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ABSTRACT

In this paper, we present a general scenario for nondiffusive transport and we investigate the influence of anomalous,
superdiffusive transport on Fermi acceleration processes at shocks. We explain why energetic particle superdiffusion
can be described within the Lévy walk framework, which is based on a power-law distribution of free path lengths
and on a coupling between free path length and free path duration. A self-contained derivation of the particle mean
square displacement, which grows as 〈Δx2〉 = 2Dα tα with α > 1, and the particle propagator, is presented for
Lévy walks, making use of a generalized version of the Montroll–Weiss equation. We also derive for the first time
an explicit expression for the anomalous diffusion coefficient Dα and we discuss how to obtain these quantities
from energetic particle observations in space. The results are applied to the case of particle acceleration at an
infinite planar shock front. Using the scaling properties of the Lévy walk propagator, the energy spectral indices
are found to have values smaller than the ones predicted by the diffusive shock acceleration theory. Furthermore,
when applying the results to ions with energies of a few MeV accelerated at the solar wind termination shock,
the estimation of the anomalous diffusion coefficient associated with the superdiffusive motion gives acceleration
times much smaller than the ones related to normal diffusion.
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1. INTRODUCTION

Galactic cosmic rays, as well as heliospheric energetic par-
ticles, are usually thought to be accelerated at shock waves by
a first order Fermi process called diffusive shock acceleration
(DSA; Bell 1978; Fisk & Lee 1980; Drury 1983; Blandford &
Eichler 1987). Recently, X-ray and γ -ray observations of super-
nova remnants (SNRs) have confirmed the presence of highly
energetic particles at SNR shocks (e.g., Aharonian et al. 2004;
Ackermann et al. 2013). DSA is based on the acceleration of par-
ticles crossing the shock many times because of their random,
diffusive motion: at each shock crossing, particles gain an
amount of energy and momentum corresponding to Fermi head-
on collisions. The typical scenario consists of an infinite planar
shock and leads to a power-law energy spectrum, which, for
ultrarelativistic particles, has a spectral index

γ = r + 2

r − 1
, (1)

where r = Vu/Vd is the shock compression ratio and Vu and
Vd are the upstream and downstream plasma velocities in the
shock frame, respectively. Also, an acceleration time tacc can be
estimated as (e.g., Drury 1983; Gaisser 1990)

tacc = 3

Vu − Vd

(
Du

Vu

+
Dd

Vd

)
, (2)

where Du (Dd) is the upstream (downstream) particle diffusion
coefficient. Although DSA is currently the standard model for
the acceleration of high energy particles, many details are not
clear (see, for instance, Balogh et al. 2013; Giacalone 2013)
and several observations remain unexplained. For instance,
assuming the maximal compression ratio r = 4, Equation (1)
yields γ = 2, which matches nicely the observed spectrum

of Galactic cosmic rays up to ∼1015 eV. However, harder
spectral indices are deduced for relativistic electrons from radio
observations of shell type SNRs (e.g., Bogdan et al. 1985;
Whiteoak & Green 1996). In interplanetary space, it is possible
to check Equation (1) by measuring the compression ratio r and
the spectral index γ in situ. In spite of the large experimental
uncertainties on r and γ , a broad agreement with the predictions
of DSA is obtained (Giacalone 2012). Nevertheless, spectral
indices harder than expected are also found (van Nes et al.
1984; Lee et al. 2012). Furthermore, the recent crossing of the
solar wind termination shock by the Voyager 2 spacecraft has
shown that the observed spectral index of the termination shock
particles (i.e., ions up to a few MeV, not to be confused with
anomalous cosmic rays) is harder than that corresponding to
the observed compression ratio r � 2 (Decker et al. 2008).
This discrepancy persists even when the spatially extended
slowing down of the solar wind, which occurs well ahead of
the shock and which increases the effective compression ratio
to r � 2.4, is taken into account (Florinski et al. 2009; Perrone
et al. 2013). On the other hand, questions about the acceleration
time, Equation (2), also arise. For instance, Lagage & Cesarsky
(1983) have shown that such a time can be too long to explain
the acceleration of cosmic rays up to energies of 1015 eV at
SNRs (see also Kirk & Dendy 2001; Ptuskin et al. 2010).

These and other observations have stimulated a number
of studies to bring DSA predictions closer to the observed
properties; such studies go from the inclusion of second order
Fermi acceleration in the cosmic ray transport equation (Droge
et al. 1987) to the inclusion of upstream and downstream
free escape boundaries (Ostrowski & Schlickeiser 1996) to
the motion of the “scattering centers,” e.g., Alfvén waves,
with respect to the bulk plasma flow (Vainio & Schlickeiser
1999; Sokolov et al. 2006), to the amplification of the upstream
magnetic field because of the streaming cosmic rays (Bell 2004;
Ptuskin et al. 2010; Blasi et al. 2012). Although those corrections
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correspond to important physical effects that have to be taken
into account by a fully developed theory, here we consider
a more radical extension of the basic model of DSA to the
case of anomalous, superdiffusive transport, i.e., the case when
the mean square displacement of an energetic particle grows
superlinearly with time. We consider such an extension to be
more radical because the fundamental statistical mechanism
of interaction between particles and the shock is modified.
Indeed, the superdiffusive transport regimes are based on Lévy
statistics, characterized by probability distributions with power-
law tails, rather than by Gaussian statistics. In the last few years,
anomalous transport has been found in a large variety of physical
systems (Metzler & Klafter 2000, 2004; Klafter & Sokolov
2011) that are characterized by a mean square displacement
growing as

〈Δx2〉 = 2Dα tα, (3)

with α < 1 in the case of subdiffusion, 1 < α < 2 in the case
of superdiffusion, and α = 2 representing the ballistic regime.
Such anomalous regimes are a generalization of the normal dif-
fusion regime, where 〈Δx2〉 ∝ t , and are obtained when long
range correlations and memory effects in space and/or time are
involved (for a quick overview, see Shlesinger et al. 1993 and
Klafter et al. 1996). Numerical simulations of charged particle
transport in the presence of magnetic turbulence show that su-
perdiffusion along the average magnetic field is possible: in par-
ticular, Zimbardo et al. (2006) and Pommois et al. (2007) found
that superdiffusion parallel to the magnetic field is obtained for
low magnetic turbulence levels and when the turbulence is either
isotropic or anisotropic with a quasi-slab spectrum (i.e., when
the turbulence wavevectors are mostly aligned with the back-
ground magnetic field). Conversely, for the same turbulence
level but quasi-two-dimensional (2D) anisotropy (i.e., when the
turbulence wavevectors are mostly perpendicular to the back-
ground magnetic field), normal diffusion is obtained because of
an increased level of pitch angle diffusion. On the other hand,
Shalchi & Kourakis (2007) found parallel superdiffusion also
for a composite 20% slab and an 80% 2D turbulence model.
Further, Tautz (2010) found that including the time dependence
of turbulence induces parallel superdiffusion (see also Zimbardo
et al. 2012). Nondiffusive transport also attracts significant atten-
tion in the fusion plasma field (e.g., Mier et al. 2008; Gustafson
et al. 2012, and many others). Looking at experimental mea-
surements in the solar wind, evidence of electron transport cor-
responding to “a wide variety of propagation modes [...] ranging
from diffusive to essentially scatter free” was already found by
Lin (1974, p. 189) by analyzing solar nonrelativistic electron
time profiles. More recently, evidence of electron and ion su-
perdiffusion upstream of interplanetary shocks was reported by
Perri & Zimbardo (2007, 2008, 2009a, 2009b) and Sugiyama &
Shiota (2011).

The influence of subdiffusion on DSA was considered by
Duffy et al. (1995) and Kirk et al. (1996), while a first account
of the influence of superdiffusion on DSA has been given by
Perri & Zimbardo (2012a). Considering Fermi acceleration in
the presence of shocks, but assuming superdiffusion rather than
normal diffusion, and following the technique used in Duffy
et al. (1995) and Kirk et al. (1996), superdiffusion modifies the
main predictions of DSA in a substantial way, i.e., the energy
spectral index (see Equation (1)) and the acceleration time
(Equation (2)). Therefore, the new theory, which we termed
superdiffusive shock acceleration (SSA), has the potential to
explain a number of observations of hard spectral indices and
maximal cosmic ray energies (Perri & Zimbardo 2012a).

The theoretical description of anomalous transport involves
the use of a variety of tools like non-Gaussian statistics, Lévy
flights and Lévy walks, long range correlations, Hurst expo-
nents, and fractional derivatives (e.g., Eule et al. 2012; Perrone
et al. 2013), but it is not always clear which model is the most
appropriate to describe a specific physical system. In this paper,
we give arguments to show that the appropriate framework for
the transport of cosmic rays and energetic particles is that of
Lévy walks and we give a more comprehensive and detailed ac-
count of SSA than earlier reported. To this end, we shall give just
the theoretical background that is actually needed for deducing
the spectral index and the acceleration time envisaged by SSA;
we refer the reader to the original works for a more thorough
treatment. The basic properties of the Lévy random walk will
be described and the resulting superdiffusive transport and non-
Gaussian propagator will be derived. The scaling properties of
the propagator, which are crucial for obtaining the new expres-
sion of the spectral index (Kirk et al. 1996), are discussed in
detail. Then, we show how this yields the spectral indices, both
in the ultrarelativistic and in the nonrelativistic cases, and a new
profile for the accelerated particle density across the shock. We
give for the first time a detailed expression for the anomalous
diffusion coefficient Dα . We note in particular that Dα enters
the value of the acceleration time in the superdiffusive case;
furthermore, knowledge of its value is required to determine the
actual transport properties of, e.g., solar energetic particles. We
also show how the values of α and Dα , which has physical di-
mensions �2/tα , can be determined from the energetic particle
profiles observed in situ at heliospheric shocks.

2. COSMIC RAY PROPAGATION AND LÉVY WALKS

Before discussing superdiffusion in terms of Lévy walks,
we consider here the minimal elements necessary for cosmic
rays or energetic particles to attain a transport regime different
from the normal one. We can describe a random transport
process like the sum of random displacements xi (in 1D),
each step requiring a time ti. Assuming equal probability ψ
for positive and negative displacements, ψ(xi) = ψ(−xi),
the expected value (the mean) is zero. Then, if the variance
of xi is finite, σ 2 = ∫

x2ψ(x)dx < ∞, the central limit
theorem (CLT) requires that the limit distribution of the random
walker probability density be a Gaussian of width 2Dt , with
D = σ 2/τ and τ being the (finite) average of ti. Therefore, the
finite value of σ 2 means that there is a well defined transport
scale and normal diffusion with 〈Δx2〉 = 2Dt is obtained. As
a consequence, in order to be able to obtain superdiffusion,
the assumption of finite σ 2 has to be relaxed (e.g., Klafter
et al. 1987; Metzler & Klafter 2000, 2004). This immediately
implies that there is no typical transport scale and that the
particle mean free path and the standard diffusion coefficient are
diverging. From the definition of σ 2, and assuming that ψ(x)
is well behaved for small |x|, the divergency of σ 2 is obtained
when the probability of displacement lengths has power-law
tails of the form ψ(x) ∼ |x|−μ with μ � 3. The generalized
CLT then requires that the limit distribution be a symmetric
Lévy distribution of index μ − 1, whose Fourier transform
can be expressed as L̂μ−1(k, t) = exp(−Ct |k|μ−1), where C
is a scale parameter (e.g., Metzler & Klafter 2000; Zaslavsky
2002). The explicit Fourier inversion of the Lévy distribution
can only be performed in some cases; even so, for 1 < μ < 3,
it has power-law tails of the form Lμ−1(x, t) � Ct |x|−μ

(e.g., Zaslavsky 2002; Metzler & Klafter 2004). Considering
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the symmetric, zero-average case so that 〈Δx2〉 = 〈x2〉, this
result has the implication that the mean square displacement
〈x2(t)〉 = ∫

x2Lμ−1(x, t)dx is diverging, too, for any finite time
t. In order to avoid such an unphysical result, it is necessary to
consider a process called the Lévy walk, which is characterized
by a coupling between the displacement length xi and the
displacement duration ti (Geisel et al. 1985; Shlesinger & Klafter
1985; Shlesinger et al. 1987; Klafter et al. 1987). In such a
way, it is not possible to have arbitrarily long displacements
in a finite time (something which would be unphysical) and
this eliminates the divergence of 〈x2(t)〉, while superdiffusive
transport can still be obtained, as shown below. In summary,
the essential ingredients to describe superdiffusion in terms of a
stochastic process are (1) a probability of free path lengths ψ(x)
with power-law tails such that the variance σ 2 is diverging (so
that a Gaussian process is no longer required by the CLT) and
(2) a space–time coupling of the free path lengths x and the free
path durations t, e.g., |x| = vt , so that 〈x2(t)〉 is not diverging
at finite times. Such a space–time coupling corresponds well to
energetic particles moving with a given speed v. We remark that
decoupled random walks, like for instance Lévy flights where
the free path length is independent of the corresponding time,
are not appropriate to describe the transport of particles having
mass, since Lévy flights may imply infinite velocities.

For energetic particles of speed v in a magnetic field, we
are concerned mostly with parallel transport, since this usu-
ally prevails (see the discussion in Perri & Zimbardo 2012b),
even though perpendicular motion can be anomalous, too (e.g.,
Zimbardo 2005). For the velocity parallel to the magnetic field,
we have v‖ = v cos θ , where θ is the pitch angle. Making the as-
sumption of a nearly isotropic velocity distribution function—a
standard assumption of DSA that is also made for SSA—one
has 〈v2

‖〉 = v2/3. Therefore, there exists a typical, well-defined
speed for parallel motion and the constant velocity model is ap-
propriate to describe the parallel transport of energetic particles
with an isotropic velocity distribution function. This situation
can be contrasted with other descriptions of anomalous trans-
port that are based on a power-law distribution of velocities
(e.g., Mier et al. 2008). About notation, although in practice we
are considering the rms value of v‖, in the following we will
write v for brevity.

3. THE DERIVATION OF SUPERDIFFUSION
IN TERMS OF THE LÉVY RANDOM WALK

In order to show how superdiffusion modifies the properties
of DSA, we consider the simplest case, making the standard
assumption of an infinite planar shock, so that the system only
depends on the coordinate x perpendicular to the shock. Also,
the average magnetic field is assumed to be parallel to the shock
normal, so that we will mostly discuss transport parallel to the
magnetic field (i.e., along x), keeping in mind that the case of
oblique shocks can be described in the same way (e.g., Drury
1983), except for shock normal angles θBn very close to 90◦.

Here, we make use of the microscopic, probabilistic approach
introduced by Montroll & Weiss (1965), which is called con-
tinuous time random walks, and extended to Lévy walks by
Shlesinger et al. (1987), Klafter et al. (1987), and Zumofen &
Klafter (1993); in this case, a particle moves at constant speed
until it reaches a point at which it changes direction of mo-
tion randomly (the so-called velocity model). For this purpose,
let us introduce the probability, which defines Lévy walks, of

performing a jump of length |x| in a time interval t:

ψ(x, t) = 1
2δ(|x| − vt)ψ(t), (4)

where v is the particle speed and, for acceleration at a planar
shock, we assume 1D motion along the x direction; nevertheless,
this methodology can be extended to the fully 3D motion.

The delta function in Equation (4) plays the role of coupling
space and time, which is the qualifying property of Lévy walks,
so that very long displacements require more time (Shlesinger
et al. 1987; Klafter et al. 1987; Metzler & Klafter 2004).
Furthermore, ψ(x, t) is normalized to one:

∫
ψ(x, t)dxdt = 1.

Thus, from Equation (4), we can define the probability W(x,t)
for particles to pass through x at time t in a single motion step
from the origin, even without stopping or changing direction in
x (Shlesinger et al. 1987):

W (x, t) = δ(|x| − vt)
∫ ∞

t

dt ′
∫ ∞

|x|
dx ′ψ(x ′, t ′). (5)

This expression clarifies also that particles going farther than
|x| in a single step contribute to the probability density of
being at x at time t, thus emphasizing the importance of
the time spent in the walk as compared with models that
envisage instantaneous jumps between the random walk sites.
A complementary quantity is the probability density Q(x,t) of
just arriving at a point x at time t, coming from “anywhere,” and
then changing the direction of motion randomly to perform the
next step. Assuming homogeneity in space and time, one has

Q(x, t) =
∫ ∞

−∞
dx ′

∫ t

0
dt ′Q(x − x ′, t − t ′)ψ(x ′, t ′) + δ(x)δ(t),

(6)
where the initial condition (x = 0, t = 0) gives rise to the delta
functions. Thus, only those particle displacements of length
(x − x ′, t − t ′) contribute to the integral in Equation (6); in the
case that a particle does not move at all, Equation (6) reduces to
Q(x, t) = δ(x)δ(t). In the wording of Shlesinger et al. (1987),
the points where the direction of motion changes are called
“turning points,” therefore Q(x,t) is the probability of being a
turning point. The probability density for particles to either stop
or pass through the location x at time t, namely the propagator,
is therefore obtained as (Zumofen & Klafter 1993)

P (x, t) =
∫

dx ′
∫ t

0
dt ′Q(x − x ′, t − t ′)W (x ′, t ′). (7)

Let us now obtain the propagator in Fourier–Laplace space.
As usual, we have

P (k, s) =
∫ ∞

0
dt exp (−st)

∫ ∞

−∞
dx exp (−ikx)P (x, t), (8)

where we adopt the convention that the argument k indicates
the Fourier transform and the argument s the Laplace transform.
Substituting Equation (7) in Equation (8) and adopting ξ =
x − x ′, we can rewrite

P (k, s) =
∫ ∞

0
dt exp (−st)

∫ ∞

−∞
dξ

∫ ∞

−∞
dx ′

∫ t

0
dt ′ exp (−ikξ )

× exp (−ikx ′)Q(ξ, t − t ′)W (x ′, t ′)

=
∫ ∞

0
dt

∫ t

0
dt ′ exp (−st)Q(k, t − t ′)W (k, t ′).
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Considering the property of the Laplace transform for the
convolution product of two functions, the above expression
reduces to

P (k, s) = Q(k, s)W (k, s). (9)

If the same procedure is applied to Q(x,t) as given by
Equation (6), it is easy to show that Q(k, s) = Q(k, s)ψ(k, s)+1,
so that

Q(k, s) = 1

1 − ψ(k, s)
. (10)

Replacing Equation (10) in Equation (9), the Fourier–Laplace
transform of the propagator is obtained:

P (k, s) = W (k, s)

1 − ψ(k, s)
. (11)

This expression can be considered to be the extension of the
Montroll–Weiss equation (Montroll & Weiss 1965; Ragot &
Kirk 1997; del-Castillo-Negrete et al. 2004) to the case of
Lévy walks (Zumofen & Klafter 1993), the main differences
with the classical case being W(k,s) and the coupled form
of ψ(k, s). It is interesting to note that the Montroll–Weiss
equation was already considered in the astrophysical literature
in connection with the transport of high energy electrons (Ragot
& Kirk 1997); however, the use of a decoupled jump probability
ψ(x, t) = f (x)ψ(t) leads to problematic results, such as the
divergence of 〈x2(t)〉 at finite times (Klafter et al. 1987), when
the variance σ 2 is diverging. In the case that the mean scattering
time and the variance of ψ(x, t) are finite, normal diffusion
and the Gaussian propagator are readily recovered from the
Montroll–Weiss equation (in the astrophysical literature, see,
e.g., Webb et al. 2006 and Bian & Browning 2008).

The first quantity we want to obtain is the mean square dis-
placement, namely the second order moment of the probabil-
ity distribution function P(x,t), 〈x2(t)〉 = ∫

dx x2P (x, t). Af-
ter Fourier transforming and straightforward calculations, the
expression to study is

〈x2(t)〉 = −
∫ ∞

−∞
δ(k)

∂2P (k, t)

∂k2
dk = −∂2P (k, t)

∂k2

∣∣∣∣
k=0

.

In order to calculate the mean square displacement, it is
necessary to find an explicit expression for the propagator in
Equation (11), so that we have to obtain W(k,s) and ψ(k, s) in
Fourier–Laplace space. Proper forms of W(k,s) and ψ(k, s) for
the Lévy walk jump probability, Equation (4), are derived in
the Appendix. Applying the Laplace transform to the equation
for 〈x2(t)〉, we have

〈x2(s)〉 = − ∂2P (k, s)

∂k2

∣∣∣∣
k=0

= − ∂2

∂k2

[
W (k, s)

1 − ψ(k, s)

]
k=0

=
[
−∂2W (k, s)

∂k2

1

1 − ψ(k, s)

− W (k, s)

(1 − ψ(k, s))2

∂2ψ(k, s)

∂k2

]
k=0

, (12)

where we have taken into account that ∂W (k, s)/∂k = 0
and ∂ψ(k, s)/∂k = 0 in the limit of k → 0, as shown in
the Appendix. We note that the δ(k) in the above equations
requires the computation of the derivatives for k = 0: this means
that in the Fourier–Laplace transform of W and ψ , we can make
an expansion of exp(ikx) for small k, do the derivative, and then

take the limit k → 0. Exploiting all the terms in Equation (12)
in the limit of k → 0 and making use of the expressions for
W(k,s), ψ(k, s), W ′′(k, s), and ψ ′′(k, s) found in the Appendix,
it is easy to show that

〈x2(s)〉 = 2Av2t
μ

0

τ

Γ(3 − μ)

μ − 1
sμ−5 ≡ 2Dμsμ−5, (13)

where A is a normalization constant, v is the particle speed, t0
and τ are defined below, Γ is Euler’s gamma function, and Dμ

is the anomalous diffusion coefficient in Fourier–Laplace space.
After inverse Laplace transforming 〈x2(s)〉, we end up with

〈x2(t)〉 ∼ t4−μ ≡ tα, (14)

where α = 4 − μ, which describes a superdiffusive process for
2 < μ < 3 (Geisel et al. 1985; Klafter et al. 1987; Zumofen
& Klafter 1993). We note that while the limits μ = 3 and
μ = 2 correspond to normal diffusion and ballistic transport,
respectively, some logarithmic corrections in the mean square
displacement and different forms of the propagator are obtained
for those limits (e.g., Zumofen & Klafter 1993); anyway, we do
not describe those cases here.

It is interesting to study the trend of the anomalous diffusion
coefficient as a function of the anomalous diffusion exponent α
that describes the superdiffusive process. From Equation (13),
it is possible to re-write Dα = (Av2/τ )t4−α

0 Γ(α − 1)/(3 − α).
Thus, the value of Dα does depend on the mean scatter-
ing time of particles, namely τ . The latter is defined as
τ = ∫

tψ(x, t)dx dt = (1/2)
∫

δ(|x| − vt)ψ(t) t dx dt =∫ ∞
0 tψ(t)dt , after using Equation (4) and exploiting the delta

function. Therefore, it is necessary to have an explicit func-
tional form for the distribution of the particle jump times ψ(t)
to determine τ and then Dα . We make the following choice:

ψ(t) =
⎧⎨
⎩

A t � t0

A

(
t

t0

)−μ

t > t0
. (15)

In other words, t0 is a scale parameter such that for times t > t0,
ψ corresponds to a power-law distribution of the particle jump
times. Here, we choose ψ(t) to be constant for t < t0, although
other choices are possible. Thus,

τ = A

[∫ t0

0
tdt +

∫ ∞

t0

t

(
t

t0

)−μ

dt

]

= A

[
t2
0

2
+ t

μ

0

t
2−μ

0

μ − 2

]

= At2
0

μ

2(μ − 2)
≡ At2

0
4 − α

2(2 − α)
. (16)

Now the normalization constant A can be determined by the
requirement

∫
ψ(x, t)dxdt = 1, which gives A = (μ− 1)/μt0,

and finally

τ = μ − 1

2(μ − 2)
t0 = 3 − α

2(2 − α)
t0. (17)

Inserting Equation (16) in the expression for the anomalous
diffusion coefficient Dα , we get

Dα = 2(2 − α)

(3 − α)(4 − α)
Γ(α − 1)v2t2−α

0 . (18)
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Figure 1. Anomalous diffusion coefficient Dα as a function of the anomalous
diffusion exponent α. Dα has been normalized to the physical dimensional value
of v2t2−α

0 .

It is worth noting that, to our knowledge, this anomalous
diffusion coefficient has never explicitly been given in the
literature: on the one hand, the interest in understanding the
origin of anomalous transport has been so strong that most
attention has gone into deriving Equation (14) for the time
evolution of 〈x2〉. On the other hand, Dα is considered to be
a “nonuniversal prefactor” because it depends on the form of
ψ(t) for small t: provided that ψ(t) is well behaved for t → 0,
its specific form is not important for obtaining the anomalous
diffusion exponent α = 4 − μ, to the point that ψ(t) for
small t is not even discussed in most papers on anomalous
transport. However, we are interested in having an explicit
expression of Dα because this influences the acceleration time
(e.g., Duffy et al. 1995; Perri & Zimbardo 2012a) and finally
the maximum achievable cosmic ray energy. We also note that,
apart from factors of order 1, Dα ∼ v2t2−α

0 , corresponding to
the appropriate physical dimensions required by Equation (3).
Furthermore, we can introduce a typical length �0 = vt0, which
is uniquely defined by the delta function in Equation (4) as
the length beyond which the distribution of free path lengths
is a power law. Then, we can also write Dα ∼ �2−α

0 vα .
This expression can be “compared” with the normal diffusion
coefficient D � 1

3λv (although the physical dimensions are
clearly different): for particles of a given energy, the speed v is
a known quantity, so that in the case of normal diffusion, the
knowledge of the mean free path λ is sufficient to determine
the diffusion coefficient. Conversely, in the case of anomalous
diffusion, one needs to know both the scale length �0 and the
anomalous diffusion exponent α. As shown later, the analysis of
the energetic particle profile upstream of interplanetary shocks
can yield both these quantities. The trend of Dα as a function
of α in the case of superdiffusion is shown in Figure 1. One can
see that Dα decreases as α increases.

4. THE PROPAGATOR FOR LÉVY WALKS

The next quantity we want to obtain is the particle propagator
for a Lévy walk. The general form of the propagator in
Fourier–Laplace space is given by Equation (11). To obtain
an analytical expression, we follow Zumofen et al. (1990) and
Zumofen & Klafter (1993) and make an expansion for small k
and small s, which corresponds in physical space to the large |x|
and large t regime, i.e., to the time asymptotic regime. We note,
however, that the condition kv � s, implicitly used above to
obtain the mean square displacement, is not required here (see

Zumofen et al. 1990 and Blumen et al. 1990 for a discussion of
this point). In what follows, we only retain the leading (lowest
order) terms in k and s. It is easy to see that the leading term
of W(k,s) in k is proportional to k2 (see the Appendix); since
a lower order term in k is coming from ψ(k, s), we can take
W (k = 0, s) in Equation (11). Then, at the lowest order in k,
P(k,s) can be further simplified, since

W (0, s) =
∫ ∞

0
exp (−st) dt

∫ ∞

t

ψ(t ′) dt ′

=
∫ ∞

0
dt exp (−st)

[
1 −

∫ t

0
ψ(t ′) dt ′

]
= 1 − ψ(s)

s

(also see the Appendix). Therefore, Equation (11) reduces
to the classical form of the Montroll–Weiss equation, i.e.,
P (k, s) ∼ (1 − ψ(s))/[s(1 − ψ(k, s))] (Klafter et al. 1987;
Ragot & Kirk 1997). In Fourier–Laplace space, we have for the
coupled jump probability ψ(x, t)

ψ(k, s) = 1

2

∫ ∞

−∞
dx exp (−ikx)

∫ ∞

0
dt exp (−st)δ(|x| − vt)ψ(t)

=
∫ ∞

0
dt exp (−st)

exp (ikvt) + exp (−ikvt)

2
ψ(t)

=
∫ ∞

0
dt

exp (−qt) + exp (−q̄t)

2
ψ(t). (19)

In Equation (19), a compact notation has been adopted by
introducing the complex variables q = s + ikv and q̄ = s − ikv.
Let us now manipulate Equation (19) by adding and subtracting
the terms qt and q̄t and adding and subtracting two times the
factor 1 in the integrand. In the case of a Lévy process where the
probability distribution of the particle jump times is a power-law
decay, ψ(t) = A(t/t0)−μ with 2 < μ < 3, this leads to

ψ(k, s) = 1

2

∫ ∞

0
dt[exp (−qt) − 1 + qt]A

(
t

t0

)−μ

+
1

2

∫ ∞

0
dt[1 − qt]A

(
t

t0

)−μ

+
1

2

∫ ∞

0
dt[exp (−q̄t) − 1 + q̄t]A

(
t

t0

)−μ

+
1

2

∫ ∞

0
dt[1 − q̄t]A

(
t

t0

)−μ

.

The terms without exponentials yield

1

2

∫ ∞

0
dt[1 − qt]A

(
t

t0

)−μ

≡ 1

2

∫ ∞

0
dt[1 − qt]ψ(t)

= 1

2
(1 − qτ ),

where, as discussed above, τ = ∫ ∞
0 dt tψ(t) is the mean

scattering time. Also, the other terms are now converging even
for t → 0 and they can be manipulated as

1

2

∫ ∞

0
dt[exp (−qt) − 1 + qt]A

(
t

t0

)−μ

= A

2t
−μ

0

qμ−1
∫ ∞

0
y−μ[exp (−y) − 1 + y] dy

= A

2t
−μ

0

qμ−1Γ(1 − μ),
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having applied the change of variable y = qt and taken into
account the Cauchy–Saalschütz’s formula for the Euler gamma
function of a negative argument up to order n = 1, Γ(z) =∫ ∞

0 xz−1[exp (−x) − ∑n
m=0(−1)m(xm/m!)] dx (Whittaker &

Watson 1927). Since similar relationships can be easily found
for the terms with q̄, the probability distributions of the jump
lengths in Fourier–Laplace space eventually give

ψ(k, s) = 1 − 1

2
(q + q̄)τ +

A

2t
−μ

0

Γ(1 − μ)(qμ−1 + q̄μ−1)

=1− sτ +
A

2t
− μ

0

Γ(1−μ)[(s + ikv)μ − 1 + (s − ikv)μ − 1].

If we retain the lowest orders both in s and k, considering that
1 < μ − 1 < 2, we get

ψ(k, s) � 1 − τs + C2|k|μ−1, (20)

with

C2 = AΓ(1 − μ)

2t
−μ

0

[(exp (iπ/2))μ−1 + (exp (−iπ/2))μ−1]vμ−1

≡ AΓ(1 − μ)

t
−μ

0

cos
[π

2
(μ − 1)

]
vμ−1.

Finally, it is possible to derive the particle propagator in
Fourier–Laplace space

P (k, s) ∼ 1 − ψ(s)

s

1

1 − ψ(k, s)
= 1 − (1 − τs)

s(1 − (1 − τs + C2|k|μ−1))

= τ

τs − C2|k|μ−1
=

(
s − C2|k|μ−1

τ

)−1

, (21)

which corresponds to Equation (86) in Zumofen & Klafter
(1993). By applying the inverse Laplace transform to
Equation (21), we get

P (k, t) � exp

(
C2|k|μ−1

τ
t

)
. (22)

Note that the constant C2 given above is always less than
zero for 2 < μ < 3. The scaling properties that follow
from this expression are discussed in the next section. The
Fourier transform of the propagator just obtained has the same
form as the Fourier transform of the Lévy distribution, given
in Section 2. However, P(k,t) above is just the lowest order
expansion for small k and s and other terms can be obtained,
which make the Lévy walk P(k,t) different from L̂μ−1(k, t).
In particular, higher order terms in k, within the exponential
in Equation (22), would lead to a steeper power-law decay
of the tails of the propagator in physical space. Therefore,
the propagator for Lévy walks differs from the Lévy stable
laws, especially for large |x|. The space–time coupling of Lévy
walks has two effects on the propagator: (1) P (x, t) = 0 for
|x| > vt , since no particle can travel farther than vt in a time
t and (2) the power-law tails of P(x,t) are somewhat steeper
than Lμ−1(x, t) ∼ t/τC2|x|−μ. Indeed, Zumofen et al. (1990)
and Blumen et al. (1990) obtained the propagator for different
values of μ by a numerical inversion of Equation (11) and
found that the propagator tails actually decay slightly faster than
|x|−μ and then smoothly go to zero for |x| � vt . The fact that
P (x, t) = 0 for |x| > vt is important to avoid the divergency

of 〈x2(t)〉 = ∫
x2P (x, t)dx, which affects Lévy stable laws,

making them unsuitable for describing the superdiffusion of
particles with a finite velocity. Furthermore, the faster decay
of the tails implies that a correction has to be made to the
technique to extract the transport properties from the slope of
the energetic particle profile upstream of interplanetary shocks,
developed by Perri & Zimbardo (2007, 2008). Inspection of
Figure 2 of Zumofen et al. (1990) suggests that this correction
is on the order of −0.2 for the exponent μ in Equation (35).
However, this correction may depend on the value of μ and we
reserve a more detailed analysis of this point for future work.

4.1. Scaling Properties of the Particle Propagator

We will now derive the scaling properties of the particle prop-
agator shown in Equation (22) for an arbitrary scale transforma-
tion of space and time. The stability of Lévy distributions for
general scale transformations has been discussed, for instance,
in Consolini et al. (2005). In order to obtain the scaling proper-
ties of P(x,t), i.e., of the particle propagator in real space, let us
consider the following general transformations (Consolini et al.
2005)

x → βax, t → βbt, (23)

where a, b ∈ �, and β are positive, dimensionless transforma-
tion parameters. Thus,

P (βax, βbt) =
∫

dk exp (ikxβa) exp

(
C2|k|μ−1

τ
tβb

)
.

Considering the change of variable k = βk′, it is easy to obtain

P (βax, βbt) = β

∫
dk′ exp(ik′xβa+1) exp

(
C2|k′|μ−1

τ
tβb+μ−1

)
.

Assuming a = −1 and b = 1 − μ, the propagator simply
becomes

P

(
x

β
, β1−μt

)
= β

∫
dk′ exp (ik′x) exp

(
C2|k′|μ−1

τ
t

)
= βP (x, t).

Considering the time t0 and the length �0 defined in Section 3, we
introduce the dimensionless variables t̂ = t/t0 and x̂ = x/�0.
Then, if we set β = t̂1/(μ−1), we obtain

P

(
x̂�0

t̂1/(μ−1)
, t0

)
= βP (x, t) = t̂1/(μ−1)P (x, t),

that is, we obtain a scaling variable ξ = x̂/t̂1/(μ−1) and,
consequently, a scaling function f (ξ ) = P (ξ�0, t0). Finally,
we get a particle propagator for a superdiffusive process that
has the scaling property (Zumofen & Klafter 1993)

P (x, t) = f (ξ )

t̂1/(μ−1)
. (24)

We point out that such a scaling depends solely on the properties
of the Fourier transform of P(x,t), Equation (22).

4.2. Spectral Index for Superdiffusive Shock Acceleration

Kirk et al. (1996) have shown that the change in the en-
ergy spectral index of particles accelerated at shocks depends
precisely on the scaling properties of the particle propagator.
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Figure 2. Energy spectral index as a function of the compression ratio of the shock. The spectral index predicted by SSA for different values of the exponent α of the
mean square displacement are compared with the DSA prediction (black solid lines) both for the relativistic (left panel) and for the nonrelativistic (right panel) cases.

(A color version of this figure is available in the online journal.)

Following Kirk et al. (1996), Perri & Zimbardo (2012a) explic-
itly derived the ratio of the particle densities at the shock (n0)
and far downstream (nd) from the shock front via the expression
in Equation (24). Indeed, the propagator allows us to compute
the particle density as

n(x, t) =
∫ ∞

−∞
dx ′

∫ t

−∞
dt ′ P (x − x ′, t − t ′)Qsh(x ′, t ′), (25)

where Qsh = Φ0δ(x ′ − Vsht
′) indicates the particle injection at

the shock, which is moving with speed Vsh. Under steady state
conditions, the injection flux density Φ0 equals the flux density
advected far downstream, Φ0 = ndVd ; also, in the downstream
frame, Vsh = Vd . The density at the shock can be obtained by
computing n0 = n(x = Vsht, t) and, integrating over x ′, one
obtains

n0 = ndVd

∫ ∞

0
P (Vshz, z) dz, (26)

where we introduced z = t − t ′. Using Equation (24) and
changing to the integration variable ξ = (Vshz/�0)(z/t0)1/(1−μ),
we have

n0 = nd

Vd

Vsh

(
μ − 1

μ − 2

) ∫ ∞

0
�0f (ξ ) dξ. (27)

Considering that the normalization condition for the propagator
can be expressed as

∫ ∞
−∞ P (x, t)dx = �0

∫ ∞
−∞ f (ξ )dξ = 1, we

finally obtain (Perri & Zimbardo 2012a):

nd

n0
= 2

μ − 2

μ − 1
= 2

2 − α

3 − α
. (28)

We point out that for 1 < α < 2 the density far downstream
nd is lower than the density just downstream of the shock,
which equals n0. This result is at variance with the scenario of
DSA, which envisages a constant density downstream. Having
obtained the ratio of particle densities nd/n0, it is easy to
derive the probability of leaving the acceleration region (e.g.,
Gaisser 1990): Pesc = Φd/Φu→d , where Φd = ndVd the
particle flux exiting far downstream and Φu→d = n0v/4 is
the incoming particle flux crossing the shock from upstream to

downstream (in the shock frame). As shown in, e.g., Drury
(1983) and Gaisser (1990), one has Pesc = 4ndVd/n0v, so
that the probability for each particle to escape the acceleration
region is Pesc = 8(Vd/v)(2 − α)/(3 − α). The first order Fermi
acceleration predicts a relative momentum gain for particles
making a complete upstream–downstream cycle across the
shock given by Δp/p = (4/3)(Vu − Vd )/v (e.g., Drury 1983)
and, for ultrarelativistic particles where ΔE/E = Δp/p, an
integral energy spectrum having a slope γ̃ = Pesc/(Δp/p);
therefore, the slope of the differential energy spectrum to be
compared with that in Equation (1) for DSA is

γ = γ̃ + 1 = 6

r − 1

μ − 2

μ − 1
+ 1 ≡ 6

r − 1

2 − α

3 − α
+ 1, (29)

where we used again the relation between the anomalous
diffusion exponent α of superdiffusive motion and μ, α = 4−μ.
Basically, the new expression of the spectral index depends on
the ratio of densities, Equation (28), which stems from the non-
Gaussian properties of the propagator in Equation (25).

The expression in Equation (29) changes if nonrelativistic
particles are considered to undergo a first order Fermi ac-
celeration at the shock. Indeed, for nonrelativistic particles
ΔE/E = 2Δp/p and, introducing the integral spectral index
for momentum γ̃p, it is easy to show that γ̃p = 2(γ − 1), so that

γ = 3

r − 1

μ − 2

μ − 1
+ 1 ≡ 3

r − 1

2 − α

3 − α
+ 1. (30)

The spectral slopes in Equations (29) and (30) are plotted in
Figure 2 as a function of the compression ratio r and for
different values of the anomalous diffusion exponent α (see
the legend in the panels). A comparison with the slope expected
for a normal, Gaussian process, i.e., for DSA, is also given
both for the relativistic (left panel) and for the nonrelativistic
(right panel) cases. It can be noted that a shock acceleration
process based on superdiffusive transport of particles is able to
give us values of γ lower than DSA for a fixed value of the
compression ratio of the shock. We can understand this result
considering that for 2 < μ < 3 the escape probability is smaller
than in the case of normal diffusion, which is recovered for
μ = 3. A smaller escape probability implies a larger return

7
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probability to the shock, whose crossings provide acceleration,
so that this leads to harder spectral indices than those obtained
by DSA. In practice, in Equation (25) the power-law tails of the
propagator give, to those particles that are moving upwind from
downstream, a larger chance to return to the shock compared
with the Gaussian propagator. In a similar way, we can think that
the long free paths allowed by ψ(x, t) permit some downstream
particles to move effectively against the plasma flow and to meet
the shock again.

We can compare our results with those of Kirk et al. (1996).
They considered subdiffusive propagation, 〈x2(t)〉 ∝ tα with
α < 1, and propagators depending on a scaling variable ξ =
x̂/t̂α/2. The corresponding ratio of densities is nd/n0 = 2 − α,
which is different from Equation (28) and which implies that,
for subdiffusion, the density far downstream nd is larger than
the density n0 at the shock. Also, the subdiffusive spectral index
turns out to be, for relativistic particles,

γsub = 3

r − 1
(2 − α) + 1, (31)

which yields softer spectral indices than DSA for α < 1. Clearly,
the above expression gives harder spectral indices for α > 1 but,
as we have shown, the propagator scaling properties for Lévy
walks are different from those for subdiffusion. We also note
that a number of different propagators for different transport
regimes have been given by Webb et al. (2006).

4.3. Explicit Forms of the Propagator

In the previous subsection, we highlighted the scaling prop-
erties of the Lévy walk propagator P(x,t) using its Fourier
transform. The reason for this way of derivation is that the
Fourier back transform can be obtained only for limiting cases
(see below), while the scaling properties, being obtained from
the pristine Fourier transform, hold for all values of x and t.
Here, we give the limiting forms of the propagator in coordi-
nate space, which are obtained by Zumofen et al. (1990) and
Zumofen & Klafter (1993). For small values of the scaling vari-
able ξ = x̂/t̂1/(μ−1) � 1, one has a modified Gaussian:

P (x, t) � a0

t1/(μ−1)
exp

[
−a1

( x

t1/(μ−1)

)2
]

, (32)

where

a0 = Γ
(

μ

μ − 1

) /
π

( |C2|
τ

)1/(μ−1)

(33)

and

a1 = Γ
(

3

μ − 1

) /
2Γ

(
1

μ − 1

) ( |C2|
τ

)2/(μ−1)

. (34)

Conversely, for large distances, ξ � 1 but |x| < vt , one obtains
a power law,

P (x, t) � Γ(μ)

π
sin

[π

2
(μ − 1)

] |C2|
τ

t

|x|μ (35)

(see also Zaslavsky 2002). We can see that the value of ξ
determines the limiting forms to be used for the propagator.

We note that normal diffusion leads, in the case of a constant
diffusion coefficient, to an exponential energetic particle profile
upstream of the shock and to a constant density downstream

Figure 3. Energetic particle density profile along the shock normal coordinate.
The thin black lines represent normal diffusion. The thick blue lines represent
superdiffusion. In log–lin axes, the upstream density profile is a straight line
for normal diffusion and a bent line for superdiffusion. While the downstream
density is constant for normal diffusion, it decreases with distance from the shock
for superdiffusion. The inset shown the upstream density profile in log–log axes
for superdiffusion: the power-law profile breaks in the vicinity of the shock and
this allows us to determine the distance xbreak (see the text).

(A color version of this figure is available in the online journal.)

(e.g., Drury 1983). Conversely, superdiffusion leads, at some
distance upstream of the shock, to a power-law profile as well
as to a nonconstant density downstream; see Figure 3. We can
see that superdiffusion allows particles to move more effectively
against the advective motion of the plasma, so that the energetic
particle density is larger than the one for normal diffusion when
going upwind from the shock as well as when going from far
downstream toward the shock. The above power-law propagator
was used by Perri & Zimbardo (2007, 2008) to derive the slope
a = μ − 2 of the power-law profile of energetic particles well
upstream of the shock. Clearly, the upstream power-law profile
is obtained from the power-law form of the propagator inserted
into Equation (25). When ξ ∼ 1, the power-law form of P(x,t)
does not hold any more and indeed a break in the energetic
particle power-law profile is observed close to the shock; see
Figure 3 and experimental data in Perri & Zimbardo (2008,
2009a, 2009b). The distance in space and time of the break
from the shock can be used to estimate the length �0 = vt0, as
well as the time t0. Indeed, from ξ = 1, we obtain

x

�0
=

(
t

t0

)1/(μ−1)

, (36)

so that we can determine �0 and t0 for particles of speed v from
the observed break distance xbreak = VRtbreak and the observed
break time tbreak (here, VR is the relative velocity between the
shock and the spacecraft). For instance, solving for t0, we have

t0 = (VR/v)μ/(μ−1)tbreak. (37)

As discussed in Perri & Zimbardo (2009a, 2012a), for
nonrelativistic protons accelerated at the solar wind termination
shock, the time tbreak at which the particle time profile upstream
of the shock changes to a power-law decay is about 10 days;
since t0 = �0/v and considering protons of 2 × 103 keV (i.e.,
v ∼ 104 km s−1), the length �0 in the spacecraft frame has
been estimated to be �0 ∼ 1.5 × 105 km. Note that when
one assumes normal particle transport, the diffusion coefficient
D ∼ λv, where λ is the particle mean free path (in the case of
superdiffusion, that quantity is diverging). Common estimates
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of the mean free path for MeV particles in the heliosphere are
on the order 1 AU, that is, much larger than �0 at the termination
shock.

5. ANOMALOUS DIFFUSION COEFFICIENT AND
PARTICLE ACCELERATION TIME AT A PLANAR SHOCK

In Section 3, we derived the form of the anomalous diffu-
sion coefficient Dα as a function of the exponent α (see Equa-
tion (18)). Having obtained Dα , it is possible to compute an
expression for the mean acceleration time of particles acceler-
ated at a shock front. In the case of DSA, as discussed in Drury
(1983) and Gaisser (1990), the acceleration time can be extrap-
olated by simple microscopic arguments. More precisely, a per-
manence time can be defined by considering the ratio between
the total number of particles per unit surface in the upstream re-
gion Nu and the particle incident flux coming from upstream
Φu→d = nv/4 (under the assumption of particle isotropy),
namely t∗u = Nu/Φu→d = [

∫ 0
−∞ n exp (Vux/Du)dx]/(nv/4) ≡

4Du/(vVu). In a similar way, a downstream permanence time
can be obtained by equating the distance perpendicular to the
shock front overcome by the advecting motion of the plasma,
Δx = VdΔt , to the mean square displacement performed by
particles during their diffusive motion, 〈Δx2〉 ∼ DdΔt ; thus,
we obtain t∗d = Nd/Φu→d = nΔx/(nv/4) = 4Dd/(vVd ). The
total permanence time (also called the cycle time) depends
on both the diffusion coefficients upstream and downstream,
t∗ = t∗u + t∗d = (4/v)[(Du/Vu) + (Dd/Vd )]. Consequently, the
acceleration time can be defined as the ratio between the per-
manence time within the acceleration region and the fraction of
momentum gained by particles Δp/p = (4/3)(Vu − Vd )/v by
Fermi acceleration in a cycle:

tDacc = t∗

Δp/p
= 3

Vu − Vd

(
Du

Vu

+
Dd

Vd

)
. (38)

In the case of SSA, the same considerations can been used, that
is, the permanence time is obtained by equating the distance
due to advective motion, Δx = VdΔt , to the distance covered
because of superdiffusive propagation, 〈Δx2〉 ∼ DdαΔtα . Elim-
inating Δx, one finds a superdiffusive acceleration time

tSacc = 3

Vu − Vd

[(
Duα

V α
u

)1/(2−α)

+

(
Ddα

V α
d

)1/(2−α)]
. (39)

Equation (39) allows us to estimate the acceleration time within
the framework of SSA, with the result of the standard theory
recovered for α = 1. We can estimate the ratio between
the superdiffusive acceleration time and the normal diffusive
acceleration time by taking the ratio of Equation (39) and
Equation (38), making the assumption that Dd = Du = D � λv
and that Ddα = Duα = Dα (see Equation (18)). Considering
that t0 = �0/v, we end up with

tSacc

tDacc

= Kαv
2α−2
2−α

�0

λ
,

where

Kα =
[

2(2 − α)Γ(α − 1)

(3 − α)(4 − α)

]1/(2−α)

×
[(

1

Vu

)α/(2−α)

+

(
1

Vd

)α/(2−α)
]

VuVd

Vu + Vd

.

From the above equations, it appears that the ratio between
the acceleration times coming from the two theories depends
on the ratio between the length �0 at which the particle time
profiles exhibit a power-law decay, typical of a superdiffusive
regime, and the particle mean free path λ defined for normal
diffusion. Of course, this kind of ratio varies with the sys-
tem considered; for example, for nonrelativistic ions acceler-
ated at the termination shock �0/λ ∼ 10−5 (Perri & Zimbardo
2012a), implying acceleration times much faster in the case
of superdiffusion. This property is probably a general one: in-
deed, besides the decrease of Dα with α shown in Figure 1,
there is numerical evidence that when transport is superdif-
fusive, α > 1, the dimensionless anomalous diffusion con-
stant Dα is orders of magnitude smaller than the dimension-
less normal diffusion coefficient (e.g., Gkioulidou et al. 2007;
Pommois et al. 2007).

6. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a self-contained derivation
of the basic transport theory underlying SSA. We have given
arguments to show that the superdiffusion of particles having
finite velocity, e.g., the speed of light c, has to be described by
a Lévy random walk, that is, by a microscopic free path (or
jump) probability ψ(x, t) that is characterized by a δ-coupling
between the free path length and the free path duration, as well
as by power-law tails for the probability of long displacements,
ψ(x, t) � (A/2)δ(|x| − vt)(t/t0)−μ. In this connection, we
note that Perri & Zimbardo (2012b) found, by analyzing the
magnetic variances near the resonant time scale for energetic
electrons upstream of interplanetary shocks detected by the
Ulysses spacecraft, that the corresponding scattering times have
a power-law probability distribution with slopes 2.5 < μ < 3.5;
these are, at least partly, consistent with Lévy walks leading to
superdiffusion. This finding can give a microscopic explanation
for the electron superdiffusion observed at several shocks in the
solar wind.

Within the framework of Lévy walks, we have derived
the anomalous diffusion exponent α and, for the first time,
an explicit expression for the anomalous diffusion coefficient
Dα . We also derived the non-Gaussian, Lévy-like propagator
to leading order: the derivation of the propagator from first
principles allows us to envisage how next order corrections
can be obtained with the aim of improving the diagnostic
tools to analyze the observations. The scaling properties of the
propagator, which are derived in detail, are used to obtain the
new expression of the energy spectral indices, which are plotted
as a function of the compression ratio r and α in Figure 2. It is
important to note that SSA predicts harder spectral indices than
DSA and that this can explain a number of observations like
the hard spectra of SNR synchrotron emitting electrons (e.g.,
Bogdan et al. 1985; Whiteoak & Green 1996) and the hard
spectra of MeV ions at the solar wind termination shock (Perri
& Zimbardo 2009a, 2012a; Florinski et al. 2009). Also, in situ
observations of shock crossing in the solar wind give evidence
of some very hard spectra that are not easily explained by DSA
(van Nes et al. 1984; Lee et al. 2012). Furthermore, the Lévy
walk propagator leads to energetic particle downstream densities
lower than their density at the shock; see Equation (28) and
Figure 3. We point out that such density profiles are routinely
observed at heliospheric shocks; see, e.g., Figure 2 of Giacalone
(2012).

On the other hand, the value of the anomalous diffusion coef-
ficient Dα is fundamental for determining the acceleration time
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at shocks: we have derived Dα making a specific assumption
about the shape of ψ(t) for t < t0, i.e., a constant ψ . Other
choices, like a bell shaped ψ(t) for t < t0, would simply change
the value of the normalization constant A in Equation (18) by a
factor of order unity. It is interesting to note that superdiffusion
leads to a new scaling of the acceleration time at shocks for the
ratio of particle speed over plasma bulk speed: assuming, for
the purpose of an estimate, that Vu and Vd are of the same order,
one has

tSacc

tDacc

∼
(

v

Vu

) 2α−2
2−α �0

λ
. (40)

Since both numerical (e.g., Gkioulidou et al. 2007; Pommois
et al. 2007) and experimental (Perri & Zimbardo 2012a) esti-
mates show that �0/λ � 1, we find that SSA may lead to shorter
acceleration times than DSA.

We have shown how α and �0, and hence Dα , can be
determined by the analysis of the energetic particle profiles
upstream of the shock, i.e., by the slope of the energetic particle
intensity and by the break in the power-law profile. We note that
knowledge of both α and Dα is necessary to quantify the pace
of transport; see Equation (3). This knowledge is crucial for
determining the propagation of, e.g., solar energetic particles,
which are one of the main threats of space weather. In summary,
we can say that a number of theoretical predictions to be tested
and to be used as diagnostic tools are now developed up to
a stage appropriate to address data analysis, both in situ and
remotely.

Finally, DSA is often studied by means of the cosmic ray
transport equation called the Parker equation. It is desirable to
describe SSA by a differential transport equation, too, and it is
well known that anomalous transport can be effectively studied
by fractional derivatives (Metzler & Klafter 2000, 2004; del-
Castillo-Negrete et al. 2004; Zaslavsky 2002; Ragot & Kirk
1997; Webb et al. 2006; Bian & Browning 2008). We point
out, however, that consideration of the space–time coupling
that characterizes Lévy walks requires the use of the so-called
fractional material derivative (Sokolov & Metzler 2003; Metzler
& Klafter 2004), which indeed involves both the space and
time derivatives and which can be written, in Fourier–Laplace
space, in terms of the complex variables q = s + ikv and
q̄ = s − ikv introduced in Section 3 (cf. with Equation (56) of
Metzler & Klafter 2004). Future theoretical work will address
the formulation of a generalized Parker equation in terms of
fractional material derivatives.

This work was supported in part by the Geoplasmas project
of the European Union FP7, grant agreement no. 269198. S.P.’s
research was supported by “Borsa Post-doc POR Calabria FSE
2007/2013 Asse IV Capitale Umano Obiettivo Operativo M.2.”

APPENDIX

DERIVATION OF THE PROBABILITY OF JUMP LENGTH
ψ(k, s) AND WALK DENSITY W(k,s) IN THE

FOURIER–LAPLACE SPACE

In order to derive an expression for the propagator in
Fourier–Laplace space (see Equation(11)), we need to com-
pute the probabilities W(k,s) and ψ(k, s) that describe the mi-
croscopic motion of particles. Inserting Equation (4) in Equa-
tion (5), we get W (x, t) = 1

2 (δ(|x|−vt)
∫ ∞
t

dt ′ψ(t ′)), which, in

Fourier–Laplace space, under symmetry conditions, becomes

W (k, s) = 1

2

∫ ∞

−∞
dx

∫ ∞

0
dt exp (−ikx)

× exp (−st)δ(|x| − vt)
∫ ∞

t

dt ′ψ(t ′)

= 1

2

∫ ∞

0
dt exp (−ikvt) exp (−st)

∫ ∞

t

dt ′ψ(t ′)

+
1

2

∫ ∞

0
dt exp (ikvt) exp (−st)

∫ ∞

t

dt ′ψ(t ′)

= 1

2

∫ ∞

0
dt[exp (−ikvt) + exp (ikvt)]

× exp (−st)
∫ ∞

t

dt ′ψ(t ′)

so that we finally obtain

W (k, s) =
∫ ∞

0
dt exp (−st) cos (kvt)

∫ ∞

t

dt ′ψ(t ′). (A1)

The first order derivative with respect to k is simply

W ′(k, s) = −
∫ ∞

0
exp (−st) sin (kvt)vt

∫ ∞

t

dt ′ψ(t ′), (A2)

which goes to zero in the limit of k → 0. The second order
derivative with respect to k, in the limit of k → 0, has
the expression W ′′(k, s) = − ∫ ∞

0 dt exp (−st)v2t2
∫ ∞
t

dt ′ψ(t ′).
In the framework of a Lévy walk model, the probability
distribution function of the times associated with the jumps
of particles follows a power-law decay for times t > t0, namely
ψ(t) = A(t/t0)−μ, where A is the normalization constant. Note
that this power-law behavior holds for asymptotic times, more
specifically far from any transient phase of the system evolution.
This condition is fundamental when deriving the mean square
displacement of particles, since the physical time dependence is
the one for times much greater than the characteristic times of
the system. Thus, the second order derivative becomes

[
∂2W (k, s)

∂k2

]
k=0

= −
∫ ∞

0
dt exp (−st)v2t2

∫ ∞

t

dt ′A
(

t ′

t0

)−μ

= −
∫ ∞

0
dt exp (−st)

v2t2

t
−μ

0

A

1 − μ
t1−μ

= A

μ − 1
v2t

μ

0

∫ ∞

0
dt exp (−st)t3−μ

= A

μ − 1

v2t
μ

0

s4−μ
Γ(4 − μ). (A3)

The probability distribution of the jump lengths in
Fourier–Laplace space and in the limit of k → 0 can be written
as

ψ(k, s) ∼
∫ ∞

0
dt

∫ ∞

−∞
dx ψ(x, t)

[
1− ikx− k2x2

2

]
exp (−st),

(A4)
where the term exp (−ikx) has been expanded up to the second
order. The second term in brackets in Equation (A4) is odd
in the variable x, therefore it goes to zero when integrated
over [−∞,∞]. If we also make the assumption st � 1,
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Equation (A4) can be further approximated as

ψ(k, s) ∼
∫ ∞

0
dt

∫ ∞

−∞
dx ψ(x, t)[1 − st]

−
∫ ∞

0
dt

∫ ∞

−∞
dx ψ(x, t)

k2x2

2
exp (−st), (A5)

having expanded the factor exp (−st) in the first term on the
right-hand side. Note that the term

∫ ∞
0 dt

∫ ∞
−∞ dx ψ(x, t)t ≡ τ

in Equation (A5) gives the definition of the mean scattering time
of particles, so that

ψ(k, s) ∼ 1 − sτ −
∫ ∞

0
dt

∫ ∞

−∞
dx ψ(x, t)

k2x2

2
exp (−st).

(A6)
Exploiting the probability for the jump lengths ψ(x, t) in
Equation (A6), by using Equation (4) for a Lévy walk, and,
after some algebra, we obtain

ψ(k, s) ∼ 1 − sτ − A

2
k2v2t

μ

0

Γ(3 − μ)

s3−μ
= 1 − sτ − C1k

2sμ−3,

(A7)
where the constant C1 = Av2t

μ

0 Γ(3 − μ)/2. Equation (A7)
corresponds to Equation (37) in Klafter et al. (1987) with their
parameter ν = 1. The first order derivative ∂ψ(k, s)/∂k → 0
for k → 0, while the second order derivative gives

∂2ψ(k, s)

∂k2
= −2C1s

μ−3. (A8)
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