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ABSTRACT
Due to their opennature andpopularity, Android-baseddeviceshave
attracted several end-users around theWorld andareoneof themain
targets for attackers. Because of the reasons given above, it is neces-
sary to build tools that can reliably detect zero-daymalware on these
devices. At the moment, many of the frameworks that have been
proposed to detectmalware applications leverageMachine Learning
(ML) techniques. However, an essential requirement to build these
frameworks consists of using very large and sophisticated datasets
for model construction and training purposes. Their success, indeed,
strongly dependson the choiceof the right features used for building
a classification model providing adequate generalisation capabil-
ity. Furthermore, the creation of a training dataset that well rep-
resents the malware properties and behaviour is one of the most
critical challenges inmalware analysis. Therefore, themain aimof this
paper is proposing anewdataset calledUnisaMalwareDataset (UMD)
available on http://antlab.di.unisa.it/malware/, which is based on the
extraction of static and dynamic features characterising themalware
activities. Additionally, we will show some experiments concerning
commonML tools to demonstrate how it is possible to build efficient
ML-based malware classification frameworks using the proposed
dataset.
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1. Introduction

Android-based devices have recently attracted numerous end-users around theWorld, and
today the Android operating system is one of the main targets for malware threats. There
are currently many types of unprotected Android devices, such as smartphones, tablets,
smart TVs, wearable devices (e.g. Google glasses), and so on. At the same time, a huge
number of apps become available on third-party marketplaces that often do not imple-
ment any pre-admission malware check. A study of only a few years ago (Symantec, 2018),
reported an average of about 38,000 new malware samples detected per day over. Again,
the number of mobile app downloads observed worldwide is expected to reach 352.9
billion in 2021 (Statista, 2019). According to Ericsson mobility report (Cerwall, 2015), by
2020, smartphones’ subscription will be more than 6 billion, and mobile devices will
generate 80% percent of network traffic.
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With the rapid growth of malware technologies targeted explicitly on the Android plat-
form (Potha et al., 2020), researchers are attempting to hinder them by proposing more
effective malware analysers able to operate at runtime or before launching an applica-
tion. Different static and dynamic approaches have been proposed to extract representa-
tive behavioural information of Android apps and develop models capable of detecting
malicious apps and identifying their type. These methods are often combined with Artifi-
cial Intelligence (AI), like Machine Learning (ML) or Deep Learning (DL) techniques (Tian
et al., 2020), because they can learn complex patterns, features, and relationships from
huge amounts of data coming from the observation of past experiences (Ogiela, 2010). In
particular, we remark that in the last decade, DL techniques have played an increasingly
important role inmalware classification (Ficco, 2019, june; Karbab et al., 2018; Martín García
et al., 2018). However, such techniques require a large number of samples. One of themost
criticalmalware analysis challenges is creating adataset that represents themalware’s char-
acteristics and behaviour to be used for model training and knowledge construction. For
example, Lashkari et al. (2018) proposed a systematic approach to generate Android mal-
ware datasets by using real smartphones instead of emulators and develop a new dataset
called CICAndMal2017.

This paper’s main aim is to propose a new dataset, called Unisa Malware Dataset (UMD),
based on the extraction of static and dynamic features characterising themalware program
activity.Wewill also show some experiments based on the use of commonML endDL tech-
niques to demonstrate how it is possible to build efficient malware classification solutions
by using the proposed dataset for properly training several kinds of AI-based models.

The rest of the paper is organised as follows: Section 2will present an overviewof related
works aboutmalware classificationmethods for Android devices. Section 3will describe the
static and dynamic features extracted to build the UMD dataset. Section 4 will present the
CuckooDroid sandboxused toextract the static anddynamic features. Section5will present
an overview of the proposed approach adopted to perform our experiments. Section 6 will
show the steps about the dataset definition. Section 7 will present the results of our experi-
ment basedon theproposeddataset. Finally, Section 8will show the conclusions and future
works.

2. Related works

Nowadays, many detection frameworks and methodologies based on static and dynamic
analysis have been proposed (Chan & Song, 2014; Reina et al., 2013; Taheri et al., 2019)
to counter the continuous growth and diffusion of Android malware. However, it is pos-
sible to find other important detection approaches. Static approaches analyse the program
structure to acquire a clear view of its behaviour by performing reverse engineering, hence
inferring a database of signatures useful to identify known attacks. For example, Zhang
et al. (2014) proposed a novel semantic-based approach for classifying Android malware
by using dependency graphs that were created from a static analysis of the application
code. Again, Onwuzurike et al. (2019) presented MaMaDROID, a new malware detection
solution for Android that is based on static analysis and checks the sequences of API calls
associated with the activity of an application, to map them to their packages and families.
However, static approaches are adversely affected by the use of obfuscation techniques,
and also, they are ineffective against polymorphic malware. In fact, this malware family
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always adopts a transformation engine generating new decryption routines for the mali-
cious code to be executed without the need to modify the code itself. In this way, the
main feature of polymorphic malware is making any signature-based detection technique
practically ineffective.

This is the reason why, recently, the approaches based on dynamic analysis are starting
to complement and often substitute the static ones in the detection of Android malware.
Dynamic techniques analyse the run time behaviour of the malicious code while it is being
executed (Egele et al., 2008). For example, Aafer et al. (2013) present DroidAPIminer, a new
detection system that observes the most frequently used Android API calls, while Shabtai
et al. (2010) propose a similar framework called Andromaly, that can extract many types of
dynamic features.

Furthermore, many works have adopted ML and DL techniques for both static and
dynamic malware analysis (David & Netanyahu, 2015). Aonzo et al. (2020) present BAd-
DroIds, a mobile application that leverages deep learning for detecting malware on
resource-constraineddevices.McLaughlin et al. (2017)proposeadeepconvolutional neural
network to analyse raw sequences of opcodes extracted from disassembled Android mal-
ware. Kolosnjaji et al. (2016) use DNNs, convolutional layers, and recurrent layers to analyse
the sequence of system calls extracted during apps’ execution. D’Angelo et al. (2020) pro-
pose a malware detector based on sparse Autoencoders and dynamic sequences of API
calls.

Lastly, since Android-based devices are often used in each context, another important
research area is the Internet Of Things (IoT) world. IoT devices have often worked with
Android OS, and they are capable of collecting and exchanging massive quantities of data
at every moment. IoT devices are usually equipped with sensors that measure, detect, and
store changes in their environment as data. At the same time, they use the Internet to con-
nect toother devices and systems for sharing their data. However, a recent survey estimated
that 20% of companies had experienced at least one IoT-based attack, and IoT’s worldwide
spending on security will increase from $1.5 billion in 2018 to $3.1 billion in 2021 (Gart-
ner, 2018) to protect themselves from these threats. For example, H. Li et al. (2018) propose
a DL schema to reduce network traffic, while Ghosh and Grolinger (2019) propose a DL
approach for data dimensions reduction with Autoencoders.

3. Analysed features

As just discussed previously, there are two types of malware analysis approaches, namely,
Static Analysis and Dynamic Analysis. In the first one, program-syntax behaviour is anal-
ysed by performing reverse engineering operations. The obtained features constitute static
information available for describing the program structure and execution flow. In the
second one, the run time behaviour of the malicious code is analysed, and its features
become dynamic information describing the program runtime activities. Generally, Static
and Dynamic techniques are often combined to improve the probabilities of identifying an
application as malware and collecting many types of features that bring with them fun-
damental knowledge about the involved program. For these reasons, and according to
related work experiences, we decided to use the following static and dynamic features for
describing the program behaviour:
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• Hash Fingerprints: Hash functions are often used to identify an application as malware.
They arebasedon the concept of collision andamathematical theory about thedifficulty
of an attacker to find two arbitrary strings that have the same hash value. It is possible to
use many types of hashing algorithms, which are also used to create digital fingerprints
during a forensics analysis. For this reason, we decided to include the following hash
values:MD5, SHA1, SHA256 and SHA512.

• Permissions: Since the execution of Android applications is based on permission mech-
anisms, another type of feature that has been included in the proposed dataset is the
list of permissions of an application. Generally, these are always contained in an XML file
called AndroidManifest, and they are usually classified according to their level of danger.
For example, an application could require one or more permissions to execute extra or
unnecessary actions.

• Application Info: There is other static information that could be used during a malware
analysis, such as activities, services, receivers, and providers. Because they usually play
an important role during a mobile application’s life-cycle, we decided to include in our
dataset this extra information for each analysed application.

• NetworkFlows:Androidmalware applicationsusually use thenetwork to sendpotentially
sensitive information or install other viruses on the end-user devices. Therefore, some
useful features (D’Angelo & Palmieri, 2021) to be used for analysing amobile application
are: Hosts involved, DNS requests, and HTTP/HTTPS requests. This information is usually
collected by network analysis tools, such as Tpcdump, TcpFlow, Wireshark and so on. In
general, all network flows are stored as PCAP files, which contain all network packets
collected during the dynamic analysis. For these reasons, we decided to include in our
dataset the list of network requests and two types of PCAP files (i.e. normal and sorted).

• DynamicAPI Calls:Another operation that is usually done during amalware analysis con-
sists of tracing the behaviour of an application. In particular, it is possible to trace the
flow of API calls or System calls. These calls can be collected with specific tools, such as:
Frida, Appmon, Strace and Droidmon (Frida, 2020; Idanr, 2020b; Patnaik, 2020). However,
we cannot use these tools simultaneously on the same process because they try to use
another tool, called Ptrace. Therefore, we decided to include in our dataset the sequence
of API calls invoked during the app’s execution instead of analysing only the presence or
absence of certain API calls or System calls. Besides, we included a timestamp and other
information about the invoked method for each stored API call as a JSON file.

4. CuckooDroid sandbox

In recent years, several Android emulation and runtime analysis solutions, often based
on sandboxing technologies, have been proposed, such as for example Droidbox (Desnos
& Lantz, 2011), DroidMat (Wu et al., 2012) and Copperdroid (Tam et al., 2015). These solu-
tions supportedmultiple facilities such as Permissions, Intents, and API calls as the features
that can be used for their analysis activity. While quite useful, these solutions are not
fully able to tackle anti-emulation. Fortunately, it is possible to use a set of advanced
sandboxes, such as Genymotion, based onMobile Security Framework (MobSF), and Cuck-
ooDroid (Abraham, 2020; CuckooDroid, 2020; Genimotion, 2020; Idanr, 2020a), to extract
static and dynamic information. For our malware analysis, we decided to use CuckooDroid
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Figure 1. High-level architecture of Cuckoo.

because it is a specific extension of Cuckoo to analyse Android applications. In addition,
also CuckooDroid is an open-source tool (Guarnieri et al., 2020a, 2020b).

As just remarked, CuckooDroid is an extension of Cuckoo, and it is an open-source sand-
box that was written with Python 2.7. Both present the same high-level architecture, as it
is shown in Figure 1. This architecture consists of two main components: a Host part and a
Guest part.

Generally, the first one is a Host machine that runs the central management software,
while the Guest part consists of one or more physical or virtual machines where the appli-
cations are analysed. In particular, the centralmanagement software allows the submission
of applications to be analysed and permits communication among the host machine and
the guest machines. However, the CuckooDroid sandbox can communicate with only one
of the guest machines, which can be of three types: Android On Linux Machine (with an
Android emulator installed on a Linuxmachine), Android device cross-platform (with a phys-
ical Android-based device), and Android emulator (with an Android emulator installed on
the host machine). For our analysis, we used the third type of guest machine (i.e. Android
Emulator), which consists of the following modules, as shown in Figure 2:

• Python Agent: is a Python script that permits to manage the communication between
the host machine and the guest machine.

• Android Analyser: is a Python script installed during the configuration of the guest
machine.

• Xposed: is a framework that can interact with the othermodules or to communicate with
the other applications.

• Superuser: is an Android application that can manage root permissions required by any
applications.

• Content Generator: is an Android application that can generate a random list of contacts.
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Figure 2. Android emulator architecture.

• AAPT-ARM: is a special module that can extract the Main Activity name and other
important information from the analysed application.

For eachanalysedapplication, CuckooDroid creates adedicateddirectory identifiedwith
an ID. The final files are stored in such a directory. For example, analysis.log is a file that con-
tains the high-level information about the analysis done, dump.pcap and dump_sorted.pcap
contain the network packets that were collected during the analysis done, report.html and
report.JSON contain static information, such as hash values, network requests, activities,
services and so on.

4.1. Dynamic API calls

Asalready remarked, thedynamicAPI calls play an important role inAndroidmalwareanaly-
sis because they can showanapplication’s behaviour. According toSection3,wedecided to
include in our dataset the sequence of API calls invoked during the app’s execution instead
of analysing only the presence or absence of specific API calls or System calls. Besides, we
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Figure 3. Droidmon.log file.

included a timestamp and other information about the invokedmethod for each storedAPI
call as a JSON file.

The CuckooDroid sandbox can collect dynamic API calls. In particular, it is based on
two very important modules: Xposed and Droidmon, as shown in Figure 2. More precisely,
Droidmon is an Android application that can trace API calls and store them in the Logcat
file. Each API call is saved as a JSON object in the Logcat file with the help of another file
called hooks.JSON, which contains the list of API calls to trace as JSON objects. At the end
of each analysis, CuckooDroid saves each dynamic API call (that were previously stored in
the Logcat file) in two files: droidmon.log and droidmon_error.log, as it is shown in Figure 3.

5. The proposed approach

The proposed approach consists of three important steps: (i) analysis of themalware appli-
cations and extraction of their features by using CuckooDroid; (ii) representation of their
dynamic behaviour (dynamic API calls) with a sequence of sparse matrices, also called API-
Images (D’Angelo et al., 2020); and (iii) classification of the analysed applications inmultiple
families of malware by training a Convolutional Neural Network (CNN) (Lu, 2020; Srivastava
& Biswas, 2020) and a Recurrent Neural Network (RNN) (Heinrich & Wermter, 2018), based
on the above sparse matrices of features.

5.1. Dynamic behaviour with the API-images

As described in D’Angelo et al. (2020), API-images are a set of sparse matrices represent-
ing the dynamic behaviour for each analysed application. In particular, for each Android
application, an API-image can be considered as a complete snapshot that represents the
dynamic behaviour obtained during the analysis with CuckooDroid. In particular, each API-
Image creation consists of two phases: (i) identification of each API call with a unique ID
number; and (ii) creation and population of the API-image matrices.

The first step can be conducted by creating a dictionary where each API call has an ID
number used to translate the textual information intonumerical information. Then, for each
application, we consider each two consecutive numerical calls as a pair of coordinates and
use them as indexes to store a numeric value in the sparse matrix associated with the con-
sidered application. In other words, each consecutive pair of dynamic API calls is used to
draw a fixed point in the API-image.

For example, let a1, a2, and a3 be three APIs where a2 is called after a1 and a3 is called
after a2. We can consider two pairs of coordinates, P1 = (1, 2) and P2 = (2, 3), respectively,
and we can use these pairs to draw two points in the API-image. The pair P1 is associated
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Figure 4. The workflow to obtain an API-image.

with the point identified by the consecutive API calls a1 and a2, while the pair P2 is asso-
ciated with the point referring to the consecutive API calls a2 and a3. Again, applications
may invoke several times, in their activity, the same sequence of API calls, so that some pair
can occur several times, that is, more than once. In terms of API-image, this situation can
be represented by multiple dots located at the same coordinates, but by using a different
colour (RGB or Gray-scale). Figure 4 shows the workflow to obtain an API-image from the
proposeddataset,while Figure 5 shows2API-images representing themalware familiesAir-
push and Dowgin respectively. In particular, for each image, a set of 10 malware has been
considered, and an RGB image has been used to show the differences among the consec-
utive API call pairs. Indeed, for each fixed point, a light colour represents two consecutive
API calls repeated a few times. In comparison, a dark colour represents two consecutive API
calls that are repeated many times. Besides, it is possible to observe both images’ sparse
behaviour and how it uniquely characterises each malware family.

5.2. The neural networks used for classification

Since API images show the run-time behaviour as pictures, for testing malware classifica-
tionwith our dataset, we used two different kinds of neural networks: Convolutional Neural
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Figure 5. An example of 2 API-images.

Networks (CNNs) and Recurrent Neural Networks (RNNs), which can work effectively on
pictures and temporal instances respectively.

CNNs are mostly used in computer vision, and they are often employed to identify
images and implement object recognition within scenes. Because the CNNs are a partic-
ular class of DNNs, they can process big amounts of data (Big Data) or data that contain
much information, such as images or videos. CNN has got different types of input, output,
and hidden layers (Kamimura & Takeuchi, 2020; Pan et al., 2020). In particular, the first lay-
ers of a CNN can be a set of Convolutional and Pooling layers, which can reduce and extract
themost important features from the input data (e.g. a picture). Another important hidden
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layer is the Flatten layer, which can prepare the extracted features and use themas an Artifi-
cial Neural Network (ANN) input. This operation is often called flattening, and it can convert
a matrix of features into a one-dimensional vector. Finally, the output part often consists of
an ANN used to obtain a classification of the input data (Bhagwat et al., 2019).

On the other hand, RNNs can work on instances structured as progressive observations
(i.e. time series) by considering their mutual dependencies and evolution over time. In this
way, a given output depends on the previous ones. An RNN could present many recurrent
layers, while in classical ANNs (also known as feed-forward neural networks), the data only
flows in one direction. In an RNN, the hidden layers create cycles in the network’s structure,
which are also able to capture recurrence phenomena. In order to build an RNN, we can use
different types of input, output, and hidden layers. These usually are SimpleRNN or Long
Short Term Memory (LSTM) layers, while the output part often consists of an ANN used to
obtain a classification of the input data (Bhagwat et al., 2019).

6. Dataset creation

Theproposeddatasetwas createdby analysing two famousmalware datasets:AndroidMal-
ware Dataset (AMD) (Y. Li et al., 2017; Wei et al., 2017, june) and Drebin (Arp et al., 2014;
Spreitzenbarth et al., 2013). In particular, AMD contains 24.553 applications organised
into 71 families, while Drebin contains 5560 applications organised into 179 families. The
Tables 1 and 2 show the five most important families for AMD and Drebin, respectively.

Out of 30,113 applications analysed, only 25,275 of themwere considered and renamed
with their SHA256value. The remainingoneswere found tobedamagedapps.Wecollected
20426 malware organised into 66 families for AMD and 4849 malware organised into 143
families for Drebin, respectively. The Tables 3 and 4 show the five most important families
resulting after the analyses on the AMD and Drebin datasets, respectively.

Table 1. Five most important families of AMD.

Family Airpush Dowgin FakeInst Mecor Youmi

Apps 7843 3385 2172 1820 1301

Table 2. Five most important families of Drebin.

Family FakeInst D.K.Fu Plankton Opfake GinMaster

Apps 925 667 625 613 339

Table 3. AMD families after the analyses done.

Family Airpush Dowgin FakeInst Mecor Youmi

Apps 5989 2985 2167 1820 1244

Table 4. Drebin families after the analyses done.

Family FakeInst D.K.Fu Opfake Plankton BaseBridge

Apps 881 635 607 443 314
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Table 5. UMD dataset details summary.

Total Apk Analysed Apk Families Dim. (Gb)

AMD 24553 20426 66 100.08
Drebin 5560 4849 143 17.55
Total 30113 25275 209 117.63

6.1. Data organisation

We organised our dataset in two main directories: amd-cuckoo-family and drebin-cuckoo-
family which contain 66 and 143 families, respectively. For each of them, the applications
are saved using their reports, and the respective SHA256 values identify them. More
precisely, for each application, the following files have been stored:

• report.json: is a JSON file containing the results of the static analysis like hash values,
permissions, intents, services, and so on.

• dump.pcap: is a PCAP file containing the network packets collected during the dynamic
analysis.

• dump_sorted: is a sorted PCAP file containing the collected network packets captured
during the dynamic analysis.

• droidmon.log: is a textual file containing the dynamic APIs calls stored as JSON objects.
• droidmon_error.log: is a textual file containing the dynamic APIs calls that threw a Java

Exception.

Lastly, the dimensions of both main folders have been calculated. Table 5 shows a
summary of the information just discussed.

7. Experimental results

The dataset used during the experimental evaluation includes 5 differentmalware families:
Airpush, Dowgin, FakeInst, DroidKungFu (D.K.Fu), and Opfake, which have been selected in
accordance with the Tables 3 and 4. In particular, FakeInst has been chosen because it is
a common family between two datasets and is the most representative of Drebin’s fam-
ily; Airpush and Dowgin have been selected because they are the first two representative
families of AMD; D.K.Fu and Plankton have been selected because they are the second and
the third representative families of Drebin. Subsequently, for each family, we considered
500 samples. Then, for each analysed application, we extracted its dynamic API calls and
represented themby using a 116 × 116-sized API-image, in accordancewith themaximum
number of different consecutive API calls that have been observed.

Then, we built two neural networks to evaluate the proposed ML-based malware clas-
sification framework’s performances based on the UMD dataset. In particular, a CNN and
an RNN have been used because, as it is remarked in Subsection 5.2, they are able to work
effectively onpictures and temporal instances, respectively. Theneural networks havebeen
trained with 150 epochs, batch-size 256, and Adam optimisation algorithm. Conv2D, Max
Pool, Flatten, and Dense layers have been used for the CNN; while SimpleRNN layers and
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Table 6. CNN performance metrics.

Acc. Spec. Prec. Sens. F-Score

D.K.Fu 0.9960 0.9948 0.9814 1.0000 0.9906
FakeInst 0.9987 1.0000 1.0000 0.9928 0.9964
Opfake 0.9972 1.0000 1.0000 0.9869 0.9935
Airpush 1.0000 1.0000 1.0000 1.0000 1.0000
Dowgin 1.0000 1.0000 1.0000 1.0000 1.0000

Table 7. CNN average metrics.

Acc. Spec. Prec. Sens. F-Score AUC

Avg. 0.9984 0.9990 0.9963 0.9960 0.9961 1.0000
Dev. 0.0016 0.0023 0.0082 0.0058 0.0040 0.0000

Table 8. RNN performance metrics.

Acc. Spec. Prec. Sens. F-Score

D.K.Fu 0.9987 1.0000 1.0000 0.9927 0.9964
FakeInst 1.0000 1.0000 1.0000 1.0000 1.0000
Opfake 1.0000 1.0000 1.0000 1.0000 1.0000
Airpush 1.0000 1.0000 1.0000 1.0000 1.0000
Dowgin 0.9987 0.9982 0.9935 1.0000 0.9966

Table 9. RNN average metrics.

Acc. Spec. Prec. Sens. F-Score AUC

Avg. 0.9995 0.9997 0.9987 0.9986 0.9986 0.9993
Dev. 0.0006 0.0006 0.0028 0.0031 0.0019 0.0007

Dense layers have been used for the RNN. We evaluated each neural network with per-
formance metrics that have been derived by the multi-class confusion matrix, as they are
shown in the Tables 6, 7, 8, and 9.

In particular, to assess the performance of the classifiers implemented with the afore-
mentioned neural networks, we used the k-Fold cross-validation algorithm (with k = 10)
and the 70/30 criteria to split our experimental dataset into two mutually exclusive sets
(training set and test set). Moreover, we considered the following classification metrics:
Accuracy (Acc.), Sensitivity (Sens.), Specificity (Spec.), Precision (Prec.), Area Under the ROC
Curve (AUC), and F-Measure (F-Meas or F-Score). Their values are defined in the same range
[0, 1], where 0 represents the worst result, while 1 represents the best result. Subsequently,
to obtain a global validation, the average values (Avg.) and standard deviation values (Dev.)
among all metrics have been calculated. The averages of the obtained results are shown in
the Tables 6 and 8. Here, for each family, TP (true positive) refers to malware instances cor-
rectly identified in the considered family, TN (true negative) are the malware instances in
another family correctly identified, FP (false positive) considers malware instances incor-
rectly identified as malware in the considered family, and FN (false negative) refers to
malware instances in another family incorrectly recognised as a malware belonging to the
considered family.
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Table 10. A comparison between the CNN and RNN-based
methods and the more traditional ones.

Acc. Spec. Prec. Sens. F-Score AUC

CNN 0.9984 0.9990 0.9963 0.9960 0.9961 1.0000
RNN 0.9995 0.9997 0.9987 0.9986 0.9986 0.9993
MLP 0.9990 0.9950 0.9950 0.9950 0.9950 1.0000
J48 0.9970 0.9870 0.9870 0.9870 0.9870 0.9960
NB 0.9710 0.8970 0.8890 0.8870 0.8860 0.9900

Finally, a comparisonwith themost notable approaches available in literaturewasmade
using WEKA (WEKA, 2020). In particular, we used 3 famous classifier technologies: Multi-
Layer Perceptron (MLP), J48 trees (J48), and Naive Bayes (NB). The obtained results are shown
in Table 10. It is possible to see how these results are excellent for all classificationmethods,
except forNaive Bayes. This aspect is due to the effectiveness of API-images in capturing the
malware dynamic runtime behaviour. However, the CNN- and RNN-based models achieve
the best solutions in recognising the different malware families because the obtained val-
ues (in particular Precision, Sensibility, and F-Score) are higher than those obtainedwith the
other classification methods. Therefore, both classification models can reduce the number
of FP and FN and, consequently, better minimise the classification error.

8. Conclusions and future works

In this paper, the realisation of a new Android malware dataset called Unisa Malware
Dataset (UMD) has been presented. UMD is available on http://antlab.di.unisa.it/malware/.
The proposed dataset has been realised by analysing 30,113malware applications through
CuckooDroid Sandbox. More precisely, the UMD contains 20,426 apps organised into 66
families for AMD and 4849 applications organised into 143 families for Drebin, respectively.
Besides, for each analysed application, static and dynamic features are available, such as
hash fingerprints, permissions, dynamic API calls, and so on. Then, an experiment with Arti-
ficialNeuralNetworks (ANNs) hasbeenpresented to showthepotentialities of theextracted
API calls by considering 5 malware families (Airpush, Dowgin, FakeInst, DroidKungFu, and
Opfake). However, UMD is an unbalanced dataset consisting ofmanymalware familieswith
a low number of applications. At the same time, a great number ofmalware families should
be included in our dataset. Consequently, only a limited subset of families can be taken
into account in order to propose new AI-based solutions. Furthermore, 500 samples have
been selected for each family, and dynamic API calls have been extracted from them as an
API-image. Finally, a Convolutional Neural Network (CNN) and a Recurrent Neural Network
(RNN) have been used, which have been validated by using statistic metrics. The obtained
results show that these neural networks are an effective solution to recognisemalware fam-
ilies when the right features are used to describe the behavioural properties of individual
malware flavours.

For this reason, we would like to propose two possible future works. First of all, in
order to improve the number of malware applications and the number of the consid-
ered families, we will update the proposed dataset by considering other malware datasets,
such as: Android Adware and General Malware Dataset (AAGM Dataset) (Habibi Lashkari
et al., 2017, august), AndroZoo (Allix et al., 2016), Genome (Zhou & Jiang, 2012) and so on.

http://antlab.di.unisa.it/malware/
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We did not include these datasets yet, because the analysis’ process is costly and time-
consuming. Second, we will propose new AI models based on the extracted static and
dynamic features to improve the already achieved results. For example, a Recurrent Neural
Network (RNN) based on Long Short-TermMemory (LSTM) layers could be a good method
for use temporal features, such as timestamps. Moreover, the use of CNN autoencoders
could be investigated to obtain important features by API-image based on the extracted
static and dynamic information. Additionally, we will explore new DL approaches that will
able to classify dynamic features as a film. More precisely, several combinations among
LSTM layers, CNNs, and Stacked Autoencoders (SAEs) could be investigated to consider a
single API-Image as a streamof sub-API-images by taking into accountmany sets of images
obtained at fixed multiple temporal windows.
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