
ar
X

iv
:a

st
ro

-p
h/

05
01

39
0 

v1
   

18
 J

an
 2

00
5

DRAFT VERSIONJANUARY 18, 2005
Preprint typeset using LATEX style emulateapj v. 2/19/04

ON THE EXACT ANALYTIC EXPRESSIONS FOR THE EQUITEMPORAL SURFACES IN GAMMA-RAY BURST
AFTERGLOWS.

CARLO LUCIANO BIANCO1 AND REMO RUFFINI2

ICRA — International Center for Relativistic Astrophysics. and
Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Roma, Italy.

Draft version January 18, 2005

ABSTRACT
We have recently shown (see Bianco & Ruffini 2004) that markeddifferences exist between the EQuiTempo-

ral Surfaces (EQTSs) for the Gamma-Ray Burst (GRB) afterglows numerically computed by the full integration
of the equations of motion and the ones found in the current literature expressed analytically on the grounds
of various approximations. In this Letter the exact analytic expressions of the EQTSs are presented both in
the case of fully radiative and adiabatic regimes. The new EQTS analytic solutions validate the numerical
results obtained in Bianco & Ruffini (2004) and offer a powerful tool to analytically perform the estimates of
the physical observables in GRB afterglows.
Subject headings:gamma rays: bursts — Shock waves — Hydrodynamics — ISM: kinematics and dynamics

— gamma rays: observations — relativity

1. INTRODUCTION

We have recently shown (see Bianco & Ruffini 2004) that
in Gamma-Ray Bursts (GRBs) marked differences exist be-
tween the equitemporal surfaces (EQTSs) for the afterglow
numerically computed by the full integration of the equa-
tions of motion and the ones found in the current literature,
expressed analytically on the grounds of various approxima-
tions. Indeed, the approximate formulae in the current liter-
ature overestimate the size of the EQTSs approximately by a
factor of 27% or 20% in the early part of the afterglow (td

a = 35
s), in the adiabatic and fully radiative cases respectively. Cor-
respondingly, they underestimate the size of the EQTSs ap-
proximately by a factor of 15% or 28% in the latest part of the
afterglow (td

a = 4 days). The precise knowledge of the EQTSs
is essential to obtain the observational properties of GRBs.

In this Letter, progress is made in making manifest the dif-
ference between the exact expressions of the EQTSs and the
ones obtained by approximate methods in the current litera-
ture: the exact analytic expressions of the EQTSs are found in
the case of both fully radiative and adiabatic regimes.

2. THE EQTS FOR GRBS

2.1. The afterglow hydrodynamical equations

The discovery of the afterglow (Costa et al. 1997) has of-
fered a very powerful tool for the understanding of GRBs.
Consensus has been reached that such an afterglow originates
from a relativistic shock front propagating in the InterStel-
lar Medium (ISM) and that its description can be obtained
from energy and momentum conservation in relativistic hy-
drodynamics. Consensus exists, as well, that the shock fluid
is concentrated in a thin shell. The fulfillment of the en-
ergy and momentum conservation in the laboratory reference
frame leads to (see e.g. Piran 1999; Ruffini et al. 2003, and
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dEint = (γ − 1)dMismc2

dγ = −
γ2 − 1

M
dMism

dM =
1− ε

c2
dEint + dMism

dMism = 4πmpnismr2dr

(1)

whereγ, Eint andM are the pulse Lorentz gamma factor, in-
ternal energy and mass-energy respectively,nism is the ISM
number density,mp is the proton mass,ε is the emitted frac-
tion of the energy developed in the collision with the ISM and
Mism is the amount of ISM mass swept up within the radiusr:

Mism = mpnism
4π

3

(

r3 − r◦
3
)

, (2)

wherer◦ is the starting radius of the shock front. In general,
an additional equation is needed in order to express the de-
pendence ofε on the radial coordinate. In the following,ε is
assumed to be constant and such an approximation appears to
be correct in the GRB context.

2.2. The definition of the EQTSs

For the case of a spherically symmetric expansion consid-
ered in this Letter, the EQTSs are surfaces of revolution about
the line of sight. The general expression for their profile,
in the formϑ = ϑ(r), corresponding to an arrival timeta of
the photons at the detector, can be obtained from (see e.g.
Ruffini et al. 2003; Bianco & Ruffini 2004):

cta = ct (r) − r cosϑ+ r⋆ , (3)

wherer⋆ is the initial size of the expanding source,ϑ is the
angle between the radial expansion velocity of a point on its
surface and the line of sight, andt = t(r) is its equation of mo-
tion, expressed in the laboratory frame, obtained by the inte-
gration of Eqs.(1). From the definition of the Lorentz gamma
factorγ−2 = 1− (dr/cdt)2, we have in fact:

ct (r) =
∫ r

0

[

1− γ−2
(

r ′
)]−1/2

dr′ , (4)
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whereγ(r) comes from the integration of Eqs.(1).
It is appropriate to underline a basic difference between the

apparent superluminal velocity orthogonal to the line of sight,
v⊥ ≃ γv, and the apparent superluminal velocity along the line
of sight, v‖ ≃ γ2v. In the case of GRBs, this last one is the
most relevant: for a Lorentz gamma factorγ ≃ 300 we have
v‖ ≃ 105c. This is self-consistently verified in the structure of
the “prompt radiation” of GRBs, see e.g. Ruffini et al. (2002).

2.3. The case of an adiabatic regime

We first examine the case of an adiabatic regime (ε = 0).
The dynamics of the system is described by the following
solution of the Eqs.(1) (see e.g. Piran 1999, and references
therein):

γ2 =
γ2
◦ + 2γ◦

(

Mism/MB
)

+
(

Mism/MB
)2

1+ 2γ◦
(

Mism/MB
)

+
(

Mism/MB
)2 , (5)

whereγ◦ andMB are respectively the values of the Lorentz
gamma factor and of the mass of the accelerated baryons at
the beginning of the afterglow phase.

We have performed an exact analytic integration of Eq.(4)
using Eq.(5) and, as a consequence, we have the exact analytic
solution:

t (r) =

(

γ◦ −
m◦

i

MB

)

r − r◦
c
√

γ2
◦ − 1

+
m◦

i

4MBr3
◦

r4 − r4
◦

c
√

γ2
◦ − 1

+ t◦ , (6)

wheret◦ is the value of the timet at the beginning of the
afterglow phase andm◦

i = (4/3)πmpnismr3
◦.

The analytic expression for the EQTS in the adiabatic
regime can then be obtained substitutingt(r) from Eq.(6) in
Eq.(3). We obtain:

cosϑ =
m◦

i

4MB

√

γ2
◦ − 1

[

(

r
r◦

)3

−
r◦
r

]

+
ct◦
r

−
cta
r

+
r⋆

r
−

γ◦ −
(

m◦
i /MB

)

√

γ2
◦ − 1

[ r◦
r

− 1
]

.

(7)

2.4. The case of a fully radiative regime

We turn now to the case of a fully radiative regime (ε = 1).
The dynamics of the system is given by the following solution
of the Eqs.(1) (see e.g. Piran 1999; Ruffini et al. 2003, and
references therein):

γ =
1+

(

Mism/MB
)(

1+ γ−1
◦

)[

1+
(

1/2
)(

Mism/MB
)]

γ−1
◦ +

(

Mism/MB
)(

1+ γ−1
◦

)[

1+
(

1/2
)(

Mism/MB
)] . (8)

Again, like in the adiabatic case, we have performed an ex-
act analytic integration of Eq.(4) using Eq.(8). As a conse-
quence, we have (Ruffini et al. 2003):

t (r) =
MB − m◦

i

2c
√

C
(r − r◦) +

m◦
i r◦

8c
√

C

[

(

r
r◦

)4

− 1

]

+
r◦
√

C
12cm◦

i A2
ln







[

A+
(

r/r◦
)]3(

A3 + 1
)

[

A3 +
(

r/r◦
)3

]

(A+ 1)3







+ t◦

+
r◦
√

3C
6cm◦

i A2

[

arctan
2
(

r/r◦
)

− A

A
√

3
− arctan

2− A

A
√

3

]

,

(9)
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FIG. 1.— Comparison between EQTSs in the adiabatic regime (solid lines)
and in the fully radiative regime (dashed lines). The upper plot shows the
EQTSs forta = 5 s, ta = 15 s,ta = 30 s andta = 45 s, respectively from the
inner to the outer one. The lower plot shows the EQTS at an arrival time of 2
days.

whereA = 3

√

(

MB − m◦
i

)

/m◦
i andC = MB

2(γ◦ − 1)/(γ◦ + 1).
The analytic expression for the EQTS in the fully radiative

regime can then be obtained substitutingt(r) from Eq.(9) in
Eq.(3). We obtain:

cosϑ =
MB − m◦

i

2r
√

C
(r − r◦) +

m◦
i r◦

8r
√

C

[

(

r
r◦

)4

− 1

]

+
r◦
√

C
12rm◦

i A2
ln







[

A+
(

r/r◦
)]3(

A3 + 1
)

[

A3 +
(

r/r◦
)3

]

(A+ 1)3







+
ct◦
r

−
cta
r

+
r⋆

r
+

r◦
√

3C
6rm◦

i A2

[

arctan
2
(

r/r◦
)

− A

A
√

3
− arctan

2− A

A
√

3

]

.

(10)

2.5. Comparison between the two cases

The two EQTSs are represented at selected values of
the arrival timeta in Fig. 1, where the illustrative case of
GRB 991216 has been used as a prototype. The initial con-
ditions at the beginning of the afterglow era are in this case
given byγ◦ = 310.131,r◦ = 1.943×1014 cm,t◦ = 6.481×103

s,r⋆ = 2.354×108 cm (see Ruffini et al. 2001a,b, 2002, 2003).
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3. APPROXIMATIONS ADOPTED IN THE CURRENT LITERATURE

In the current literature two different treatments of the
EQTSs exist: one by Panaitescu & Mészáros (1998) and one
by Sari (1998) later applied also by Granot et al. (1999) (see
also Piran 1999, 2000; van Paradijs et al. 2000, and references
therein).

In both these treatments, instead of the more precise dy-
namical equations given in Eqs.(5,8), the following simplified
formula, based on the “ultrarelativistic” approximation,has
been used:

γ ∝ r−α , (11)

whereα = 3 in the fully radiative andα = 3/2 in the adiabatic
cases. A critical analysis comparing and contrasting our exact
solutions with Eq.(11) has been presented in Ruffini & Bianco
(2004). As a further approximation, instead of the exact
Eq.(4), they both use the following expansion at first order
in γ−2:

ct (r) =
∫ r

0

[

1+
1

2γ2 (r ′)

]

dr′ . (12)

Correspondingly, instead of the exact Eq.(6) and Eq.(9), they
find:

t (r) =
r
c

[

1+
1

2(2α+ 1)γ2 (r)

]

, (13a)

t (r) =
r
c

[

1+
1

16γ2 (r)

]

. (13b)

The first expression has been given by Panaitescu & Mészáros
(1998) and applies both in the adiabatic (α = 3/2) and in the
fully radiative (α = 3) cases (see their Eq.(2)). The second
one has been given by Sari (1998) in the adiabatic case (see
his Eq.(2)). Note that the first expression, in the caseα = 3/2,
does not coincide with the second one: Sari (1998) uses a
Lorentz gamma factorΓ of a shock front propagating in the
expanding pulse, withΓ =

√
2γ. Without entering into the

relative merit of such differing approaches, we show that both
of them lead to results very different from our exact solutions.

Instead of the exact Eqs.(3), Panaitescu & Mészáros (1998)
and Sari (1998) both uses the following equation:

cta = ct (r) − r cosϑ, (14)

where the initial sizer⋆ has been neglected. The following
approximate expressions for the EQTSs have been then pre-
sented:

ϑ = 2arcsin





1
2γ◦

√

2γ2
◦cta
r

−
1

2α+ 1

(

r
r◦

)2α



 ,(15a)

cosϑ = 1−
1

16γ2
L

[

(

r
rL

)−1

−
(

r
rL

)3
]

. (15b)

The first expression has been given by Panaitescu & Mészáros
(1998) and applies both in the adiabatic (α = 3/2) and in the
fully radiative (α = 3) cases (see their Eq.(3)). The second
expression, whereγL ≡ γ(ϑ = 0) over the given EQTS and
rL = 16γ2

Lcta, has been given by Sari (1998) in the adiabatic
case (see his Eq.(5)).

In Bianco & Ruffini (2004) we have compared and con-
trasted the results of the approximate expressions given in
Eqs.(15) with the ones based on the exact solutions, there nu-
merically computed and here given for the first time in ana-
lytic form in Eqs.(7,10).

4. CONCLUSIONS

The formulae we have obtained are manifestly different
from the ones in the current literature. They are valid for
any value of the Lorentz gamma factor and they may be ap-
plied, as well, to the physics and astrophysics of supernovae
and active galactic nuclei. However, as suggested by the ref-
eree, a word of caution is appropriate: the applicability ofthe
thin shell approximation, used in deriving Eqs.(1), is likely
to break down when the non relativistic Newtonian phase is
approached. There, the swept up ISM mass is no longer con-
centrated in a thin shell as exemplified, e.g., by the Sedov-
Taylor-Von Neumann solution (see e.g. Sedov 1993).

The new EQTS analytic solutions validate the numerical
results obtained in Bianco & Ruffini (2004). We have indeed
verified the perfect agreement between the results of the nu-
merical computations, presented there, and the new analytic
results, presented here.

From the numerical examples given in Bianco & Ruffini
(2004) it is also clear that differences exist between the cor-
rect treatment and the approximate ones all along the GRB
afterglow process: the approximate treatments systematically
overestimate the size of the EQTSs in the early part of the
afterglow and underestimate it in the latest part.

The analytic results presented in this Letter, when ap-
plied to a specific model of the shock front emission process
(Ruffini et al. 2004) duly taking into account the ISM filamen-
tary structure (Ruffini et al. 2005), allows to make precise pre-
dictions of the luminosity in fixed energy bands and of the
instantaneous as well as time integrated spectra of GRB after-
glow.

We are thankful to the anonymous referee for very good
suggestions on the manuscript.
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