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ABSTRACT

Turbulent dynamo phenomena, observed almost everywhere in astrophysical objects and also in the laboratory in
the recent VKS2 experiment, are investigated using a shell model technique to describe magnetohydrodynamic
turbulence. Detailed numerical simulations at very high Rossby numbers (α2 dynamo) show that as the magnetic
Reynolds number increases, the dynamo action starts working and different regimes are observed. The model,
which displays different large-scale coherent behaviors corresponding to different regimes, is able to reproduce
the magnetic field reversals observed both in a geomagnetic dynamo and in the VKS2 experiment. While rough
quantitative estimates of typical times associated with the reversal phenomenon are consistent with paleomagnetic
data, the analysis of the transition from oscillating intermittent through reversal and finally to stationary behavior
shows that the nature of the reversals we observe is typical of α2 dynamos and completely different from VKS2
reversals. Finally, the model shows that coherent behaviors can also be naturally generated inside the many-mode
dynamical chaotic model, which reproduces the complexity of fluid turbulence, as described by the shell technique.
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1. INTRODUCTION

The problem of magnetic dynamo, which is the amplification
of a seed of a magnetic field and its maintenance against the
losses of dissipation in a turbulent electrically conducting flow
(Moffatt 1978), represents one of the main physical issues
both in astrophysics and in geophysics. Planets, stars, and
entire galaxies have associated magnetic fields and all of these
fields are generated by the motion of electrically conducting
fluids.

In the case of the Earth, where the mechanical energy is
associated with fluid motions in the outer core, the geomagnetic
field is dominated by a dipole which, as the most characteristic
feature, changes its polarity from time to time. This phenomenon
has been called reversals and typically lasts 103–104 years. The
average time between two reversals is much longer than the
duration of the reversals itself. The magnetic field of the Sun
has a strong dipole component, but at lower latitudes it appears to
possess a more complicated structure. Like the Earth, it changes
its polarity, but periodically, with a main period of 22 years.

The difficulties faced when studying the turbulent dynamo
problem are twofold: on the one hand, the huge number of
degrees of freedom associated with very high values of the
Reynolds numbers typical of natural turbulence does not per-
mit direct numerical simulations even using the most powerful
computing devices; on the other hand, a magneto-fluid with
a Reynolds number comparable to those encountered in nat-
ural physical systems is hardly reproduced in the laboratory.
Notwithstanding these difficulties, experiments—where the am-
plification of the magnetic field has been demonstrated in the
laboratory—have been performed realizing a von Kármán flow
in liquid sodium (Pétrélis et al. 2007). Recently, this experiment
has been improved (VKS2 experiment), obtaining, at least lo-
cally, values of parameters larger than those corresponding to
the threshold for the dynamo development. In such a way, var-
ious dynamo regimes have been observed: stationary dynamos,

transitions to relaxation cycles or intermittent bursts, and ran-
dom field reversals (Ravelet et al. 2008).

An efficient way to face the problem of describing the dynam-
ical evolution of turbulent spectra at very high Reynolds num-
bers is furnished by the use of shell models (Frick & Sokoloff
1998; Giuliani & Carbone 1998). Some phenomenological at-
tempts to introduce terms describing dynamo action into these
models have been previously performed. In particular, Benzi
(2005) considered the Gledzer-Yamada-Okhitani hydrodynam-
ical shell model to describe the typical features of the turbulent
energy cascade and introduced an ad hoc term in the first shell
to impose a large-scale instability. Abrupt reversals were indeed
observed at apparently random times. In the same spirit, Sorriso
et al. (2007), and more recently Benzi & Pinton (2010), starting
from a magnetohydrodynamic (MHD) shell model, modified
the evolution equation of the first shell (second shell) for the
magnetic variable b1 (b2), introducing a cubic interaction to
reproduce the effects of the turbulent small-scale fluctuations
on the largest scale (see also Nigro & Carbone 2010). Ryan &
Sarson (2007) investigated the α effect of dynamo theory by
coupling a low-order αω-type dynamo to a shell model of fluid
turbulence. In the following we attempt to set up a shell model
capable of describing dynamo action without requiring any phe-
nomenological hypothesis and remaining as close as possible to
the MHD equations.

2. NUMERICAL MODEL

By decomposing the velocity u and magnetic field b into
an average part (u0 and b0) varying only on large scales and
a small-scale fluctuating part (δu and δb) and introducing this
decomposition in the MHD model, coupled dynamical equations
for the average and fluctuating fields can be obtained where
no assumption about the relative amplitude of the two terms
has been made (Biskamp 1997). The dynamical evolution of
a large-scale magnetic field can be written in the following
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form:

∂b0

∂t
= ∇ × (u0 × b0) − ∇ × ε + μ∇2b0, (1)

where μ represents the magnetic diffusivity and

ε = −〈δu × δb〉 (2)

is the average electric field generated by the small-scale tur-
bulence, which describes the action of small scales on a large
scale.

Let us consider an axisymmetric situation in which the large-
scale velocity field is purely toroidal while the magnetic field
can be decomposed into a toroidal and a poloidal component
with respect to the symmetry axis; moreover, let us restrict this
to local analysis in which we can approximate the toroidal (êϕ)
and the poloidal (êp) unit vectors with the Cartesian unit vectors
êx and êz, respectively. The velocity field can then be written as

u0 = V (y, z) êx (3)

and the magnetic field as

b0 = Bϕ(y, z, t)êx + Bp(y, t)êz . (4)

Let us emphasize that our fields have a dependency on two length
scales: a slow scale L, which is along the y and z directions for
the magnetic and velocity fields, and a fast scale k−1

0 along
all directions (x, y, z), with the condition k0L � 1. These
dependencies can be written explicitly as follows:
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L
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L
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(y

L
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)
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(5)

where we can see clearly that the large-scale fields depend only
on the slow scale. Projecting the evolution equation for b0 along
êx and êz, we find, respectively,

∂Bϕ

∂t
= ∂

∂z
(V Bp) +

∂εz

∂y
+ μ

∂2Bϕ

∂y2

= ∂V

∂z
Bp +

∂εz

∂y
+ μ

∂2Bϕ

∂y2
(6)

∂Bp

∂t
= −∂εx

∂y
+ μ

∂2Bp

∂y2
. (7)

In terms of the Fourier transform of the velocity (u(k, t)) and
magnetic field (b(k, t)), small-scale fluctuations ε can also be
written as

ε = −
∑

k

u(k, t) × b∗(k, t). (8)

Introducing a basis in the complex physical space

ê1(k), ê2(k) = ê3(k) × ê1(k), ê3(k) = ik
|k| (9)

and rewriting expression (8) in a form symmetric with respect
to the change of k to −k we finally find

ε = −
∑

k(kz>0)

ê3 [(u∗
1 b2 − u2 b∗

1) + (u∗
2 b1 − u1 b∗

2)], (10)

where u1 and u2 are the components of u(k, t), and b1 and
b2 are the components of b(k, t) along ê1 and ê2, respectively.
Projecting ε along êx and êz, we find

ε · êx = εϕ =
∑

1
2 k-space

i
kx

|k| [(u∗
1 b2 − u2 b∗

1) + (u∗
2 b1 − u1 b∗

2)],

(11)

ε · êz = εp =
∑

1
2 k-space

i
kz

|k| [(u∗
1 b2 − u2 b∗

1) + (u∗
2 b1 − u1 b∗

2)].

(12)

Applying the Fourier transform to the dynamical evolution
of velocity and magnetic field fluctuations, we can obtain the
following equations:

∂u(k)

∂t
− i(k · b0)b(k) + NLTU + νk2u(k) = 0, (13)

∂b(k)

∂t
− i(k · b0)u(k) + NLTB + μk2b(k) = 0. (14)

In the above expressions, ν is the kinematic viscosity, while
NLTU and NLTB represent, respectively, the nonlinear terms
in the evolution equations for velocity and magnetic field
fluctuations:

NLTU = − i
∑

p

Mμαβuβ(p, t)uα(k − p, t)

− i
∑

p

Mμαβbβ(p, t)bα(k − p, t), (15)

NLTB = − i
∑

p

Mμαβuβ(p, t)bα(k − p, t)

+ i
∑

p

Mμαβbβ(p, t)uα(k − p, t), (16)

written in terms of the operator

Mμαβ = −1

2
(Dμαpβ + Dμβpα), (17)

where p is a wavevector and Dμα is an orthogonal projector
defined as

Dμα =
(

δμα − kμkα

k2

)
(18)

used to eliminate the pressure term. In Equations (13) and (14),
we have estimated the spatial derivatives of the slow component
as 1/L, so that using the condition koL � 1 we have neglected
the terms (u·∇)u0, (b·∇)b0, (u·∇)b0, and (b·∇)u0 compared to
(k·u0)u, (k·b0)b, (k·u0)b, and (k·b0)u. Also, we have removed
the term ik · u0 without loss of generality performing a simple
Galilei’s transformation (the only contribution of this term is to
introduce a phase factor, u = e−ik·u0t û, in the nonlinear terms).

2.1. Shell Model

Equations (13) and (14), which describe the dynamical
evolution of δu and δb, display exactly the same nonlinearity
as the full set of MHD equations and can be written in
terms of the Fourier transform. Starting from this form, their
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dynamical evolution can be described in terms of a shell model, a
dynamical system (ordinary differential equations) representing
a consistent and relevant way to describe the energy cascade
of turbulence and to reproduce important features linked to the
turbulent problem (intermittency, for example). In this model
the k-space is divided into N concentric shells of exponentially
growing radius, where the number N of shells necessary to
reproduce the behavior observed at high Reynolds numbers (Re)
is rather small since N ∼ ln Re. For each shell, a scalar value
kn = k0 2n of the wavevector and dynamical scalar variables
un(t) and bn(t) for the velocity and magnetic field are defined.
These assigned variables (real or complex) take into account
the average effects of velocity and magnetic modes between kn
and kn+1 and describe the chaotic dynamics of the system (Bohr
et al. 1998).

A reasonable assumption is that the interactions among
shells are local in k-space, since one expects that only local
interactions are relevant for the energy transfer. Thus, in our
shell model dynamical equations, we retain only the interactions
among the neighbor and nearest neighbor shells. To explicitly
derive the values of coupling coefficients in the inviscid and
unforced limit the three quadratic invariants (energy, cross-
helicity, and magnetic helicity) are conserved (Frick & Sokoloff
1998; Giuliani & Carbone 1998). The equations describing this
model are the following:

dun

dt
= ikn(Bϕ + Bp)bn − νk2

nun + fn

+ ikn[(un+1un+2 − bn+1bn+2) − 1

4
(un−1un+1

− bn−1bn+1) − 1

8
(un−2un−1 − bn−2bn−1)]∗, (19)

dbn

dt
= ikn(Bϕ + Bp)un − μk2

nbn

+ ikn

1

6
[(un+1bn+2 − bn+1un+2) + (un−1bn+1

− bn−1un+1) + (un−2bn−1 − bn−2un−1)]∗, (20)

where, as usual, magnetic field components have all been
divided by

√
4πρ (ρ being the mass density), while fn is a

hydrodynamic forcing term to inject energy into the turbulence.
It is important to stress the fact that, in our model, the only
forcing term is on the velocity shells. Let us finally remark that
the only modification introduced in these equations, with respect
to standard shell models, concerns the presence of linear terms
proportional to i(k · b0), describing the propagation of turbulent
fluctuations on the large-scale magnetic field b0.

By rewriting the average turbulent electric field
(Equation (10)) in a form consistent with the shell technique
and estimating the derivative associated with the slow space de-
pendence, as a division by the typical large-scale length L, we
recast the following form of the equations for the large-scale
magnetic field as:

dBϕ

dt
= BpV

L
− μ

Bϕ

L2
+ i

∑
n

1

L
(u∗

nbn − unb
∗
n), (21)

dBp

dt
= −μ

Bp

L2
+ i

∑
n

1

L
(u∗

nbn − unb
∗
n). (22)

Let us note that the expression u∗
nbn − unb

∗
n cancels itself

out in the space of wavevectors when u is parallel to b

for all k (un = ±bn,∀n). This means that nonlinear terms
in Equations (21) and (22) tend to vanish when the system
evolves toward a state of strong correlation between velocity
and magnetic field. As the Alfvénic subspaces, characterized by
u(r) = ±b(r), act as attractors of the dynamics of the system
(Dobrowolny et al. 1980), it is important to save this property
in our model.

2.2. Numerical Parameters

The most relevant physical parameters involved in the dy-
namo problem are the typical large scale of slow variation, L,
the typical scale of turbulent fluctuations, k−1

0 , the kinematic
viscosity, ν, the fluid magnetic diffusivity, μ, and the rms of
velocity and magnetic field fluctuations,

δu =
√∑

n

|un|2, δb =
√∑

n

|bn|2. (23)

For most astrophysical objects, the global rotation rate, ω =
V/L, also plays an important role. The relative importance of
the differential rotation term can be evaluated by introducing
the Rossby number, which is the ratio between the nonlinear
and differential rotation terms in Equation (21):

Ro = δuδb

L

L

BpV
= δu

V

δb

Bp

. (24)

When Ro � 1, a condition we will assume hereafter we can
neglect the differential rotation term. In such a case, the model
described by Equations (19)–(22) corresponds to an α2 dynamo
and it can be seen that the poloidal and toroidal components of
the large-scale magnetic field evolve in the same way, so that
Bp = Bϕ = B. The case Ro � 1, which seems to be typical of
a geodynamo, will be the object of future study.

Let us now introduce the kinematic diffusive time (τν), the
resistive diffusive time (τμ), and the eddy turnover time (τNL):

τν = (
k2

0ν
)−1

, τμ = (
k2

0μ
)−1

, τNL = (k0δu)−1. (25)

From the times above, we can calculate dimensionless numbers
to characterize the turbulent behavior of our simulations:

Re = τν

τNL
, Rm = τμ

τNL
, Pm = Rm

Re
, (26)

respectively, the Reynolds number, the magnetic Reynolds
number, and the magnetic Prandtl number.

3. SIMULATIONS

We started our simulations by introducing a seed of magnetic
field on a large scale when the turbulence becomes developed
and stationary: i.e., we restrict the slow varying magnetic field
component B to zero up to t = 1000. The initial conditions
for shell amplitudes are un = bn = 0, ∀n > 3, and
un(0) = 10−2n/3 (a + ib), a and b being random numbers in the
interval [−0.5, 0.5] and n = 1, 2, 3 (the shell model requires
that the amplitudes of at least three modes are different from
zero in order to start the simulation). The system is forced
only on the shell n = 1 (k1 = k0) by assuming that f1 is
an exponentially correlated Gaussian noise characterized by
a second moment 〈f 2

1 〉 = σ 2/ ln 10 and a correlation time
τc, which corresponds to inject only kinetic energy at a large
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scale. The shell model differential equations, Equations (19)
and (20), are then integrated by using a modified fourth-order
Runge–Kutta scheme. If not otherwise specified, we always
fixed the separation scale such that k0L = 10, the forcing
correlation time τc = 1, and the forcing amplitude σ = 9×10−3.

At t = 1000, a time much longer than the eddy turnover time,
the turbulence can be considered developed and is characterized
by the velocity (δu) and magnetic field (δb) fluctuation levels
and by their spectra. The only effect produced by varying the
parameters of the forcing is to change the level of fluctuations
of δu and δb. During the time evolution from t = 0 to t = 1000,
the kinetic and magnetic energies grow in time and finally form a
power-law spectrum. When τμ ∼ τν , the amplitude of magnetic
and kinetic energies remain of the same order at all modes.
The spectral index is close to k−2/3 which is compatible with a
Kolmogorov scaling of the second-order structure function. In
contrast, as long as τμ decreases, δb becomes smaller compared
to δu and finally, for τμ � 102 the turbulence is practically
fluid (Sahoo et al. 2010). Once the turbulence developed (i.e., at
t = 1000), we introduce a seed (∼10−10) on the slowly varying
magnetic field components and we try to see if a dynamo effect
develops. At variance with mean field MHD approximation,
our model allows us to generate turbulence when a large-scale
magnetic field is zero. Also, in the absence of the forcing term
on the magnetic shells, the nonlinear interactions deliver energy
on the magnetic variables.

4. RESULTS

The typical time evolution of the average magnetic field
displays a behavior that is strongly dependent on the value of the
magnetic Reynolds number Rm. Actually, the VKS2 experiment
allows us to study the modification of the characteristics of
dynamo magnetic field time evolution as a function of the
magnetic Reynolds number (the change in Rm corresponds to the
rotation of the impellers at different speeds; Ravelet et al. 2008).
For this reason we have performed different sets of simulations:
in each of them, we have fixed the value of τν and we have let τμ

vary between 1 and τν . In any of these simulation sets, we have
verified the same phenomenology as a function of τμ: increasing
the value of τμ, we obtain different dynamical behaviors for B.

As can be seen in Figure 1, under a threshold value of Rm,
the turbulence is not capable of generating a dynamo effect.
We observe that the zoom in Figure 1 displays a discontinuity
in slope in the vicinity of Rmc analogous to some response
functions at phase transitions or bifurcations in the presence of
noise. When Rm increases (τμ ≈ 103), the large-scale magnetic
field displays a behavior characterized by very low amplitude
intermittent bursts of oscillations (see Figure 2(a)). Moreover,
fluctuating magnetic energy is an order of magnitude smaller
than the kinetic one. Increasing Rm, the system endures a new
bifurcation and a new dynamical behavior appears in which it
displays irregular oscillations. A further increase of Rm (τμ up to
≈105) gives rise to turbulent magnetic and kinetic fluctuations
more or less of the same order, while the dynamo magnetic
field displays a series of reversals between two opposite sign
magnetic field levels (see Figure 2(c)). Finally, when τμ � 105

we observe that the magnetic field saturates to a stable level.
After the initial growth the level of the magnetic field does
not change anymore. Some fluctuations on the magnetic field
still remain but they are centered around the stable level (see
Figure 2(d)). As a consequence, reversals are observed in a finite
interval range, in particular for Re 
 107 and 103 < Rm < 105.

Figure 1. Dynamo magnetic field energy (EB) as a function of the magnetic
Reynolds number (Rm) in the log–log scale for Re 
 107. Note that the magnetic
field saturates for a high magnetic Reynolds number. Legend: no dynamo (red
crosses); oscillating intermittent dynamo (blue crosses); irregularly oscillating
behavior (black diamonds); magnetic reversals (green diamonds); stationary
dynamo (orange triangles). The dashed line indicates the threshold region,
zoomed in the inset in linear scale.

(A color version of this figure is available in the online journal.)

These figures are reproduced in the VKS experiment (Ravelet
et al. 2008), where reversals also exist inside a finite interval
range of parameters.

It is worth noting that in any case the large-scale magnetic
field energy level is always lower than or, at best, of the same
order as the kinetic energy level of fluctuations. This means that
there is a tendency to realize a sort of equipartition between
fluctuating kinetic energy and dynamo magnetic energy. There
is no stage of the dynamical evolution where the energy of
fluctuations is smaller than the energy of the magnetic field; this
suggests that it is not possible to describe the phenomenon by
using a linear or quasi-linear approximation.

In order to understand the nature of the transitions between
the different regimes, we have also represented in Figure 3 the
dynamic evolution of the large-scale magnetic field in phase
space [B(t), B(t +τ )−B(t)]. It can be seen that at variance with
the behavior of the VKS experiment, where robust trajectories
exist in such phase space due to the presence of four fixed
points (Ravelet et al. 2008), in our case the trajectories change
drastically from one regime to the other. In relation with this
change, the rms of the large-scale magnetic field becomes
higher when reducing magnetic diffusivity. Moreover, in our
simulations the transition from reversal to stationary dynamo
occurs in the opposite way with respect to the VKS experiment.
The apparently counter-intuitive fact that a higher Rm value
leads finally to a more regular dynamo (via the transition
oscillatory–reversal–stationary) seems to be a generic feature
of an α2 dynamo (Stefani & Gerbeth 2005) and is perhaps
due to the fact that the fixed points of Equation (22) depend
on the magnetic diffusivity which represents the order parameter
of the transitions. In contrast, in the VKS experiment the stability
of the fixed points is guaranteed by the existence of two dynamos
with opposite signs (Pétrélis & Fauve 2008; Pétrélis et al. 2009;
Gissinger et al. 2010; Gissinger 2010).

Let us now discuss the reversal regime in more detail. In
Figure 2(c), it is seen that the time between two reversals is much
longer than typical timescales of turbulence. This corresponds
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Figure 2. Time evolution of the large-scale magnetic field in dimensionless unit (time is normalized to τNL, while B is normalized to δu). (a) Oscillating intermittent
dynamo for Re 
 7.6 × 106 and Rm 
 62. (b) Irregularly oscillating behavior for Re 
 6.5 × 106 and Rm 
 129. (c) A series of reversals for Re 
 1.9 × 107 and
Rm 
 3.9 × 103. (d) Stationary dynamo for Re 
 5.4 × 107 and Rm 
 5.4 × 105.

(A color version of this figure is available in the online journal.)

Figure 3. Dynamic evolution of large-scale magnetic field in the phase space
[B(t), B(t + τ ) − B(t)] for the different regimes observed. Blue: oscillating
intermittent dynamo (τ 
 0.25). Black: irregularly oscillating behavior (τ 

0.22). Green: reversals (τ 
 0.66). Red: stationary dynamo (τ 
 1.76). The
parameter is the same as in Figure 2.

(A color version of this figure is available in the online journal.)

to what happens both in Earth magnetic field reversals (Sorriso
et al. 2007; τNL ∼ 103 yr) and in the VKS2 experiment (Ravelet
et al. 2008; τNL ∼ 0.05 s). The reversals are abrupt. The
time necessary to reverse the magnetic field, i.e., the time
required to move from one level to another of the magnetic
field is of the order of ∼τNL. Also in a geodynamo and the
VKS experiment, the reversals are fast events: in Earth’s case
the reversal times are of the order of some kyr, while in the
experiment ∼4–5 s, which, at variance with our simulations, is
102 longer than the nonlinear time (of the order of the diffusive
time). Figure 2(c) also shows another important phenomenon
related to the magnetic reversals—the excursions. The polarity
begins to change; instead of executing a full transition, the dipole

Figure 4. Probability distribution function for reversal waiting times, in the
log–log scale, where k0L = 5, Re 
 4.5 × 107, and Rm 
 9.1 × 104.
The red dashed line represents the slope of power-law linear fit: log P (Δt) =
m log Δt + C, with m = −0.8.

(A color version of this figure is available in the online journal.)

returns to the original polarity. The same features exist in a
geodynamo.

The sequence of the reversals displays a behavior which
seems to be the result of a chaotic (or stochastic) process. To
characterize such a complex process we performed a statistical
analysis by running a very long simulation, and by calculating
the probability distribution function (PDF) of the waiting times,
i.e., the times between two consecutive reversals. The obtained
distribution is reported in Figure 4, in a log–log scale. It is
clearly seen that over more than two decades it displays a power-
law behavior, which is the signature of a non-Poisson process.
In other words, the phenomenon of magnetic field reversals is
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not purely stochastic, but it is characterized by memory effects
due to the presence of long-range correlation. This behavior
is also characteristic of Earth magnetic field reversals (Sorriso
et al. 2007). For very long waiting times, the PDF displays
exponentially decreasing behavior.

5. CONCLUSIONS

In the case of the very high value of Rossby number we
studied, our model mimics a developed MHD turbulence and
its corresponding large-scale α2-type dynamo effect. The time
evolution of the large-scale magnetic field is characterized by
different regimes of coherent behaviors which are determined
by the nonlinear interaction of the dynamical variables of
turbulence, which in turn display a chaotic behavior. It has
been suggested that the different coherent dynamical behaviors
observed can be produced by the nonlinear interaction of a few
modes (Rikitake 1958). Indeed, models of the Rikitake type
(Rikitake 1958) seem to be able to reproduce some of these
coherent behaviors. We think that it is extremely relevant to
show that these behaviors can be generated also inside a many-
mode dynamical chaotic model, which reproduces a complex
physical system of MHD turbulence like that described by the
shell technique.
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