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ABSTRACT
Some turbulent signed measures show a singularity related to extreme oscillations in sign, the scaling

behavior of cancellations between positive and negative contributions being characterized by the cancel-
lation exponent i. Using in situ observations of magnetic Ñuctuations in the solar wind, we show that
magnetic helicity is sign singular, a property that underlies the dominance of a single sign of polarization
of Ñuctuations at small scales. We recover a statistical correlation between i and the bulk solar wind
speed when any correlation has been found between i and the distance from the Sun. Even if the usual
models of magnetic Ñuctuations based on random phases are able to reproduce (in a statistical sense) the
gross features of helicity Ñuctuations, they cannot reproduce the behavior of sign singularity.
Subject headings : MHD È solar wind È turbulence

1. INTRODUCTION

1.1. T he Cancellation Exponent
Some time ago, et al. showed that signals f (x)Ott (1992)

(deÐned on x ½ L ) that strongly oscillate from positive to
negative values might be characterized by a sign singularity.
This was achieved by introducing a signed measure

associated with f (x),(Halmos 1974)
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(The sum is extended to all boxes of size r covering the set
L .) In particular, et al. conjectured that theOtt (1992)
process of oscillation at every scale might be described by a
scaling law with exponent i, which can be deÐned through
the relation

lim
r?0

log s(r)
log r

\ [i . (2)

For a probability measure that is positive deÐnite,
s(r) \ 1 and yields the trivial value i \ 0. Theequation (2)
scaling exponent vanishes also, if, below a certain cuto† r

s
,

the measure acquires a smooth density with a well-deÐned
sign. In order to get a positive value for i, s(r) must increase
without limit as r ] 0, which implies a singular behavior
[s(r) eventually saturates at scales due to the presence ofr

sdi†usive e†ects that smooth the measure]. In this case, the
measure is said to be sign singular et al. Since the(Ott 1992).
singular behavior occurs only if the cancellations between
positive and negative contributions in are reduced (in thek

rlimit r ] 0), the exponent i can be viewed as a quantitative
characterization of the very rapid oscillations in the sign of
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Rende, Cosenza, Italy.

2 Istituto di Fisica dello Spazio Interplanetario, C.P. 27, 00044 Frascati,
Italy.

f (x), and is called the cancellation exponent. From data
analysis, the cancellation exponent is usually recovered by
looking at the scaling law s(r) D r~i in a range of values

[if there is no saturation of s(r), is ther
s
¹ r ¹ r0 r

sminimum scale allowed in the data set].
Nontrivial examples of physical situations displaying the

kind of singularity described above come from dynamo
action et al. Du & Ott(Ott 1992 ; 1993a, 1993b ; Lawrence,
Ruzmaikin, & Cadavid fully developed turbulence1993) ;

et al. & Chhabra Du,(Ott 1992 ; Bertozzi 1994 ; Vainshtein,
& Sreenivasan et al.1994a ; Vainshtein 1994b ; Carbone

& Bruno or simple random processes1995 ; Carbone 1996),
& Chhabra et al. An e†ort(Bertozzi 1994 ; Carbone 1995).

to clarify the relations between i and other scaling expo-
nents characterizing fully developed turbulenceÈfor
example, the scaling exponents of the structure functions or
the set of generalized dimensions been made byD

q
Èhas

et al. for Ñuid Ñows and by &Vainshtein (1994b) Carbone
Bruno for MHD Ñows.(1996)

In particular, it has been shown that 0 ¹ i ¹ 1, even if
some nontrivial examples where i [ 1 have been reported

& Ott Apart from i \ 0, which indicates the(Du 1993a).
absence of cancellations, critical values are i \ 1, which can
be obtained in general for nondi†erentiable Ðelds

et al. and which is recovered in(Vainshtein 1994b), i \ 12,Brownian motion or in general stochastic processes
& Chhabra et al. In(Bertozzi 1994 ; Vainshtein 1994b).

general, given a stochastic process f (x) with a Ho� lder expo-
nent h, say So f (x ] r) [ f (x) oT D rh (where angular brackets
mean averages), the cancellation exponent of its derivative
is simply given by i \ 1 [ h.

1.2. Magnetic Helicity
The helicity of the Ñuctuating magnetic Ðeld B \ $ Â A,

is deÐned as the volume-integrated quantity

H
m

\
P

A Æ B d3r

and represents a measure of linkage of Ñux tubes, or of the
lack of mirror symmetry in MHD In the(Mo†at 1978).
absence of dissipation, is a ““ rugged invariant ÏÏH

m
(Mo†at

and plays a key role in the turbulent dynamic of a1978)
magnetoÑuid Matthaeus, & Montgomery(Ting, 1986).
Information about the magnetic helicity, when the available
measurements are single-satellite observations, is contained
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in the antisymmetrical terms of the spectral magnetic
energy tensor Goldstein, & Smith In(Matthaeus, 1982).
other words, from observations we get only a ““ reduced ÏÏ
magnetic helicity, deÐned through the trace of the Fourier
transform of the symmetric part of the SB Æ AT corre-H
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where x is the outward radial direction and z is the direction
out of the ecliptic. It can immediately be seen that
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et al. where(Matthaeus 1982),
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It can be shown that in homogeneous turbulence
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et al. It is also useful to deÐne a dimen-(Matthaeus 1982).
sionless quantity, such as

p(k)\ kH
m
(r)(k)

E
m
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, (4)

where is the reduced magnetic energy. This quantity,E
m
(r)(k)

which is bounded by o p(k) o¹ 1, represents the correlation
between the two transverse components of the magnetic
Ðeld B when one of them is shifted by a factor of n/2 in
phase. Then p(k) gives a measure of the polarization state of
magnetic Ñuctuations : plane-polarized waves have p(k)\ 0,
while rightÈ or leftÈcircularly polarized waves have, respec-
tively, p(k) \ ^1.

Measurements in the solar wind show that magnetic
turbulence at small scales is made by a superposition of
Ñuctuations of (apparently) random polarization state

et al. & Dobrowolny Gold-(Matthaeus 1982 ; Bruno 1986 ;
stein, Roberts, & Fitch Ataola,1991, 1994 ; Valde� s-Galicia,
& Saule� s That is, p(k) is a strongly oscillating func-1993).
tion (see and Goldstein et al. Further-Fig. 1 1991, 1994).
more, an interesting property, previously reported by

et al. is that, at small scales, a single sign ofGoldstein (1991),
polarization dominates that is correlated with the direction
of the magnetic sector polarity et al. These(Goldstein 1994).
properties can be reproduced in a statistical sense by simple
models of plane Alfve� n waves with a random polarization

et al.(Barnes 1981 ; Goldstein 1991).
In the following sections, we argue that a signed measure

obtained from magnetic helicity is the natural way to
describe the net polarization of magnetic Ñuctuations at a
given scale. We show that the measure derived from mag-
netic helicity in the solar wind exhibits sign-singular behav-
ior.

2. DATA ANALYSIS

The present analysis is based on *t \ 81 s averages of the
magnetic vector B(t), recorded by Helios 2 on its primary

mission in 1976. The spacecraft, while moving on the eclip-
tic, explored the inner heliosphere between 1 and 0.3 AU
and within a latitudinal belt of This data set covers^7¡.25.
an interval of time that started on day 22 of 1976 and ended
on day 114.

It is worthwhile to remark that one of the fundamental
assumptions in analyzing solar wind Ñuctuations is the
““ frozen-in ÏÏ approximation, which is the MHD analog of
the Taylor hypothesis in Ñuid dynamics (see & MarschTu

Under this assumption, the wavevector is related1995). k
xto the frequency in the spacecraft frame wherek

x
\ u/Vsw,

is the bulk solar wind speed. Strictly speaking, this isVswtrue as long as we consider spatial scales smaller than the
large-scale L of variation of the bulk magnetic Ðeld OnB0.the other hand, the super-Alfve� nic nature of the solar wind,

Vsw ?
B0

J4no
,

where o is the plasma mass density, implies that Ñuctuations
remain almost unchanged while they are convected
outward by velocity Vsw.

Since the in situ satellite observations give the one-
dimensional magnetic Ðeld time series B(t), taking the
Taylor hypothesis into account, magnetic helicity values as
a function of frequency were computed by fast Fourier
transform (FFT) of and components, thus obtain-B
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ing
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where b(u) represents the complex Fourier coefficients of B
at frequency u. The normalized helicity is then given by

p(u) \ uH
m
(r)(u)

o b
y
(u) o2] o b

z
(u) o2 . (6)

The frequency spectrum was based on a time interval of
2048 magnetic data samples of 81 s each, and, consequently,
the frequency window spanned the range 6.03 ] 10~6È
6.17] 10~3 Hz. This frequency range was divided into six
frequency bands equally spaced in a logarithmic scale, and
an average value of p(u) was evaluated and stored for each
band. Successively, the time interval was shifted by one
single 81 s average and the whole computation repeated. In
this way we made D105 estimates of p(t) [the Fourier anti-
transform of p(u)] for each of the six frequency bands. A
running interval of 4200 values of p(t) was repeatedly shifted
by one single 81 s estimate of p(t), and the value of the
cancellation exponent was determined each time (see ° 3).
This technique provided D105 estimates of i for each fre-
quency band.

After a preliminary analysis, only two frequency bands
were chosen as fully representative of low- and high-
frequency Ñuctuations, namely 6.6] 10~5È1.9] 10~4 Hz
for the low-frequency (LF) band and 1.9] 10~3È
6.2] 10~3 Hz for the high-frequency (HF) band. The
whole process described above was repeated in order to
construct a second data set in which the spectral com-
ponents of and were artiÐcially randomly phased.B

y
(t) B

z
(t)

Results from both data sets will be analyzed and discussed
in the next section. Occasionally, for some selected and
short intervals, we repeated the analysis by using 6 s mag-
netic averages, and we were able to establish the fact that
higher resolution data had no relevant e†ect on our results.
Thus, due to the remarkable amount of data to be analyzed,
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FIG. 1.ÈTime evolution of bulk solar wind velocity (upper panel)Vswand normalized magnetic helicity p(t) in both high-frequency (middle panel)
and low-frequency bands (lower panel). The selected time interval is from
day 79 at 0.61 AU up to day 110 at 0.29 AU.

we decided to use the 81 s lower resolution data in order to
reduce computer time.

3. SIGN-SINGULARITY OF MAGNETIC HELICITY

In we show the time evolution of p(t) for a givenFigure 1
period of observation in both the HF and the LF band. The
strong oscillatory character of this quantity is evident in
both bands, thus suggesting the introduction of signed mea-
sures to investigate the net content of polarization at each

scale. However, looking at this Ðgure, it is hard to recognize
either any scaling behavior or any di†erence between the
LF and HF bands.

As described in the previous section, we have selected a
running interval of T \ 4200 *t ^ 3.94 days and calculated
the instantaneous value of the function

g(t)\ p(t)
/
T

p(s)ds
.

The value we have chosen for T roughly corresponds to the
average duration of a typical stream structure &(Tu
Marsch Then, by using a partition of each domain T1995).
into boxes of size *t ¹ q¹ T , we calculatedT

i
(q)

s(q) \ ;
Ti(q)

K P
Ti(q)

g(t)dt
K
.

In we plotted log s(q) against log (q/T ) for twoFigure 2,
typical periods of observation characterized by low and
high speed, respectively. As can be seen, the gross features
look di†erent in the two frequency bands, while they are
quite similar for slow and high-speed wind.

In the LF band, we see an increase of s(q) up to a scale
q/T ^ 3.2] 10~3 (roughly corresponding to a scale q^ 0.3
hr), beyond which the measure saturates. This behavior has
been discussed extensively in the literature (see &Bertozzi
Chhabra or reference 9 of et al. where it is1994, Ott 1992),
attributed to a small-scale cuto† (due to the small, di†usive
length scale in Kolmogorov turbulence), which generates a
smoothness in the density of the signed measure. In our
case, the saturation is due to the fact that, by disregarding
the high frequencies, we enhance the strong dominance of
the large-scale magnetic Ðeld, which appears to be struc-
tured. As a consequence, the cancellations proceed until q
reaches the scale of variation of the measure, where further
cancellations are stopped. On the other hand, the slope of

FIG. 2a FIG. 2b

FIG. 2.Èlog s(q) vs. log (q/T ) for two selected time intervals. The Ðrst interval corresponds to a high-speed stream located at 0.980 AU and starts on day
22 at 4 :22 :0 (a) ; the second interval corresponds to a low-speed stream at 0.972 AU on day 27 at 16 :16 :6 (b). Open circles refer to the low-frequency band,
Ðlled circles to the high-frequency band. The best Ðt of the data in a selected range (see text) is represented as a line.
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the plot, for q¹ 0.3 hr, gives i ^ 1, thus indicating that the
sign singularity is due to a nondi†erentiable Ðeld

et al. These properties are characteristic(Vainshtein 1994b).
of a Ðeld with a strong dominance of structured large scales,
as magnetic helicity appears from observations (Goldstein
et al. 1991, 1994).

In the HF band, we observe a nice singular behavior : an
increase of s(q) up to the smallest available scale *t. Beyond
a crossover placed at approximately q/T ^ 3 ] 10~2
(roughly corresponding to a scale q^ 3 hr), we observe a
well-deÐned scaling law covering more than two decades.
This range of scales is usually called Alfve� nic range &(Tu
Marsch and MHD is considered to be the valid1995),
approximation for describing turbulence in this range (Tu
& Marsch The behavior we found indicates that the1995).
cancellation between positive and negative polarizations is
present at every scale in the whole Alfve� nic range but tends
to decrease as q] 0. In other words, there exists a scaling
property of magnetic Ñuctuations in the solar wind which
underlies the previously observed dominance of a single
polarization sign at high frequencies (Goldstein et al. 1991,

The investigation of this property is the main goal of1994).
our paper.

We repeated the calculations for other periods but found
no di†erence in the gross features just described. As noted in

we repeated our calculations using 6 s resolution mag-° 2,
netic Ðeld averages. We did not Ðnd any departure from the
results we presented here ; the scaling law for the HF band,
as reported in remains exactly the same : theFigure 2,
increase of s(q) continues up to the smallest scale with the
same slope. This indicates that cancellations continue to
reduce and that the eventual saturation drops well beyond a
timescale of 6 s. In other words, magnetic helicity observed
in the interplanetary medium shows a genuine sign singu-
larity as far as high frequency is concerned.

4. COMPARISON WITH STOCHASTIC MODELS

In looking at these observations, we wonder whether sto-
chastic models of magnetic Ñuctuations (Barnes 1981 ;
Goldstein et al. can reproduce the singular1991, 1994)
behavior we observed in helicity Ñuctuations. To this end,
we introduce a simple numerical procedure in the same
spirit as the model introduced by that is, weBarnes (1981) ;
make a randomization of the phases of the observed Ðelds
B(t). In other words, from B(t) we calculate the Fourier
transform then replace eachb

j
(u) \B

j
(u) exp [ia

j
(u)],

by a random number uniformly distributed in thea
j
(u)

range [0, 2n], and Ðnally, we Fourier antitransform, thus
obtaining a stochastic time series Our feeling is thatB

R
(t).

singularities are mostly related to very localized and strong
Ñuctuations in the real space, which are then characterized
by phase correlations. These singularities can be observed,
for example when looking at the usual multifractal behavior
of the interplanetary magnetic Ðeld (Burlaga 1992 ; Burlaga
& Ness Cadavid, & Ruzmaikin Our1996 ; Lawrence, 1996).
model simply destroys these correlations, leaving
unchanged the net helicity content at each frequency, pro-
vided the power spectrum of the magnetic helicity is exactly
that observed. Note that in the usual stochastic models

et al. the spectrum of mag-(Barnes 1981 ; Goldstein 1991),
netic helicity is generally Ðxed a priori.

With the new Ðelds we calculate a new normalizedB
R
(t),

helicity and a new partition function whosep
R
(t) s

R
(q),

scaling against q/T is shown in The di†erenceFigure 3.
between the plot and that shown in is evident. IfFigure 2
phase correlations are destroyed, we observe the sign singu-
larity due to a pure random Ðeld : a scaling law covering the
whole range of q with a cancellation exponent close to 12,
independent of the frequency domain & Chhabra(Bertozzi

et al. et al.1994 ; Vainshtein 1994b ; Carbone 1995).

FIG. 3a FIG. 3b

FIG. 3.Èlog vs. log (q/T ) for the same data as in but obtained from randomized time series. (a) refers to high-speed wind and (b) to low-speeds
R
(q) Fig. 2,

wind.
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FIG. 4.ÈProbabilities against the bins of values of i, obtainedP(i
j
) i

jfor the whole data set. Solid line refers to real data, dashed line to random-
ized data.

In the following, we will examine the HF band only. We
have calculated values of the cancellation exponent for all
the Helios data by linear Ðts in the Alfve� nic range q¹ 3 hr,
as described previously. Since the scaling law is well deÐned
for all the data sets, the calculation of i is very accurate, the
error (estimated as the standard deviation for each Ðt) being
within 5% of the value of i. We have then divided the set of
105 values of i so obtained into di†erent bins, and we calcu-
lated the number of values of i which fall within theN(i

j
)

jth bin. The results are summarized in where weFigure 4,

FIG. 5.ÈTime evolution of the bulk solar wind velocity (upperVswpanel) and of the cancellation exponent i obtained in the period from day
79 at 0.61 AU to day 110 at 0.29 AU. The middle panel refers to values of i
obtained from real data, the lower panel to values obtained fromi

Rrandomized data.

FIG. 6.ÈConditional probabilities against the bins cal-P(i
j
o V *) i

j
,

culated for the whole data set. Solid line refers to high-speed intervals
km s~1). Dashed line refers to low-speed intervals(Vsw ºV * \ 500

km s~1).(Vsw \V * \ 500

plot the probability

P(i
j
)\ N(i

j
)
N

;
j

N(i
j
)

against for both real and randomized data. As can bei
jseen, for both data sets there exists a distribution of values

of centered around the average value i ^ 0.576 for reali
j
,

data and around i ^ 0.493 for randomized data. The pres-
ence of a distribution of values is due to the fact that the
cancellation exponent is related to other parameters,
namely, the Ho� lder exponent h of the magnetic Ñuctuations,
thus a†ecting the value of i for the randomized data as well.

FIG. 7.ÈConditional probabilities against the bins calcu-P(i
j
oR) i

j
,

lated for the whole data set. Solid line refers to data from day 22 at 0.98 AU
to day 30 at 0.96 AU, dashed line to data from day 89 at 0.49 AU to day
108 at 0.29 AU.
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However, the reliable di†erence between the distribution
obtained from real data and that obtained from random-
ized data is striking.

Since i is related to the actual value of h, we expect it to
depend on the physical properties of the periods we exam-
ined. To see whether this is the case, in we show theFigure 5
values of i obtained for both p(t) and superimposedp

R
(t),

on the bulk speed of the solar wind, calculated for aVswcertain period. As can be seen, there exists an evident corre-
lation between i (obtained with the observed magnetic
helicity) and roughly speaking, i is greater when isVsw : Vswhigh. This is not observed in the randomized time series
(Fig. 5, lower panel). To see whether this is statistically
meaningful, we calculate the probabilities condi-P(i

j
o V *),

tioned on values of the bulk solar wind speed ; that is, in
building we take into account only values of i corre-N(i

j
),

sponding to selected periods where is respectively higherVswor lower than a certain value V *. In we report theFigure 6
results relative to V * \ 500 km s~1, a crossover value that
roughly separates low-speed periods from high-speed
periods. We detect two distinct peaks in the distributions,
implying that the correlation between i and does, inVswfact, exist. Moreover, in we report the values of theFigure 7
conditioned probabilities calculated by taking intoP(i

j
oR),

account only selected periods at R\ 0.3 AU (from day 98
to day 108) and at R\ 0.9 AU (from day 22 to day 30). As
can be seen, the distributions of the values of i are roughly
independent from the distance from the Sun.

5. SUMMARY AND DISCUSSION

This paper aims toward the investigation of the scaling
behavior of magnetic helicity from in situ solar wind mea-
surements. Since magnetic helicity is not positive deÐnite,
we must introduce a signed measure and investigate how
much cancellation of opposite-sign measure takes place on
Ðne scales. A quantitative characterization of this scaling
process is given by the cancellation exponent. Our results
can be summarized as follows :

1. Magnetic helicity in the solar wind is a sign-singular
Ðeld. This means that there exists a scaling process under-
lying the reduction of cancellations between positive and
negative helicities as the scale q] 0. This phenomenon
yields the dominance of a single polarization state of mag-
netic Ñuctuations at the smallest scales. The presence of
even a small net content of helicity at these scales has been
observed previously by Goldstein et al. (see also(1991, 1994)

et al. who conjectured that plasmaValde� s-Galicia 1993),
instabilities, like cyclotron damping, should be at work,
acting as a selection mechanism for polarizations of di†er-
ent signs. As a rough estimate, the ion-cyclotron frequency
in the solar wind turns out to be of the order of s.u

i
~1^ 1

We showed that the process that generates the imbalance
at the smallest scales is a scaling process, being due to a sign
singularity. This means that the cancellations are self-
similar on every scale involved in the process ; that is, they
are characterized by the scaling exponent i rather than by
an amplitude at a certain scale. Then, from a physical point
of view, the selection mechanism acting on the polarization
sign must act not only on the smallest scales but also on
larger scales, as in the whole range q¹ 3 hr. On these
scales, usually called the ““ Alfve� nic range ÏÏ & Marsch(Tu

MHD theory is reliable, so we expect that the selec-1995),
tion mechanism should be an MHD mechanism. Since we
found no saturation at the smallest available scale, and the
scaling law is visible without any break, we can infer that
the instability which generates the singular behavior must
also be reliable in the MHD range.

2. The scaling exponent i of the singularity seems to be
correlated with the bulk speed of the solar wind. This is to
say that, quite reasonably, the cancellations of right-hand
and left-hand polarizations depend on the physical proper-
ties of the magnetic turbulence. They depend, actually, on
the Ho� lder exponent h of magnetic Ñuctuations &(Bertozzi
Chhabra for example on the slope of the power spec-1994),
trum of magnetic helicity.

3. Even if the usual models of magnetic Ñuctuations,
based on random phases reproduce in a sta-(Barnes 1981),
tistical sense the observed behavior of p(t) (Goldstein et al.

they cannot capture the sign singularity and the1991, 1994),
correlations between i and which are based on strongVsw,
phase correlations probably due to the multifractal proper-
ties of the interplanetary magnetic Ðeld (Burlaga 1992 ;

& Ness et al.Burlaga 1996 ; Lawrence 1996).

We hope that our observations can stimulate the building
of more reÐned models in which phase correlations are
taken into account. A tentative e†ort in this direction is in
progress.

We are grateful to F. Mariani and N. F. Ness for making
the Helios magnetic data available to us and to the referee,
James Chen, whose comments have improved the Ðnal
version of the paper.
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