speed of light in our theory could
be (slightly) anisotropic.

We have seen that the distribution of light
cones in general relativity determines the met-
ric up to a conformal factor. Moreover, un-
parametrized lightlike geodesics are confor-
mally invariant so the specification of the light
cone distribution fixes the motion of massless
particles. There is reasonable hope that a
distribution of non-isotropic light cones (not
to count the specification of a volume form)
could fix the motion of massless particles,
namely a notion of lightlike geodesics (we shall see that this is indeed the case, cf. Sec. 3.3).

However, on spacetime we have also the massive particles. Since in general relativity the
metric gets determined from the cone distribution and the spacetime volume, so does the
hyperboloid H inside the timelike cone. In the anisotropic theory from the same ingredients
we don’t get a bilinear form on TxM and so we don’t get a velocity space for massive particles.

Here comes the main idea of our work on this problem: to use affine differential geometry
to show that there is, in fact, a privileged hypersurface inside the timelike cone which, in the
end, can be successfully interpreted as velocity space. So, let us recall some elements of affine
differential geometry.
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2. Affine differential geometry
Affine differential geometry was developed by Wilhelm Blaschke and his school in the first half
of the XX century when he realized that non-degenerate (e.g. convex) hypersurfaces admit a
natural notion of transverse. So let E be an affine space modeled on a n+ 1-dimensional vector
space V endowed with a volume form ω. We stress that we don’t have any scalar product on
V and so no notion of angle or orthogonality. In order to fix the ideas let us consider a convex
hypersurface S, namely a hypersurface bounding a strongly convex set.

Figure 3. Geometrical construction of the
affine normal.

Let us pick a point p ∈ S and let us
consider the plane P tangent to p and its
translates Pt, P0 = P , where t is a parameter.
For every t the plane Pt cuts the hypersurface
and selects a compact sector Qt of finite
volume inside S, see Fig. 3. The notion of
barycenter (centroid) is affine, namely it is
well defined in any affine space. So let Gt be
the centroid of Qt. As t → 0 the point Gt
draws a curve which ends at G0 = p. The
tangent to the curve at p selects a special
direction, which is the direction of the affine
normal. Of course, should V be endowed with
a scalar product, the Euclidean normal need
not coincide with the affine normal, though
this turns out to be the case for spheres.

Formally, the immersion is denoted f : N → E, where S = f(N). Next, though one does not
know the privileged transverse one chooses one ξ : N → V , so that ξ(x) is transverse to S at
f(x). This choice allows one to split the derivatives, so for X,Y ∈ TN we have, denoting with
D the natural derivative one E

Df∗(X)f∗(Y ) = f∗(∇XY ) + h(X,Y )ξ, (Gauss equation)

Df∗(X)ξ = −f∗(S(X)) + τ(X)ξ. (Weingarten equation)

which are used to define a torsionless connection ∇, a metric h, an endomorphism S and a
one-form τ on N . Here the transverse field is determined by n+ 1 arbitrary parameters, so we
shall need n+ 1 conditions to fix it.

Observe that the affine space has two natural structures, namely the torsionless (flat)
connection D and the volume form ω which share the compatibility condition Dω = 0 (the
volume form is translationally invariant). So, one wants the same properties to hold on N
where on this manifold we have already identified a torsionless connection ∇, while the volume
form can be defined through θ = f∗(iξω). By imposing the (equiaffine) condition ∇θ = 0 we
remove some of the arbitrariness which resides in the choice of transverse ξ (we are imposing n
equations, since the derivative takes n-directions). It turns out that this condition is equivalent
to τ = 0. A manifold endowed with a pair (∇, θ) satisfying the condition ∇θ = 0 is called
equiaffine space. Its connection ∇ has necessarily a symmetric Ricci tensor. The notion of
equiaffine space generalizes that of affine space with translationally invariant volume form.

Actually, here we can really define the volume form following a different route, namely, for
any θ-positively oriented n-tuple, set

θ′(X1, · · · , Xn) = | deth(Xi, Xj)|1/2.

So the remaining condition demands that there should be no ambiguity in the definition of
volume, that is θ′ = θ. In this way ξ is fixed unambiguously to the affine (Blaschke) normal,
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and so we obtain, as a consequence, the affine volume form θ, the affine connection ∇, the affine
metric h, and the affine shape operator S.

From a privileged transverse direction we can introduce an important concept. Indeed,
suppose that the transverse directions meet at the same point, see Fig. 4. Then the hypersurface
is called affine sphere and the point of convergence is the center of the sphere.

Figure 4. The definition of affine sphere.

It turns out that the are just three types
of affine spheres: (a) the improper spheres,
for which the the center is at infinity, namely
all the privileged transverse directions are
parallel, (b) the (proper) elliptic spheres, for
which the center is inside the convex set
bounded by the hypersurface, and (c) the
(proper) hyperbolic spheres, for which the
center is outside the convex set bounded
by the hypersurface. Some deep theorems
from affine differential geometry assure that
the improper affine spheres are just the
paraboloids while the elliptic affine spheres are
just the ellipsoids.

What about the hyperbolic affine spheres?
Eugenio Calabi [5] in 1971 conjectured that
they are much more abundant, and that, in
fact, up to homotheties there is a one-to-one correspondence between open sharp convex cones
and hyperbolic affine spheres. Namely, every hyperbolic affine sphere is asymptotic to an open
sharp convex cone and every such cone contains, up to homotheties, a unique hyperbolic affine
sphere asymptotic to it, see Fig. 5. Calabi’s conjecture was proved by Cheng and Yau in 1977,
some steps being clarified by other mathematicians.

Figure 5. Calabi’s conjecture.

Suppose that we have been given on
E a centroaffine hypersurface, namely a
hypersurface transverse to the half-lines
starting from some point o ∈ E. It is
convenient to regard E as a vector space
V with origin in o, to introduce linear
coordinates {yα} over V in such a way that
the hyperplane y0 = 0 does not intersect
the closure of the cone generated by the
hypersurface and o, saved for the origin.
Moreover, it is convenient to parametrize the
hypersurface using Klein’s type coordinates
(vi = yi/y0) and regard the hypersurface as
the embedding

f : v 7→ y(v) = − 1

u(v)
(1,v)

so that N = D ⊂ Rn. Then the hypersurface is an affine sphere if u is convex, vanishes at the
boundary of the convex set D and

detuij =

(
−1

u

)n+2

, u|∂D = 0, (affine sphere equation). (1)

Here n is the affine sphere dimension (we shall be interested in n = 3). The mathematical
problem was precisely that of showing that this equations admits one and only one solution.
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3. Physical interpretation
Now, we return to our physical problem. We needed a special hypersurface inside the non-round
light cone so as to assign to it the role of velocity space of the observer. Our idea is now to let
it coincide with the affine sphere of the light cone. In this way the distribution of light cones
determines the velocity space of the observer, and hence the dispersion relation.

Observe that the coordinates {yα} can be fixed as follows: first we choose a timelike direction
and choose the y0-axis along it, then the other axes are chosen so that the hyperplane y0 = 1
is tangent to the hypersurface and the affine metric h is the identity at y = (1, 0, · · · , 0). The
coordinates, up to rotation of the space coordinates {yi} are uniquely determined by the choice
of timelike direction and are called observer coordinates relative to the observer selected by
that direction. The coordinates v defined through vi = yi/y0 are nothing else, in our physical
interpretation, than the velocity of the particle as seen from the observer, while the domain D
is nothing but the (observer dependent) shape of the domain of allowed velocities for massive
particles. The remarkable fact is that the variables which most simplify the affine sphere PDE
are precisely the variables which have physical meaning.

In our theory u is nothing but the classical Lagrangian for the particle (per unit mass).
For instance, whenever the domain D is isotropic the solution of the Monge-Ampére equation is
u = −

√
1− v2, so that we recover the general relativistic kinematical space from the assumption

of light speed isotropy. It turns out that in observer coordinates the function u has always the
expansion

u = −1 + 1
2v

2 + o(v2),

which is an equivalent form of expressing the fact that we are in observer coordinates.
Furthermore, the Legendre transform u∗(p) represents the classical Hamiltonian (per unit mass)
for the theory and in observer coordinates it admits the expansion

E(p) = u∗(p) = 1 + 1
2p

2 + o(p2),

it can be shown that p 7→ (−u∗(p),p) is an affine sphere dual to that on velocity space with
which we worked so far.

It can be observed that we have obtained the velocity space on E = TxM by regarding it as
an affine space endowed with a translationally invariant volume form and by assuming to have
been given a timelike cone Ωx on TxM centered at 0. In order to have a translationally invariant
volume form at each event we need a volume form on spacetime. So our spacetimes which we
term affine sphere spacetimes can be equivalently characterized by two properties, namely as
(a) a distribution of affine spheres with center in the zero section of TM or as (b) a pair given
by a spacetime volume and a cone distribution. Thanks to the latter characterization the affine
sphere spacetimes reflect the notions of measure and order, precisely the sort of objects we were
looking for. Actually, there is a third characterization which will be mentioned in the next
section.

3.1. Lorentz-Finsler geometry
In this section we clarify that our theory is a special type of Lorentz-Finsler theory.

In Finslerian generalizations of general relativity the spacetime is a n+1-dimensional manifold
endowed with a Finsler Lagrangian L : Ω→ R, Ω ⊂ TM\{0}, where Ω is an open sharp convex
cone subbundle of the slit tangent bundle, L is positive homogeneous of degree two, that is
∀s > 0, y ∈ Ωx, L (x, sy) = s2L (x, y), L is negative on Ω and converges to zero at the
boundary ∂Ω, and finally, the fiber Hessian gµν = ∂2L /∂yµ∂yν is Lorentzian. We shall not
demand L to be differentiable at the boundary ∂Ω, namely we adopt the rough model discussed
in [6]. The set Ωx represents the set of future directed timelike vectors at x ∈M .
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The indicatrix Ix ⊂ Ωx is the locus where 2L = −1 and it represents the velocity space
of observers (this is the usual hyperboloid in general relativity). By positive homogeneity the
Finsler Lagrangian can be recovered from the indicatrix as follows, for y ∈ Ωx

L (x, y) = −s2/2, where s is such that y/s ∈ Ix. (2)

By positive homogeneity the formulas L = 1
2gµνy

µyν , ∂L
∂yµ = gµνy

ν , hold true, where the metric
might depend on y. If it is independent of y then we are in the quadratic case which corresponds
to Lorentzian geometry and general relativity. The Cartan torsion is Cµνα = 1

2
∂
∂yα gµν . It is

symmetric and annihilated by yµ. The mean Cartan torsion is its contraction

Iα := gµνCµνα =
1

2

∂

∂yα
log | det gµν |. (3)

In a series of recent works we have stressed the importance of the Lorentz-Finsler spaces for
which Iα = 0, see [1, 7, 8]. They are precisely the affine sphere spacetime which we met before.
Observe that the condition Iα = 0 implies that we have a well defined volume form on M given
by the standard expression dµ = |det gµν |1/2dx0 ∧ · · ·dxn. In general Lorentz-Finsler spaces
there is no such volume form.

For a long time it was believed that Finslerian spacetimes which satisfy Iα = 0 are not
interesting. In fact a theorem by Deicke establishes that Finsler spaces which satisfy this property
are Riemannian and so trivial. Previous researchers did not pay much attention to the signature
of the metric. In the spacetime case Deicke’s theorem does not really hold, in fact we can prove
that the condition Iα = 0 is really equivalent to the fact that the indicatrix is a hyperbolic affine
sphere centered in the zero section.

The proof passes through the following symmetric tensor on N (Pick cubic form, the 1
2 factor

is due to a better correspondence with Finslerian objects)

c(X,Y, Z) =
1

2
[(∇Xh)(Y, Z) + τ(X)h(Y,Z)]. (4)

which in the context of Finsler geometry one evaluates on the indicatrix with respect to the
centroaffine normal y (which is equiaffine, namely τ = 0). It turns out that under the pullback
of the immersion f , C corresponds to c and its trace I corresponds to trhc, so I = 0 if and only
if trhc = 0. But the latter condition together with τ = 0 really implies that y is proportional to
the Blaschke normal, so that the affine normal directions meet at o and hence the indicatrix I
is an affine sphere.

So I = 0 if and only if the indicatrix is an affine sphere centered at the origin of the tangent
space TxM . Once we have the indicatrix we can recover the Finsler Lagrangian from (2) which
means that all the metrical properties follow from the indicatrix and hence from the light cone.
The relationship between the classical Lagrangian u and the Finsler Lagrangian L is given by

L ((y0,y)) = −1

2
(y0)2u2(y/y0), (5)

u(v) = −
√
−2L ((1,v)). (6)

A remarkable fact concerning the concept of affine sphere spacetime is that it embodies in
a nice way the non-relativistic limit [1]. In fact, non-relativistic spacetimes admit the same
description of (relativistic) affine sphere spacetimes: the cotangent indicatrix is determined
by a distribution of affine spheres which, in the non-relativistic case, have center at infinity.
This result is connected with a theorem due to Jörgens, Pogorelov, Calabi, Cheng and Yau that
establishes that these improper affine spheres are paraboloids. The algebraic ingredients entering
the definition of paraboloid define a one-form field dt, the classical time, and a space metric on
its kernel, precisely the geometric ingredients needed to express the geometry of non-relativistic
spacetimes [9].
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3.2. Relativistic invariance
In [2] we have argued that the relativity principle holds at an event x if a linear subgroups of
the endomorphisms of TxM acts transitively on the indicatrix Ix. In other words, the velocity
space is homogeneous and so for an observer it becomes impossible to infer its position on
velocity space from local measurements. One might ask what are the affine sphere spacetimes
which satisfy this form of relativity principle. I have shown that there are just three possibilities
connected with a classification of homogeneous cones due to Vinberg [10]. In these models, due
to homogeneity, the shape of D is really independent of the observer.

The first model is isotropic, i.e. D is a ball, and has the usual Finsler Lagrangian

L =
1

2

(
− (y0)2 + y2

)
. (7)

The second model has a velocity domain D of tetrahedral shape, with Finsler Lagrangian

LC = −1

2

[
(y0 − y1 − y2 − y3)1/2(y0 − y1 + y2 + y3)1/2

(y0 + y1 − y2 + y3)1/2(y0 + y1 + y2 − y3)1/2
]
,

(8)

This model falls into a family investigated by Bogoslovsky and Goenner [11, 12] but from the
geometric point of view was also considered by many other authors including Berwald and
Moór [13,14], Matsumoto [15] and Calabi [5].

The third model was not previously noticed. The Finsler Lagrangian is

L = − 2

33/4

(1

2
y0 +

√
3

2
y3
)1/2 ((√3

2
y0 − 1

2
y3
)2
− (y1)2 − (y2)2

)3/4
. (9)

and the domain D is a cone in which the height is equal to the diameter of the base.
As can be seen the isotropic model is the only one with C1 dependence of the speed of light on

direction, so in the classical derivation of the Lorentz transformations the isotropy assumption
could be replaced by a C1 light velocity assumption.

For small velocities, namely for yi/y0 � 1 all the previous expressions reduce themeselves to
(7), the special relativistic case. This is so because we wrote these models in observer coordinates.

I also considered general relativistic Lorentz-Finsler affine sphere spacetimes which in the
analogous low-velocity limit reduce themselves to notable spacetimes of GR. For instance, with
r =

√
z2 + ρ2 the next Lagrangian

L = −2(1−2m
r )

33/4

((
1
2 dtS +

√
3
2

(
1− 2m

r

)−1 (1−2mρ2/r3)dz+2mzρ dρ√
1−2mρ2/r3

)2)1/4

((√
3
2 dtS− 1

2

(
1− 2m

r

)−1 (1−2mρ2/r3)dz+2mzρ dρ√
1−2mρ2/r3

)2
−
(
1− 2m

r

)−1( dρ2

1−2mρ2/r3 + ρ2dϕ2
))3/4

.

is conic anisotropic at each event and reduces itself to the Schwarzschild metric in the said
limit. Similarly, we obtained conic anisotropic versions of the Kerr-Schild, Kerr-de Sitter, Kerr-
Newman, Taub, and FLRW spacetimes. These metrics have been deduced from their low-
velocity limit (with respect to some conformal stationary observer) and from the requirement
of relativistic invariance at every spacetime event, not from the imposition of dynamical field
equation. However, the latter can perhaps be better identified if we regard these metrics as
reasonable spacetime solutions.
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Figure 6. In Lorentz-Finsler theories the unparametrized lightlike geodesics and the transport
of momenta make sense while the notion of affine parameter might not make sense.

3.3. Geodesic flow on the lightlike cotangent bundle
We have seen that saved for the isotropic case, the Lorentz-Finsler spaces which satisfy the
relativity principle have a non smooth light cone. In general, we might regard these spacetimes as
idealizations since they are considerably anisotropic. We are more interested in small deviations
from isotropy and so in light cones which could be smooth. Unfortunately, even if the cone is
smooth the function L determined from it has been proved [1] to be C1,1/2(Ω̄x) and with non
vanishing differential at the cone. This degree of differentiability is insufficient, for the geodesics
solve Lagrange’s equation

d

dt

∂L

∂yµ
− ∂L

∂xµ
= 0, yµ =

dxµ

dt

so that lightlike geodesics are well defined only if L (x, y) ∈ C2 for y belonging to the light cone.
So it seem that we have a problem in the definition of lightlike geodesic.

This problem has a nice solution which shows that the unparametrized lightlike geodesics
really depend only on the distribution of light cones, namely on L −1(0), and not on the whole
Finsler Lagrangian L . Since we can always find another C2 (subsidiary) Finsler Lagrangian

L̂ with the same light cones, the unparametrized lightlike geodesics are indeed well defined
provided we can show that they are independent of L̂ . This is precisely what we proved in [1].

Indeed, since L̂ and L̂ ′ vanish on the light cone bundle N = ∪x∂Ωx, which is a codimension
one hypersurface on TM\0, and are negative on Ω we must have dL̂ = φ dL̂ ′ for some positive
function φ on N . This means that for (x, y) ∈ N ,

∂L̂

∂xµ
= φ

∂L̂ ′

∂xµ
,

∂L̂

∂yµ
= φ

∂L̂ ′

∂yµ
. (10)

Let x(t) = x′(t′) be a curve in two different parametrization. Thanks to the identity

( dt

dt′
)2
φ−1

( d

dt

∂L̂

∂yµ
− ∂L̂

∂xµ

)
=
(dt′

dt

)−1( d

dt
log
(
φ

dt′

dt

))∂L̂ ′

∂yµ
+

d

dt′
∂L̂ ′

∂yµ
− ∂L̂ ′

∂xµ

we have that every lightlike L̂ -geodesic is a lightlike L̂ ′-geodesic for a parameter t′ such that
φdt′

dt = cnst. Thus unparametrized lightlike geodesics do not depend on the choice of L̂ .

But there is much more to it. Notice that if x(t) = x′(t′) with x(t) a L̂ -lightlike geodesic

and x′(t′) a L̂ ′-lightlike geodesic, then φdt′

dt = cnst. Given an unparametrized geodesic we say

that a L̂ -affine parameter t and a L̂ ′-affine parameter t′ are syntonized if φdt′

dt = 1. So if the
two parameters are syntonized at one event then they are syntonized at every event. But this
fact implies that the transport of momenta is well defined since we have the identity

∂L̂

∂yµ
(x(t), dxdt (t)) = φ

∂L̂ ′

∂yµ
(x(t), dxdt (t)) = φ

dt′

dt

∂L̂ ′

∂yµ
(x′(t′), dx

′

dt′ (t
′)). (11)
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Thus on the unparametrized lightlike geodesic x(t) = x′(t′) if pµ(t1) = p′µ(t′1) at one event then

φdt′

dt = 1 at the same event, namely t and t′ are syntonized, which means φdt′

dt = 1 at any later
event and so pµ(t) = p′µ(t′) at any later event. That is, the transport of lightlike momenta is
well defined as independent of the subsidiary Lagrangian.

There is a similar Hamiltonian argument which allows us to reach the same conclusion. Let
L̂ : Ω̄ → R be a subsidiary Lagrangian and let Ĥ : Ω̄∗ → R be its Legendre transform. Here
Ω∗ is the polar cone of Ω, cf. [16, Sec. 2.5], Ĥ vanishes on N∗ = ∂Ω∗, it has non-vanishing
differential there and is negative in Ω∗.

The dynamics induced by a subsidiary Lagrangian L̂ can also be obtained from Hamilton’s
equations

iXω = −dĤ ,

where ω = dpα ∧ dxα is the symplectic form and X is a vector field on the slit cotangent bundle
T ∗M\0 defining the dynamical system on momentum space. Due to

LXω = (diX + iXd)ω = −ddĤ = 0,

the flow preserves the Hamiltonian and so it is tangent to N∗ = Ĥ −1(0).

Any other subsidiary Hamiltonian Ĥ ′ vanishes on N∗, thus there is a function ϕ > 0 such
that Ĥ ′ = ϕĤ on N∗. Let X ′ be the field determined by Ĥ ′, then since the integral curves
stay in N∗

iX′ω = −dĤ ′ = −Ĥ dϕ− ϕdĤ = −ϕdĤ ,

which implies, by the non degeneracy of the symplectic form, X = ϕX ′. In other words the
integral lines coincide and so there is a well defined unparametrized flow on N∗ determined solely
by this codimension one hypersurface. Due to the positive homogeneity of the Hamiltonians,
this flow is invariant under homotheties, a fact which for any given event and direction on the
base M allows us to find a unique projected integral line passing through that event in that
direction. This is the unparametrized lightlike geodesic on M .

The possibility of defining the transport of momenta without the need for an affine parameter
is a remarkable feature, indeed the notion of affine parameter in general relativity is, for most
part, an unnecessary concept quite detached from observations.

3.4. Perturbation of the isotropic theory
Since in practice the light cone is expected to be almost isotropic, we are interested in the
perturbation of the isotropic affine sphere solution u = −

√
1− v2 as induced by a small

deformation of the light cone. It is convenient to introduce the variable

w(v) = −1

2
u2 = L ((1,v)). (12)

where the coordinates vi = yi/y0 correspond to the Klein’s parametrization of Hn. The metric
of the hyperboloid is

h = hijdv
idvj =

1

(1− v2)2
{(1− v2)δij + vivj}dvi ⊗ dvj .

Perturbing (1) we obtain

(δij − vivj)(δw)ij + 2vj(δw)j − 2δw = 0, (13)
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where the new domain D is obtained from the unit ball B through a displacement −δw|∂Bv̂ of
the boundary at v̂ ∈ ∂B = Sn−1. If we define δw = (1− v2)f we can write it in the form

∆Hf − 2(n+ 1)f = 0, lim
v→1

[(1− v2)f(v)] = δw|Sn−1 (14)

where there appears the Laplacian of the hyperbolic metric. The advantage of this equation
stays in its coordinate invariance. Expanding the perturbation in spherical harmonics

δw =
∑
`,µ

a`µU`(v)Y µ
` (θ, φ), (15)

where a`µ are constants and U`(1) = 1, and replacing in (13) we arrive at a hypergeometric
differential equation whose solution is

U` = n` v
` Re

(
F
(
`
2 − 1, `2 −

1
2 , `+ n

2 ; v2 + i0+
))
, (16)

where n` is a normalization constant (not to be confused with the space dimension; of course
we are mostly interested in the physical dimension n = 3).

Figure 7. Perturbation of the 3-dimensional
isotropic cone with the third spherical harmonic
(black ring), and consequent deformation of the
hyperboloid.

Here we have taken the real part of the
value obtained as the limit z → v2 for z
converging to the real line from the upper
half plane. We have done this because the
hypergeometric function has a singularity at
z = 1. Both Re and +i0+ can be removed
from the expression in the region v ≤ 1.

Here we have taken the real part of the
value obtained as the limit z → v2 for z
converging to the real line from the upper
half plane. We have done this because the
hypergeometric function has a singularity at
z = 1. Finally, the perturbation of the
classical Lagrangian is obtained from u+δu =√
−2(w + δw) = u(1 + 1

2
δw
w ) + ..., that is

δu = δw/
√

1− v2. Using this expansion we
can relate the deformation of the light cone
and the deformation of the indicatrix. We give
an example in Figure 7.

As it is well known, the Cosmic Microwave
Background radiation presents some puzzling
anisotropy feature at large angles (small `).
We believe that affine sphere relativity might
provide the correct theoretical framework for
the interpretation and explanation of such anomalies. The idea is simply that they are due to a
deformation of the light cone in our spacetime neighborhood or in a spacetime neighborhood of
the last scattering hypersurface. These considerations will be expanded in a future work.

4. Conclusions
We have presented a novel kinematical framework for a gravitational theory of Lorentz-Finsler
type. This theory has several interesting features. It preserves the correspondence between the
notion of spacetime and the pair given by (a) a cone distribution (i.e. a causal order) and (b)
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a spacetime measure. It also provides a dynamics for massive particles since these ingredients
determine univocally a Finsler Lagrangian, and hence all the required metrical concepts of
the theory. We have investigated the notion of relativity principle showing that the theories
which satisfy it either coincide with GR or are highly anisotropic and so are not expected to be
physically relevant in our spacetime neighborhood. Therefore, we have moved to a perturbative
approach. Here we could only introduce some of the results we obtained in this direction. We
believe that they are really promising since they seem to have the potential to explain some
anomalies observed in the CMB radiation.
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