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ABSTRACT
The NPROTREG package implements nonparametric (smooth) regres-
sion for spherical data in R , and is freely available from the Compre-
hensive R Archive Network (CRAN), licensed under theMIT License. It
can be used for regression when both the response and explanatory
variables lie on the unit sphere. Themodel uses a flexible kernel-type
regression determined by a rotation which depends on a smooth-
ing parameter as well as the prediction point. A particular kernel is
proposed and a smoothing parameter selection procedure is also
provided. Finally, some examples are included in the package.
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1. Introduction

Statistical methods for variables that have a spherical nature occur in various fields. There
are two main categories of spherical data: directional and shape data. Standard examples of
directional phenomena are: directions of winds, marine currents, Earth’s main magnetic
field and rocket nozzle internal combustion flow. Several recent examples of spherical data
– which concern genome sequence representations, text analysis and clustering, morpho-
metrics and computer vision – have been collected by [1]. Shape analysis [2] deals with the
similarity between two objects, each being represented by a set of landmarks, after super-
imposing them by translation, scaling and rotation. A further domain for spherical data is
in the field of compositional data analysis, i.e. positive vectors whose components add to
a given constant. If the latter is set to 1, a square root transformation puts these data onto
the unit hypersphere.

Dependence involving spherical variables has emerged as a very interesting problem.
This is the case of multivariate regression where both the explanatory (X) and response
(Y) observations lie on a unit hypersphere, denoted by Sd−1, d ≥ 2. For example, in geol-
ogy, the dependence of one tectonic plate relative to another has been studied in [3];
in crystallography it is of interest to relate an axis of a crystal to an axis of a standard
coordinates system [4]; and in the orientation of a satellite it is necessary to study depen-
dence between directions of stars and directions in a terrestrial coordinate system [5]. In
machine vision, it is interesting to compare the directions detected by two different sensors.
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Spherical regression was used in calibration experiments for an electromagnetic motion-
tracking system, with the aim of tracking the orientation and position of a sensor moving
in three-dimensional space in which the observed orientation is modelled as a rotationally
perturbed version of the true one [6].

An obvious application of our methodology is to monitor and predict the movement of
themagnetic north pole, which has recently been in themedia [7]. The location ofmagnetic
north at time t can be represented by a point on the 3-d sphere, and one might consider an
AR-type model of the form x̂t = f (xt−1) with various representations for the function f.

Concerning the parametric framework, spherical–spherical regression has been studied
by [8]. According to his model, two variates lying on Sd−1 are related by an unknown
rotation which needed to be estimated. [9] considered the case where the experimental
errors follow a von Mises–Fisher distribution with a large concentration parameter and
the sample size is fixed. Then, [10] proposed a spherical regression using link functions
based on Möbius transformations for the case of an ordinary sphere.

Nonparametric approaches to regression of spherical data have been proposed by [11]
(see also the references therein). They used a strategywhich is similar to Euclidean smooth-
ing, in which a polynomial is used to locally (splines, wavelets or Taylor-like ones) or
globally (spherical harmonics) model the regression function. As a result, they gener-
ally work component-wise, when used to predict spherical responses. A serious problem
with some of these approaches lies in explicitly modelling (or excluding) any correlation
between dimensions, that, due to the spherical geometry, is inherent. On the other hand, it
may be noted that thosemethods which work component-wise do not require x and y to lie
on spheres of the same dimension. Recently, [12] propose a very flexible, simple regression
model where for each location of the hypersphere a specific rotation matrix is to be esti-
mated. This technique is based on approximations of rotation matrices based on a series
expansion and leads to an iterative estimation within a Newton–Raphson learning scheme
which exhibits bias reduction properties.

The aim of this paper is to introduce and describe an R package, called nprotreg, that
performs sphere–sphere regressionmodels of [12] by estimating locallyweighted rotations.
Several packages are available in R [13] for working with directional data, but most of them
are devoted to the unidimensional case (circular data), and none of them allows R users to
perform a nonparametric regression on the sphere. The most used “circular” packages are
CircStats [14] and circular [15] which implement basic functions for circular statis-
tics, NPCirc [16] which let R users perform nonparametric methods for circular data,
and CircMLE [17] for implementing the circular maximum likelihood. Other available,
more specific packages are CircNNTSR [18] which implements nonnegative trigonomet-
ric sums models, isocir [19] for isotonic inference on the circle, Wrapped [20] which
computes probability and cumulative distribution functions, quantile, random numbers
and provides estimation for any univariate wrapped distributions, CircOutlier [21] that
is useful for the detection of outliers in circular-circular regression. Concerning spherical
data, the following R packages are currently available: Directional [22], which includes
a collection of functions for directional hypothesis testing, discriminant and regression
analysis, MLE of distributions; movMF [23], which fits and simulates mixtures of von
Mises–Fisher distributions; sphereplot [24] for spherical plotting; geosphere [25] for
geographic applications; skmeans [26] for computing spherical k-means partitions; rota-
tions [27] for working with rotational data and simulating from the most commonly used
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distributions on SO(3); SpherWave [28], which implements spherical Wavelets; Spheri-
calCubature [29] for computing integrals of functions over the unit sphere and ball in
n-dimensional Euclidean space; SphericalK [30], which contains K-function for point-
pattern analysis on the sphere. A recent, complete overview of the existing R packages that
are relevant for directional data analysis is given by [31].

The package nprotreg described in this paper fits a nonparametric spherical regression
and simulates sphere–sphere data according to non-rigid rotation models, also including
the rigid rotation as a particular case. It provides methods for bias reduction applying
iterative procedures within a Newton–Raphson learning scheme. A cross-validation pro-
cedure is provided to select smoothing parameters. A particular kernel is implemented
and some examples are also included in the package. The package is available from the
Comprehensive R Archive Network at http://CRAN.R-project.org/package=nprotreg.

The paper is organized as follows. Section 2 recalls the spherical–spherical regression
using a rigid rotation, Section 3 describes the flexible regression model proposed by [12],
and in Section 4 the algorithm implemented to estimate the rotation matrices is presented.
Finally, in Section 5 the nprotreg package is described, first presenting the design practice
and then illustrating the usage of functions, also by presenting a real data example.

2. Rigid regression

Consider a pair of random variables (X, Y), both taking values on Sd−1, and assume that
the regression ofY onX exists for each x ∈ Sd−1. An obvious strategy would be to consider
an ordinary least squares solution for a multivariate linear regression model Y = XB+ E
which is given by B̂ = (XTX)−1XTY , and then to project onto the unit sphere, giving fitted
values ŷ | x = xTB̂/||xTB̂||. However, such an approach should also take account of the
inherent correlation structure induced by the spherical nature of the data.

Methods which avoid this two-step (estimation then projection) process will gener-
ally require a constrained estimation. In this case, the classical approach [8] for spheri-
cal–spherical regression is to relate the response and explanatory variables using a rotation,
specified by a square orthogonal matrix of determinant 1. Specifically, suppose we have
n observations, in which (xi, yi) ∈ Sd−1 × Sd−1 for i = 1, . . . , n, and that these observa-
tions are related by a rotation matrix R. In the case that the data are error free, then the
relationship would be given by yi = RTxi, i = 1, . . . , n. To introduce a model for the error
structure, we recall that a rotation matrix R can be expressed as the matrix exponential of
a skew-symmetric matrix S (i.e. ST = −S), where exp(S) = I + S+ S2/2!+ S3/3!+ · · · .
In keeping with rotation models, we will also suppose a rotation error structure in which
the model then has the form:

yi = exp (�(εi))RTxi, i = 1, . . . , n, (1)

where the function�(a)maps a vector a = (a1, a2, . . . , ad(d−1)/2)T into a skew-symmetric
matrix; for example, for d = 3 we could use

�(a) =
⎛
⎝

0 −a3 a2
a3 0 −a1
−a2 a1 0

⎞
⎠ ; (2)

http://CRAN.R-project.org/package=nprotreg
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and the εis are random error terms satisfying E [εi |xi] = 0d(d−1)/2, where 0q stands for a
q-dimensional vector of zeros. We then have Var [yi |xi] = �xi , with �xi some matrix of
order d with finite entries. This flexible formulation, which also allows for non-isotropic
errors, can be viewed as a generalization of a wrapped distribution. Observe that, if εi has
entries close to zero, then exp(�(εi)) ≈ Id. An alternative error model is given by the von
Mises–Fisher distribution [32].

The constrained least squares solution is described by

argmin
R∈SO(d)

n∑
i=1
||yi − RTxi||2, (3)

where SO(d) is the set of all orthogonal matrices with determinant 1. The classical way to
solve this problem is to use the Singular Value Decomposition (SVD) of YTX, where X
and Y are both n× d matrices and xTi and yTi are their respective ith rows. To preclude
those solutions which include a reflection, use R̂ = V�UT in whichU andV are obtained
from the SVD:YTX = UDVT , and� is a diagonal matrix of order dwith entries (1, . . . , 1,
det(VUT)).

3. Nonparametric models

Model (1) can be made more flexible by allowing the rotation matrix R to depend on each
x. In the most general version, it is clear that Rxi would not be uniquely defined, but if we
require a smooth mapping (in the sense that, if x1 ≈ x2 then Rx1 ≈ Rx2 and so y1 ≈ y2)
then, to find ŷ | x = R̂Txwe can obtain R̂ as the solution of a locally weighted least squares
problem. That is, given x ∈ Sd−1,

R̂x = argmin
Rx∈SO(d)

n∑
i=1
||yi − RT

x xi||2Kκ

(
xTi x

)
, (4)

where the weight function Kκ(xTi x) – often referred to as a kernel function – is chosen to
reflect the geodesic distance from xi to x (the ith observation and the estimation point)
scaled by the concentration parameter κ > 0. Here, 1/

√
κ is roughly proportional to the

width of the neighbourhood of x containing the observations which mainly contribute to
the estimation process. To avoid numeric overflows for large κ , and noting that there is
no requirement to normalize, we use, as a weight function: Kκ(xTi x) = exp(κ(xTi x− 1)).
This is a rotationally symmetric function with maximum at x, and a parameter κ which
governs how rapidly the weight decays around x. As a result, xi will receive a bigger weight
the closer it is to x, and for larger κ . In practice κ may be chosen by cross-validation to
minimize

n∑
i=1
||ŷ(i)

i − yi||2 (5)

where ŷ(i)
i is the prediction corresponding to xi, when the rotationmatrix is estimated using

all the data except the ith observation, see Section 4. The solution to (4) is again obtained by
SVD. We find R̂x = V�UT , in which UDVT is the SVD of YTWκ(x)X, with � as before
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and, for a ∈ Sd−1, Wκ(a) is a diagonal matrix of order n having Kκ(xTi a) as its (i, i)-th
entry.

3.1. Extensions

As described in [12], a second term in a Taylor series expansion together with the
matrix exponential series leads to a second-order fit (similarly motivated as a local linear
regression model for data in R):

argmin
Rx∈SO(d),D(1)

Sx (xi,x)∈Skewd

n∑
i=1

∣∣∣∣
∣∣∣∣yi − RT

x

{
Id + D(1)

Sx (xi, x)
}T

xi

∣∣∣∣
∣∣∣∣
2
Kκ

(
xTi x

)
(6)

where D(1)
Sx (xi, x) is a skew-symmetric matrix of directional derivatives. There is no closed

form solution to this, but although there are now d(d + 1)(d − 1)/2 terms to estimate,
numerical procedures using nonlinear minimization (nlm()1) seem quite stable for
d = 3. Our implementation (only for d = 3) is described in Section 4.

3.2. Iterations

A solution of Equation (4) or of Equation (6) allows us to predict a response ŷx for a point
x, given explanatory data X, response points Y , and concentration parameter κ . We can
view this by means of a function f representing a local rotation modeller, i.e. a tool, say
f (x,X,Y | κ), that returns a transposed rotation R̂T

x as a solution to (4) or (6), so obtaining

ŷx = f (x,X,Y | κ) x = R̂T
x x. (7)

Given the nonrigid solution, the interpoint distances of estimated ŷxi will not be the same
as the xi, which allows us to consider a Newton–Raphson-like iterative rotation fitting
procedure.

So, letting M ≥ 1 be the number of iterations, we consider the mth iteration, for m =
1, . . . ,M. When m = 1, i.e. in the initial iteration, we set X̂1←− X and obtain the first
transposed rotation as

R̂T
1,x = f (x, X̂1,Y | κ).

For subsequent iterations, i.e. when M ≥ m > 1, we build a new explanatory matrix X̂m
by setting its ith row as follows:

X̂m[i, ]←− X̂m−1[i, ] f (xi, X̂m−1,Y | κ)T ,

where A[i, ] represents the ith row of a matrix A. Hence themth transposed rotation R̂
T
m,x

is set equal to f (x, X̂m,Y | κ).
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After executing all iterations, we get the sequence of explanatory points

X̂1, . . . , X̂M , (8)

and the fitted response point at x is obtained by a sequence of recursively obtained
rotations, i.e.

R̂T
M,x . . . R̂T

1,x x. (9)

This is reminiscent of boosting as in [33]. Also, if κ = 0 – which is equivalent to the rigid
solution defined by (3) – then, since interpoint distances are preserved, any M ≥ 1 leads
to the same final solution.

4. Algorithms

The basic models obtain the solution to Equation (4) using the function svd(). This
requires a separate decomposition for each x. Since obtaining ŷ(i)

i requires using an SVD for
i = 1, . . . , n, performing a grid search (over possible κ) of the cross-validation function (5)
can be excessively time-consuming, especially for larger n. Hence, our implementation
makes use of the function optimize() to search for optimal κ in a specified interval.

Minimization of (6) is not so straightforward, and we are not aware of any closed form
solution. Our implementation has been obtained only for d = 3. In this case, there are four
rotation matrices, so it would appear as a constrained minimization problem, with (d +
1)d2 = 36 parameters, chosen so that each of d+ 1 d× dmatrices satisfies RT = R−1 and
|R| = 1. However, since any rotationmatrix is thematrix exponential of a skew-symmetric
matrix (R = exp(S)), we can re-parameterize with only d(d + 1)(d − 1)/2 = 4 · 3 · 2/2 =
12 parameters (in 4 skew-symmetric matrices) with no constraints. Specifically, given a
design point x and concentration parameter κ , let P denote a 3× 4 matrix of parameters
(to be obtained) and setM = PD where

D = [
1d x1Tn − XT]

and 1m is a vector of 1s of length m. Then, for each i = 1, . . . , n obtain the fitted yi as
follows:

S = �(M[, i])

θ = ||M[, i]||
S = S/θ

R = I3 + sin(θ)S+ (1− cos(θ))S2

ŷi = RTX[i, ]

after which we can compute the weighted sum as in Equation (6). In the above loop
the function �, which is given by Equation (2), returns a skew symmetric matrix using
three arguments, and (as before) we use the notation X[i, ] and X[, i] to denote vec-
tors formed by the ith row and column of a matrix X, respectively. We have also
made use of Rodrigues’ rotation formula (due to [34]; see [35]) which expresses a
rotation matrix in terms of an angle (θ) and an axis which can be determined from
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Table 1. Functions available in NPROTREG package.

Conversion functions Description

convert_cartesian_to_spherical Converts cartesian to spherical coordinates
convert_spherical_to_cartesian Converts spherical to cartesian coordinates

Regression functions Description
get_skew_symmetric_matrix Gets a 3-by-3 skew symmetric matrix
get_equally_spaced_points Generates equally spaced points on a 3D sphere
cross_validate_concentration Cross-validates the concentration parameter in a 3D

spherical regression
fit_regression Fits a 3D nonparametric spherical regression
simulate_regression Simulates a 3D spherical regression
simulate_rigid_regression Simulates a rigid 3D spherical regression
weight_explanatory_points Weights the specified explanatory points in a 3D

spherical regression

the elements of a skew symmetric matrix. An alternative (for d>3) would be to
use the matrix exponential function expm() in the package expm [36]. The above
algorithm is used in the function fit_regression() with the (optional) argument
number_of_expansion_terms = 2 (otherwise the default value of 1 solves (4)).

5. Details of the NPROTREG package

5.1. Design practices

The problem addressed by the package is that of exploiting nonparametric rotations
in the analysis of Sphere–Sphere regression models. The current scope of the package
corresponds to the methods proposed by [12].

The requirements imposed to the package deal with specific aspects of regressing data
on a hypersphere and can be detailed as follows.

Simulation Simulate a very flexible regression model where, for each location of the
manifold, a specific rotation matrix is applied to obtain a spherical response.

Fitting Fit Sphere–Sphere regression models by allowing for approximations of rotation
matrices based on a series expansion.

Bias Reduction Reduce estimation bias applying iterative estimation procedures within a
Newton–Raphson learning scheme.

Cross-validation Use cross-validation to select smoothing parameters.

These are the main goals for which the package was created. In addition, it also aims to
support some tasks typical in Sphere–Sphere regressions, such as converting coordinates,
weighting points, or constructing skew-symmetric matrices.

5.2. Illustrations

In this section, we describe in detail the content of the nprotreg package also providing
an illustrative example. A list of the functions available in the package along with a brief
description is provided in Table 1.
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To be able to use the package, one first has to (install and) load it:

R> library("nprotreg")

Before showing the regression functions which represent the core of the package, we
discuss the two conversion ones that have been introduced to make the package more self
contained:

• convert_cartesian_to_spherical() converts the Cartesian coordinates of
points on a three-dimensional unit sphere centred at the origin to the equivalent
longitude and latitude coordinates, measured in radians;

• convert_spherical_to_cartesian() converts the longitude and latitude
coordinates of points on a three-dimensional unit sphere centred at the origin to the
corresponding Cartesian coordinates.

Coming to the regression setting, the main function of the package is fit_regressi
on()which returns 3D spherical points obtained by locally rotating the explanatory ones,
given an estimated model for local rotations and a scheme for weighting the observed
data set. Here we require as arguments a first matrix of dimension m× d whose rows
contain the points at which the regression will be estimated (evaluation_points),
two additional matrices, X and Y , each of dimension n× d, which respectively refer
to the explanatory_points and response_points, and a concentration
parameter κ .

The required matrices can either be read into R in the usual way or can be generated as
follows. ThematrixX can be set by using the functionget_equally_spaced_points
(), which creates approximately equally spaced points on the unit sphere for d = 3, return-
ing a matrix whose rows contain the Cartesian coordinates of the points. For example, a
matrix X of n = 100 approximately equally spaced spherical explanatory observations can
be obtained by

R> n <- 100
R> X <- get_equally_spaced_points(n)

Since the package has been written for the case d = 3, one could alternatively create
uniformly randompoints on the spherewith no restriction on d using normalized normally
distributed values as follows:

R> d <- 3
R> X <- matrix(rnorm(d * n), n, d)
R> X <- X / sqrt(apply(X ^ 2, 1, sum))

To generate the response matrix Y we could either create a rotation matrix R, and then
use a rigid model as in (1), or use a non-rigid model specifying a rotation which depends
on a point using the skew-symmetricmatrix formalism to define Sx (and soRx = exp(Sx)).
In the latter case, we can preliminarily use the following function that returns a 3-length
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numeric vector representing the independent components of a skew-symmetric matrix
local to an explanatory point x, given its Cartesian coordinates (a vector of length d = 3):

R> local_rotation_composer <- function(point) {
+ independent_components <- (1 / 8) *
+ c(exp(2 * point[3]), - exp(2 * point[2]), exp(2 *
+ point[1]))
+ return(independent_components) }

where the parameter 1/8 is chosen to create a small rotation for illustrative purposes.
Next, the error model can be specified with a function which defines �(ε) (given by
Equation (2)) which acts on the vector of errors for an explanatory point x:

R> set.seed(12345)
R> local_error_sampler <- function(point) {
+ noise <- rnorm(3, sd = 0.01)
+ return(noise) }

in which a very small standard deviation is used so that the rotation model domi-
nates, and in this example the error distribution is independent of the point x. Finally,
Y is obtained using the simulate_regression() function, which returns the
response points corresponding to the specified explanatory_points, given a model
for local rotations (local_rotation_composer) and an error term distribution
(local_error_sampler).

R> Y <- simulate_regression(explanatory_points = X,
+ local_rotation_composer,
+ local_error_sampler)

Note that data may be simulated with errors which have a von Mises–Fisher dis-
tribution using the function simulate_regression() as above, but with the
local_error_sampler() specified to return a vector of zeroes (no errors). Then
errors may be added by using the function rmovMF() in the movMF library.

We generally obtain predictions at a newmatrix of points, which can be specified by the
user, but for simplicity here we will use the existing X.

R> evaluation_points <- X

The concentration argument needs to be specified. It is a non negative
scalar whose reciprocal is proportional to the square of the Euclidean bandwidth,
that can be arbitrarily chosen by the user, or else chosen by cross-validation,
using the function cross_validate_concentration(). This function uses
optimize() to search for κ in a positive interval, with the upper bound set by
concentration_upper_bound (set to 10 by default) to minimize Equation (5).
Given thematrices of explanatory and response points, cross_validate_concentr
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ation() returns the optimal choice of κ (concentration) and the corresponding
objective value (objective). In our illustrative example we have:

R> kap <- cross_validate_concentration(concentration_upper_
bound = 100,

+ explanatory_points = X, response_points = Y)

R> kap
$concentration
[1] 49.66991
$objective
[1] 0.0008880942
R> kappa <- kap$concentration

If no scheme for weighting observed data is specified, cross_validate_concent
ration() uses as the weights_generator the function weight_explanatory
_points() that, given the matrices ofm evaluation_points, n explanatory_
points and aconcentration parameter, returns an n×mweightmatrixWκ (whose
jth column contains the weights assigned to the explanatory points whilst considering the
jth evaluation point). Within the package the default kernel is Kκ(xTi x) = exp(κ(xTi x−
1)), which is a rotationally symmetric function with maximum at x. It can be assigned by
using the aforementioned built-in function as follows:

R> weights_generator <- weight_explanatory_
points

Then, using the fit_regression() function, we can obtain the predicted values
Ŷ , corresponding to the evaluation_points:

R> Yhats <- fit_regression(evaluation_points, explanatory_
points = X,
+ response_points = Y, concentration = kappa)

Other than the main arguments discussed above (evaluation_points, explana
tory_points, response_points and concentration), when using the func-
tion fit_regression() it is possible to specify some additional, optional arguments
that are briefly described in Table 2. Note that the functioncross_validate_concen
tration() also has all the arguments and options listed in Table 2, therefore the best
choice of κ will also depend on: the specific kernel used; the number of iterations; whether
a first- or second-order expansion is used; and whether reflections are allowed. We also
note that the functionfit_regression() allows the user to exploit thedoParallel
package as this was seen to speed the computations by about 20%, but this option has
not been implemented for cross_validate_concentration() since no such
improvement was observed.
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Table 2. Optional arguments – and their defaults – of the fit_regression() function.

argument default options and meaning

weights_generator weight_explanatory_points function to return diagonal
entries of the matrix W
given matrix arguments
evaluation_points and
explanatory_points, and
a concentration (κ)

number_of_expansion_terms 1 options are 1, which uses (4), or 2,
which uses (6)

number_of_iterations 1 This isM, the number of iterations, as
described in Section 3.2

allow_reflections FALSE TRUE replaces the matrix � by the
identity I, so that R = VUT –
possibly an ‘improper’ rotation
– may include reflections. The
default prohibits |R| = −1 which
would indicate that the solution
contains a reflection.

Consequently, the output of the function fit_regression() is a list of length
equal to the number_of_iterations M, in which, for m = 1, . . . ,M, the mth
component includes two objects, the m× d matrix of fitted values of Y correspond-
ing to the evaluation_points (fitted_response_points), and the data
matrix X̂m (explanatory_points). In our example, we use the default value of the
number_of_iterations (which is set to 1), therefore to get the fitted responsematrix
Ŷ we write:

R> Yhat <- Yhats[[1]]$fitted_response_points

The mean of the residual sum of squares is somewhat smaller than the leave-one-out
estimate:

R> mean((Y - Yhat) ^ 2) [1]
1.99264e-05

Two other useful functions that have been included in the package are:

• get_skew_symmetric_matrix(), whose argument is a vector (say a) of length
3 and returns a matrix given by �(a) as in Equation (2);

• simulate_rigid_regression(), which is similar to simulate_regressi
on(), but with the argument local_rotation_composer replaced by a
rotation_matrix R. The error structure is the same, so this generates y values
according to model (1).

For example, after loading the library expm [36], using these two functions and keeping
the same explanatory points and error term as before, we can built a rotation matrix and
generate the response points as follows:

R> library("expm")
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R> rotation_matrix <- expm(get_skew_symmetric_matrix(
+ cbind(-0.36, 0.48, -0.8)))
R> response_points <- simulate_rigid_regression(explanatory
_points = X,
+ rotation_matrix, local_error_sampler)

With these parameter settings (local_error_sampler error SD set to 0.01), it is
easy to visualize the rotation models in a graphical plot. We can either use a projection of
the sphere onto the plane, or a 3-D plot using the package rgl [37] as follows:

# 3D plot
R> library("rgl")
R> plot3d(X, type = "n",
+ xlab = "x", ylab = "y", zlab = "z", box =

TRUE, axes = TRUE)
R> spheres3d(0, 0, 0, rad = 1, lit = FALSE, col = "white")
R> spheres3d(0, 0, 0, rad = 1.01, lit = FALSE, col =
"black", front = "culled")
R> text3d(c(0, 0, 1), text = "N", adj = 0)
R> ll <- 10

R> v1 <- (ll - (0:(ll))) / ll
R> v2 <- 1 - v1
R> plot3d(X, add = TRUE, col = 2)
R> for (i in 1:dim(X)[1]) {
+ m <- outer(v1, X[i, ], "*") +
+ outer(v2, Yhat[i, ], "*")
+ m <- m / sqrt(apply(m ^ 2, 1, sum))
+ lines3d(m, col = 3)
+ }

The projection plot can be obtained by first converting to spherical coordinates:

# 2D plot
R> Xs <- convert_cartesian_to_spherical(X)
R> Ys <- convert_cartesian_to_spherical(Yhat)
R> plot(Xs[,1], Xs[,2], pch = 20, cex =.7, col = 2,
+ xlab = "longitude", ylab = "latitude")
R> for (i in 1:dim(Xs)[1]) {
+ co <- " black "
+ if ((Xs[i, 1] - Ys[i, 1]) ^ 2 +
+ (Xs[i, 2] - Ys[i, 2]) ^ 2 > 4) co <- "grey"
+ lines(c(Xs[i, 1], Ys[i, 1]), c(Xs[i, 2], Ys[i,

2]), col = co)
+ }
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Figure 1. X (red points) and fitted Ŷ pairs using rgl (left) and a latitude–longitude projection in radians
(right).

We have drawn grey lines to indicate that the shortest path is ‘around the back’. For our
simulation, the above two plots are shown in Figure 1.

5.2.1. Worldmagnetic fieldmodel
There are hundreds of observatories around the world which record the geomagnetic field
every hour. The locations of these observatories can be represented as points on the sphere,
as can the 3-d vector of the magnetic field observations, after suitable normalization. We
use these as our explanatory points and response values, respectively. TheWorldMagnetic
Model (WMM), which was developed jointly by NCEI (formerly NGDC) and the British
Geological Survey, is based on very high-order spherical polynomials fitted to such data,
and can be used to predict themagnetic field at any place on the planet. Since the Earth has
a molten iron core the magnetic field varies over time, and theWMM is updated every few
years. To illustrate the flexibility of our nonparametric rotation model, we use historical
data from 90 observatories, with recordings taken at 1am on 1st January 2008. The data
are available in IAGA format from www.ngdc.noaa.gov/geomag/data.shtml, and the data
we use is plotted in Figure 2.

We first choose the smoothing parameter by leave-one-out cross-validation. The result-
ing value of κ is found to be 17.19. We also investigate the second-order model (6) and
the iterated solution (9), again choosing the smoothing parameters by cross-validation. It
should be noted that the second-order model is computationally intensive and takes many
times longer to compute than even 20 iterations of the first-order iterated solution. For
example, with 100 observations, the second-order model took about 200 times longer than
20 iterations of the first-order iterated solution. As with many cross-validation functions,
there is the possibility of localminima. This can bemitigated by trying a few different upper
bounds. After finding a good choice of κ for the first-order model this value can provide
an upper bound for both iterated solutions and second-order models, since their optimal
smoothing parameters will, in general, be less.
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Figure 2. Latitude–longitude projection (in degrees) for geomagnetic observations taken at 1am on
01/01/2008. Top left: locations of observatories (points) connected to response values by lines. Top right:
equally spaced design points connected to predicted values for fitted first-order model. In the bottom
two rows, the observatory locations are shown as points with size in relation to residuals (see R code).
Middle left: rigid rotation model connecting locations to predicted values; Middle right: locations con-
nected to predicted values using first-order model. Bottom left: iterated (first-order) solution, with 20
iterations. Bottom right: second-order solution. Connecting lines are shown in grey when the shortest
distance is ‘around the back’.

# reading in data
R> wmm <- read.table("http://www1.maths.leeds.ac.uk/~char
les/wmm.txt")
R> x <- as.matrix(wmm[,1:3]); y <- as.matrix(wmm[,4:6])
# cross-validation to select smoothing
R> library(nprotreg)
R> kap <- cross_validate_concentration(concentration_upper_
bound = 100,
+ explanatory_points = x, response_points = y)
R> kappa1 <- kap$concentration # kappa1 = 17.19051
R> kap <- cross_validate_concentration(concentration_upper_
bound = 17,
+ explanatory_points = x, response_points = y,
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+ number_of_expansion_terms = 2)
R> kappa2 <- kap$concentration # kappa2 = 9.532445
R> kap <- cross_validate_concentration(concentration_upper_
bound = 10,
+ explanatory_points = x, response_points = y,
+ number_of_iterations = 20)
R> kappa3 <- kap$concentration # kappa3 = 5.189341

Using these values of κ we can fit each model to ‘new’ design points which are equally
spaced on the sphere, and to the data, obtaining predictions by leave-one-out, and – for
comparison – to a rigid rotation model (κ = 0).

# obtain predictions for equally spaced design points, and
fitted models

R> xt <- get_equally_spaced_points(90)
R> Yhats <- fit_regression(evaluation_points = xt, explanat
ory_points = x,
+ response_points = y, concentration = kappa1)
R> Yhat0 <- Yhats[[1]]$fitted_response_points
R> Yhat1 = Yhat2 = Yhat3 = Yhat4 = x
R> for (i in 1:dim(x)[1]){
+ Yhats <- fit_regression(evaluation_points = matrix
(x[i,],1,3),
+ explanatory_points = x[-i,], response_poi
nts = y[-i,],
+ concentration = kappa1)
+ Yhat1[i,] <- Yhats[[1]]$fitted_response_points
+ Yhats <- fit_regression(evaluation_points = matrix
(x[i,],1,3),
+ explanatory_points = x[-i,], response_poi
nts = y[-i,],
+ concentration = 0) # rigid
+ Yhat2[i,] <- Yhats[[1]]$fitted_response_points
+ Yhats <- fit_regression(evaluation_points = matrix
(x[i,],1,3),
+ explanatory_points = x[-i,], response_poi
nts = y[-i,],
+ number_of_expansion_terms = 2, concentr
ation = kappa2)
+ Yhat3[i,] <- Yhats[[1]]$fitted_response_points
+ Yhats <- fit_regression(evaluation_points = matrix
(x[i,],1,3),
+ explanatory_points = x[-i,], response_
points = y[-i,],
+ number_of_iterations = 20, concentration

= kappa3)
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+ Yhat4[i,] <- Yhats[[20]]$fitted_response_points
+ }

The fitted y values can be compared to the responses, with mean squared errors of
0.0085 and 0.226 for the flexible and rigid rotation models, respectively. For comparison,
the second-order model has mean-squared error 0.0015, and the iterated solution 0.0018.
Choosing the number of iterations could be done by cross-validation, but provided κ is
suitably chosen, the best fit will often be for very large values of M. So, in practice we
recommend trying a few values (perhaps in increments of 5), and selecting the smallest
which leads to a useful improvement over the non-iterated solution (M = 1).We note that
allowing reflections in the standard (first-order,M = 1) case gives a cross-validated mean
squared error of 0.0072 with κ = 22.3, which is quite similar to the performance when
reflections are prohibited so we have not pursued this option further in these illustrations.

We can visualize the fitted models using a latitude–longitude projection. It is clear that
the rigid model lacks the flexibility required for the data. For the first-order solution, the
selected value of κ leads to a reasonable fit for those observations which are more dense,
but – as can be seen in Figure 2 – with larger residuals for those near the equator where
the observatories are more sparse. Both the second-order model and the iterated solution
make improvements on this, albeit at the expense of more computational effort.

# MSE values and SOME of the plotting commands
R> mean((y-Yhat1)^2); mean((y-Yhat2)^2) # 0.008491605 and

0.2255475
R> mean((y-Yhat3)^2); mean((y-Yhat4)^2) # 0.001457302 and

0.001820705
R> Xs <- convert_cartesian_to_spherical(x)*180/pi
R> Ys1 <- convert_cartesian_to_spherical(Yhat1)*180/pi
R> rr <- acos(apply((Yhat1*y),1,sum))
R> plot(Xs[,1], Xs[,2], xlab = "longitude", ylab = "lat
itude",
+ type = "n", ylim = c(-89,89), xlim = c(-170,170))
R> points(Xs[,1], Xs[,2], pch = 20, cex = 3*sqrt(rr))
R> for (i in 1:dim(Xs)[1]) {
+ co <- " black "
+ if (sum((Xs[i,]-Ys1[i,])^2) > 35000) co <- "grey"
+ lines(c(Xs[i,1], Ys1[i,1]), c(Xs[i,2], Ys1[i,2]),

col = co)

+ }

6. Summary and discussion

Regression when data are located on a sphere is a classical statistical problem attracting
interest from many applied fields, in particular in Earth Sciences. As a specific case, many
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disciplines need to consider circular–circular data, that are of interest when studying direc-
tions, for example, in metereology and animal behaviour studies. It has been observed
that parametric approaches often result in solutions which are too rigid and do not fully
describe or interpret the data. As a consequence, non-parametric approaches are gaining
in popularity, giving rise to the need for a package of interest to nonparametric practition-
ers belonging to various scientific disciplines. In this paper, the nprotreg package for the
implementation of non-parametric spherical–spherical regression methods proposed by
[12] is described. The method is based on local estimation of rotation matrices, assuming
that a single rotation is unable to explain the regression for the whole dataset, and rotation
matrices exist that explain data dependence in a local manner. The content of the package
is divided into two parts: the conversion functions, that preliminarilymake accessible other
data formats, and the proper regression ones. Finally, the package provides useful tools for
simulating sphere–sphere data according to non-rigid rotation models, including a rigid
rotation as a specific case.

The results in this paper were obtained using R 4.0.3. R itself and all pack-
ages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/.

Note

1. We will not specify the origin package for functions belonging to base, stats and nprotreg.
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