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Exposing a dynamical signature of the freezing
transition through the sound propagation gap
V.A. Martinez1,*, E. Zaccarelli2,*, E. Sanz3, C. Valeriani3 & W. van Megen4

The conventional view of freezing holds that nuclei of the crystal phase form in the

metastable fluid through purely stochastic thermal density fluctuations. The possibility of a

change in the character of the fluctuations as the freezing point is traversed is beyond the

scope of this perspective. Here we show that this perspective may be incomplete by

examination of the time autocorrelation function of the longitudinal current, computed by

molecular dynamics for the hard-sphere fluid around its freezing point. In the spatial window

where sound is overdamped, we identify a change in the long-time decay of the correlation

function at the known freezing points of monodisperse and moderately polydisperse systems.

The fact that these findings agree with previous experimental studies of colloidal systems in

which particle are subject to diffusive dynamics, suggests that the dynamical signature we

identify with the freezing transition is a consequence of packing effects alone.
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T
he freezing of a liquid into a crystalline solid is just one of
numerous first-order phase transitions we experience every
day. Yet we understand little about the underlying processes

that drive, for example, the transformation of an isotropic fluid,
when cooled or compressed beyond a particular point, to a faceted
crystal. In the absence of introduced seeds or gradients, the
prevailing classical view holds that the crystal nucleates stochas-
tically in the under-cooled, or over-compressed melt. The free
energy barrier, given by the difference between the free energy
gain, from the transfer of particles from the metastable fluid to the
thermodynamically stable crystal, and the free energy loss in
creating the crystal-fluid interface, is the main factor that
determines the nucleation rate1. For moderate/strong
undercooling, homogeneous nucleation occurs with sufficient
frequency to be detectable in the limited times and sample
volumes accessible to experimental and computational studies2–5.
These have provided in considerable detail the microscopic
kinetics beneath the stochastic step offered by the classical theory.
Broadly speaking it is found that following a deep quench or
compression, the resulting metastable fluid is structurally
heterogeneous—possessing compact amorphous structures from
which Bragg reflecting crystals evolve. For weaker undercooling,
the barrier to nucleation is large relative to the mean thermal
energy and consequently the occurrence of a fluctuation large
enough to form a stable nucleus may be too infrequent to capture
experimentally. Nonetheless, the crystal phase must start its
separation from the metastable fluid at some point in time, no
matter how weak the undercooling. However, evidence for
distinguishing structural features in weakly under-cooled fluids
is tenuous as is the evidence that such features are precursory to
the formation of stable crystals6,7. So, the question is, what
changes at the freezing point? An alternative approach to address
this question is suggested by more recent work, mainly on particle
suspensions8–12, where qualitative changes in dynamical rather
than structural properties are exposed near the freezing point.

Most of the studies, discussed above, have been performed on
systems of hard spheres. The notion that without the benefit of
attractive forces particles somehow coalesce and assemble into
crystals may be somewhat challenging. Nonetheless, as demon-
strated by some of the earliest computer simulations of the liquid
state, a system of identical hard spheres does indeed have a first-
order freezing–melting transition13,14. Packing fractions of the
coexisting fluid and crystal phases, ff¼ 0.494 and fm¼ 0.545,
have also been established by computer simulation15. This is a
first-order thermodynamic transition and, as such, its location is
determined by the (hard-sphere) interactions among the particles;
it is independent of the particles’ motions between encounters, be
they ballistic or diffusive. So, one might ask; with regard to the
mere fact that particles take up space, what is it that causes a
mechanism to emerge, at the packing fraction ff, that could
possibly set up the dynamical conditions for nucleation?

The hard-sphere system serves as a valuable reference for the
determination of structural and thermodynamic properties16,17 of
real fluids and also, by extension of Enskog theory, interpretation
of their dynamic spectra18–21. Of course, it is not difficult to
appreciate that the dynamical consequences of the (hard-sphere)
packing constraints are most clearly exposed under conditions
where sound is damped. For colloidal systems this damping is
effectively accomplished by the suspending liquid22,23, and
isolation of the direct effects of packing constraints is relatively
straightforward10–12. When particles are subject to Newtonian
dynamics, the barest structural dynamics we seek to isolate are
coupled to and, consequently, obfuscated by, propagating sound.

According to linearized hydrodynamics, the dynamic structure
factor comprises the central Rayleigh peak, due to diffusion of
heat, and the doublet of Brillouin peaks shifted by the frequency

of the acoustic modes17,24. In addition, we know from dynamic
spectra obtained from neutron scattering18–21,25 and molecular
dynamics (MD) computer simulation26–29, when analysed by
extensions of hydrodynamic theory, that acoustic excitations
extend to wavelengths comparable to the interatomic spacing.
These shorter wavelength sound modes are dispersive and are a
feature of dense fluids and liquids rather than gases. And on the
face of it they would complicate our task of isolating the
dynamical effects of packing constraints on the most relevant
length scale. It is significant therefore that for some state points,
of several simple fluids studied so far, the sound dispersion curves
have gaps—spatial windows where sound is overdamped—for
wavevectors around the location of the main maximum in the
static structure factor26–29. There is, however, no unique model
by which linear hydrodynamics may be extended to finite
wavevectors30,31, and the results are prone to appreciable fitting
errors. For the hard-sphere system in particular, available results
are scanty26,27. In addition, neither the frequency nor the other
parameters that characterize the viscoelastic dynamics is sufficient
to expose possible subtle changes in the character of density
fluctuations around the freezing point. For these reasons, we
introduce an alternative but simpler analysis of the data.

In this paper we investigate the time correlation function,
C(q, t)¼oj*(q, 0)j(q, t)4, of the longitudinal particle current,
j(q, t), computed by MD for the hard-sphere fluid as detailed
under Methods. In the Results section, we determine that sound
becomes overdamped for wavevectors around the position of the
main maximum of the structure factor when the volume fraction
exceeds 0.45. This is then where the long-time decay of the
current autocorrelation function (CAF), is determined entirely by
packing constraints among the spheres. We find that the CAF
develops an inflection at a volume fraction that coincides with the
known freezing point. Accordingly, we identify the emergence of
this anomaly as a signature of freezing. In the Discussion section,
we consider these results along with a previous calculation of time
correlation function of the particle’s velocity and infer that this
dynamical signature indicates the onset of quenched in disorder
(QID). In conclusion we conjecture on the evolution of the QID
towards crystal nuclei.

Results
Determination of the overdamping of sound. We begin with the
one-component hard-sphere fluid. Figure 1 shows C(q, t) for the
packing fraction f¼ 0.40, not far below the freezing value, and
wavevector, qmd¼ 6.69, where S(q) has its main peak. The
minimum at the delay time, tm, delineates what we refer to here
as fast (totm) and slow (t4tm) processes. Qualitatively speak-
ing, C(q, totm) is dominated by the effects of collisions, whereas
C(q, t4tm) is dominated by structural relaxation. Note also from
the inset in Fig. 1a that tm(q) shows a broad maximum, around
f¼ 0.45, for the wavevector qmd but it decreases monotonically
for the other wavevectors shown. This is already one hint that
dynamics exposed around qmd is qualitatively different from that
at other values of qd.

In what follows, we confine analysis and discussion to the slow
process, C(q, t4tm).

Although not shown here, for smaller wavevectors (say
qdEo1), C(q, t4tm) exhibits the usual oscillations indicative
of underdamped acoustic modes32,33. However, as we
demonstrate below, monotonicity of C(q, t4tm) at larger
wavevectors, as seen in Fig. 1, for example, like the absence of
distinct Brillouin peaks in dynamic spectra26, is in itself not
sufficient to indicate that sound is overdamped.

Our analysis of these data is based on the following reasoning;
as C(q, t4tm) (Fig. 1a) is negative, it exposes reversals of the
particles’ movements. When such reversals are uncorrelated (in
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time), as is the case for a dilute system of Brownian particles, the
slow fluctuations in the longitudinal current constitute a random
Markov process and their time correlation function, C(q, t4tm),
decays by an exponential function of the delay time. Compound-
ing this process by memory of the particles’ momenta mitigates
the reversals and advances, or compresses, the decay of
C(q, t4tm) with respect to that of an exponential function.
Packing constraints, on the other hand, by the imposition of
momentary structural traps cause the decay to be retarded, or
stretched, relative to that of the putative Markov process.

The Kohlrausch function or generalised exponential (GE)34

Cðq; tÞ ¼ K qð Þexp½ � t=tx qð ÞgðqÞ�; ð1Þ
is perhaps the simplest model that encapsulates this gamut of
processes35. The physically significant parameter here is the
exponent g(q) for it distinguishes compression (g(q)41) from
stretching (g(q)o1) of the correlation function. As illustrated in
Fig. 1, we proceed by fitting the GE to C(q, t4tm). (For
completeness, the fit of equation (1) to C(q, totm) is also shown
but not considered further in this paper.) The amplitude, K(q),
time scale, tx(q), exponent, g(q), and the static structure factor are
plotted for various packing fractions in Fig. 2. For reasons
discussed below, this part of the analysis is confined to volume
fractions foff. Note that the relaxation rate, t� 1

x qð Þ, and the
amplitude, K(q), show minima—particle currents are weaker and
slower—for wavevectors around the position, qm, of the main
peak in S(q), as expected on the basis of de Gennes slowing36. For

fo0.45, of which the first panel of Fig. 2 is illustrative, the index,
g(q), exceeds unity for all qd and shows no apparent correlation
with S(q); whereas, for fE0.45, a hint of such correlation starts
to emerge around qmd (E7), g(q) just starts to reach one. For
f¼ 0.49 Fig. 2 shows that g goes well below 1 in a range of
wavevectors around qm. We have here the situation where, when
integrated over the time interval 0 to tm, the advance of the
particle current, due to persistence of the particles’ momenta, is
effectively countered by the retard due to the packing constraints:
a spatial window emerges where sound is overdamped. So, for
fE0.45, q¼ qm and t4tm, the CAF and (by equation (5) under
Methods) the intermediate scattering function decays
exponentially with delay time. For these conditions, the system
of Newtonian hard spheres is statistically equivalent to a system
of Brownian particles.

In Fig. 3, we show the sound dispersion curves, obtained by
analysis of the MD data by extended hydrodynamics, for packing
fractions around the freezing value. One sees that for packing
fractions between B0.45 and 0.50 and a range of wavevectors
around qd¼ qmdE7 os(q)¼ 0; that is, there is a propagation gap.
Such propagation gaps have been found for other simple fluids
around their respective structure factor maxima19,25,27,29.
Significantly, insofar as the determination of the conditions
where sound is overdamped, the results of our procedure based
on fitting the GE to the long-time tail of the CAF are consistent
with the more conventional analysis. So for these conditions,
elastic restoring forces are completely dominated by dissipation.
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Of course the collision frequency among the particles increases
with packing fraction. So once, for a given f (E0.45),
C(q, t4tm) displays no memory of the collisions (g(q)¼ 1),
any further decrease in g(q) or, as we will see below, any deviation
of C(q, t4tm) from the GE, found on increasing f can be due
only to the changes in structural dynamics associated with
packing effects alone. Specifically, we suggest that the accom-
panying increase in heterogeneity of structural traps results in a
spread, proportional to g(q) (ref. 35), of the currents’ reversal
times. The delay time tx, given by C(q, tx)¼K(q)/e, is a measure
of the fastest of those times.

Values of the parameters, K qmð Þ; t� 1
x qmð Þ and g(qm) of the SE

for the wavevector qm are shown in Fig. 4 as a function of packing
fraction. One sees that the value, g(qm), of the exponent decreases
further as f approaches the freezing value. But note also where,
for fE0.45, g(qm) drops through unity, the (average) reversal
rate, t� 1

x qmð Þ, starts to increase. So, whatever the nature of the
collective processes exposed, once sound is overdamped, they
become increasingly heterogeneous and dominated by increas-
ingly faster reversals of the particle flux.

Identification of a dynamical signature of freezing. From now
on, we restrict our analysis and discussion to the conditions
where sound is overdamped, that is, f40.45 and q¼ qm. In the
first row of Fig. 5, log|C(qm, t)| is shown for several volume
fractions bracketing the known freezing point, ff¼ 0.494. In all
cases known to be in the thermodynamically stable phase
(foff), C(q, t4tm) can be described by the GE function of
delay time (equation (1)) within the noise of the data. This is not
so for the metastable fluids (f4ff). Variations in concavity in
the decay of the CAF, clearly evident for f¼ 0.52 (Fig. 5a) and
f¼ 0.51 (Fig. 5b), suggests the existence of a process, or pro-
cesses, that distinguish the metastable from the stable fluid. Closer
to the transition (f¼ 0.50 (Fig. 5c)), the CAF cannot be described
by a GE function nor is there an obvious inflection. Here, over a
limited but identifiable time window, |logC(q, t)| versus logt
shows no curvature. At this stage, we attach no significance to this
lack of curvature in the double logarithm presentation (or

apparent power-law decay of C(q, t)) other than the means to
estimate the packing fraction, fc¼ 0.500±0.005, where another
structural mechanism, specific to the metastable fluid, sets in.
There is clearly no suggestion of a discontinuity, at least not to
first order in f. Accordingly, with due regard to noise and
resolution of these data, we estimate the packing fraction of the
dynamical crossover from the thermodynamically stable to
metastable fluid to be 0.50±0.005.

Results for the polydisperse fluids S6, S10 and S14 are shown in
the second, third and fourth rows of Fig. 5. In Fig. 5d,e for S6,
Fig. 5g,h for S10 and Fig. 5j and Fig. 5k for S14, two types of
decay in the CAF, one following a SE and the other having some
variation in concavity, are evident. This distinction has all but
disappeared for example for S6 in Fig. 5f, where, as discussed
above for the one-component system, the lack of curvature
presents the best way to estimate the packing fraction,
fc¼ 0.505±0.005 in this case, where the dynamical crossover
is located. Applying the same criterion to the results for S10 in
Fig. 5i and for S14 in Fig. 5l, gives the values of the respective
estimates for fc listed in Table 1.

Estimates of the packing fractions, ff, of the respective
thermodynamic freezing points are also listed in Table 1. For
polydisperse systems37–39, these estimates are sensitive to the
particle size distribution and, more significantly, whether the
protocols allow for fractionation into multiple crystal phases from
different sub-populations of the particle size distribution. Then,
according to the latest studies37,38, there is no terminal
polydispersity beyond which such phase separation is supressed.
However, when fractionation is not taken into account (see ref. 39
and references cited therein), a limiting polydispersity (B10%) is
predicted. Clearly, our results for fc are compatible with those
estimates of ff, based on protocols that allow fractionation.

Comparison with experiment. Finally, the magnitude of the
variation(s) in concavity, increasingly apparent as one goes dee-
per into the metastable fluid, can be quantified by the (logarith-
mic) derivative,

Lðq; tÞ ¼ dlog j Cðq; tÞ j =dlogt; ð2Þ
shown in Fig. 6a. Taking this additional step in processing of the
data necessarily incurs some loss of sensitivity to the subtle
changes seen in the panels on the right in Fig. 5. The reason for
doing so is that it allows a convenient comparison (Fig. 6b) with
the corresponding results obtained by dynamic light scattering on
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a suspension of hard-sphere-like particles11. It is clear that for all
fr0.49, L(qm, t) decays monotonically for delay time
logt4� 0.5 that spans the slow decay of the current correlator.
The shoulder in L(qm,t) seen for f¼ 0.50, around logt¼ 0,
manifests the lack of curvature of C(qm, t) in Fig. 5c. In the
metastable phase, at least for fZ0.51, the inflections seen in
Fig. 5a,b are now manifested by oscillations. In the experimental
result (Fig. 6b), one sees that non-monotonicity in L(qm, t) sets in
when the freezing volume fraction is exceeded.

Discussion
By fitting the GE function of the delay time (equation (1)) to the
long-time negative tail of the time autocorrelation function of the
longitudinal particle current (Fig. 1), we determine that sound
becomes overdamped for wavelengths corresponding to the
interparticle spacing for packing fractions of the hard-sphere fluid
above fE0.45. In this respect, the results of this novel analysis
are consistent with those obtained by the application of extended
hydrodynamics.
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The most significant result of our computations, seen in Fig. 5,
is that the negative ‘tail’, C(q, t4tm), of the CAF develops a
change in concavity or, correspondingly in Fig. 6, its logarithmic
time derivative a maximum. Since this dynamical feature emerges
at the freezing volume fraction, ff, or as near to it as can be
determined from the resolution and accuracy of the computa-
tions, we propose it to be a dynamical signature of the first-order
freezing transition. The consistency, seen in Fig. 6, of the results
of the MD simulations and those of dynamic light scattering
experiments on the colloidal system of (diffusing) hard spheres
lends further support to the conclusion that, whatever their
nature, the ‘modes’ that set in at the freezing point are associated
with packing constraints alone; unrelaxed momentum currents in
the hard-sphere fluid, or hydrodynamic interactions among the
particles sourced from such currents in suspending liquid, have
no role, at least not in the time windows of the simulations and
experiments discussed here. In addition, Fig. 5 and Table 1 show
that as polydispersity is introduced this dynamical signature is
relocated in a manner consistent with the predicted relocation of
the first-order thermodynamic transition.

Extended hydrodynamic analyses also find, by the disappear-
ance of the propagation gap, emergence of another mode at
fE0.50. So also, the gap disappears for the fluids with
continuous pair potentials at state points rather close to their
respective freezing points28,40. Although fitting errors are
appreciable in these analyses, it would be a curious coincidence,
nonetheless, if the vanishing of these gaps did not point to the
same dynamical signature of freezing as that inferred from our
consideration of the CAF. The implication of the connection is
that the vanishing of the propagation gap does not signal the re-
emergence of sound.

To shed some light on the nature of the structural change that
occurs or modes that emerge at the freezing point, we consider
results of previous studies of the velocity autocorrelation function
(VAF), also obtained by MD for the hard-sphere system8; The
VAF in the metastable fluid is found to decay by a negative
power-law (B� t� 5/2) of the delay time8. This is fundamentally
different from the classical, (positive) hydrodynamic power-law
(Bt� 3/2) which, in turn, results from the diffusive dissipation of
that part of an atom’s instantaneous thermal momentum that is
not carried away by sound41. A negative power-law is expected in
the presence of QID as in the classical Lorentz gas42 or a porous
medium43. However, the metastable fluid still flows and,
therefore, it does not possess the type of global structural
rigidity of a porous solid for example. Presuming that the features
of the VAF and the CAF, found in the metastable fluid, have the
same origin, we propose that on entering the metastable phase the
QID sets in for the wavevector qm.

Insofar as it is confined to one wavevector, or as experiments
show10–12 more generally for weakly over-compressed systems, a
narrow spread of wavevectors around qm, the QID identified here
is too limited, or perhaps too subtle, to quantify the
corresponding structural or dynamical heterogeneity (in direct
space). At the same time, the emergence of a new source of spatial
correlation around qm is not inconsistent with the emergence of
amorphous compact structures of which the icosahedron, for
example, is one that is manifested by the splitting of the second
peak of the radial distribution function7,44. The latter structural
feature is generally adopted to distinguish metastable from
thermodynamically stable fluids.

Given that nucleation and, therefore, any possible precursory
heterogeneous dynamics in these weakly over-compressed fluids

Table 1 | Location of the dynamical crossover.

Dynamical crossover, /c Freezing transition, /f

Colloid [11] 0.492±0.006 0.494 [15]
S0 0.500±0.005 0.494 [15]
S6 0.505±0.005 0.508 [37], 0.509 [39], 0.515 [38]
S10 0.520±0.005 0.521 [37], 0.536 [39], 0.545 [38]
S14 0.525±0.005 0.53 [37#], 0.564 [38]

fc, identified from present molecular dynamics (MD) simulation compared with the known location, ff, of the thermodynamic freezing transition for the one-component15 and polydisperse hard-sphere
fluids obtained from ref. 37 (top-hat PSD), ref. 39 (Gaussian PSD) and ref. 38 (triangle PSD). The estimate marked [37#] was obtained by extrapolating the freezing line in Fig. 1b in ref. 37.
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are too rare to be observed in typical computer simulations,
discussion on the evolution of the QID towards the crystal is
necessarily speculative. Our interpretation involves extrapolating
our observations to studies, reported elsewhere, of the structure
and its evolution in more strongly over-compressed metastable
fluids2–7. Now, it is evident from Fig. 6 that the oscillation of
L(qm, t)—a signature of the QID—increases as the degree of over-
packing increases. As mentioned already, such enhancement of
spatial correlation around qm would be manifested by a
sharpening of the main peak, S(qm), of the structure factor.
Such sharpening is also observed in experimental and computer
simulation studies of crystallization kinetics3–5 of moderately
over-packed hard-sphere systems. These find that in the wake of a
density quench, but long before Bragg reflections are evident,
there is a slow increase of S(q) around qm. In turn, this is
attributed to the presence of compact amorphous structures.
Significantly, it is from these structures that crystal nuclei
evolve3–5. Accordingly, we can at least speculate that the QID
identified here from the combination of previous8 and current
MD simulations is a potential dynamical conduit to nucleation.

An obvious alternative possibility is that the QID dissipates
after some time, beyond the observation time of the experiments
and computer simulations discussed so far. After that, nucleation
could then proceed from a dynamically homogeneous fluid by
thermal stochastic processes. In this case, our observations of a
change in dynamics at the thermodynamic freezing point is no
more than an interesting coincidence. Clearly, more extensive
experiments and/or computer simulations are required to
determine which of these scenarios unfolds in weakly over-
compressed fluids.

Methods
Simulation details. Using methods that are now well established45–47, we perform
event-driven MD simulations in the micro-canonical (NVE) ensemble, after
preparation in the canonical (NVT) ensemble, for N¼ 2,000 hard-sphere particles
in a cubic box with periodic boundary conditions. For all state points presented in
this work, nucleation is too rare/slow to be observed in any practical computational
time. Thus, the time correlation functions presented here are invariant to time
translation. Particle mass, diameter and mean thermal energy are m, d and kBT (kB
is the Boltzmann constant and T the temperature). Length and time are expressed
in units of d and d(m/kBT)1/2, respectively. Simulations were carried out for the

one-component fluid and for fluids having a spread of particle radii or
polydispersity, s, (width of the distribution relative to the mean) of 0.06, 0.10 and
0.14; respectively designated as S0, S6, S10 and S14. The distribution is given by a
31-component discrete distribution with Gaussian shape47. From the trajectories
generated, we calculate the intermediate scattering function (ISF), or time
correlation function

f ðq; tÞ ¼ hrðq; 0Þr�ðq; tÞi=h j rðqÞ j 2i ð3Þ
of the particle number density,

r q; tð Þ ¼ 1=
ffiffiffiffi
N

p XN
j¼1

exp � iq � rj tð Þ
h i

: ð4Þ

Here rj(t) is the position of the jth particle at time t, q is the scattering vector, t is
the delay time, the asterisk indicates the complex conjugate and the angular
brackets indicate the ensemble average of a system of N particles. The ISF has been
normalized by the static structure factor, S(q)¼o|r(q)|24. To achieve the
statistical accuracy required for the analyses, the reported results are based on at
least 600 independent runs, each of duration of up to 10ta. Here ta, defined by
f(qm, ta)¼ 1/e, is the structural relaxation time of the fluid at the wavevector, qm,
where S(q) has its main maximum.

Calculation of the longitudinal current correlation function. The autocorrela-
tion function17,24 of the (longitudinal) particle current (CAF) is obtained by taking
the second derivative of the ISF, numerically, with respect to the delay time,

C q; tð Þ ¼ � q� 2d2f ðq; tÞ=dt2: ð5Þ
Explicitly, the CAF is,

C q; tð Þ ¼ 1=Nq2SðqÞ
� � XN

j;k¼1

q:vj 0ð Þvk tð Þ:q
� �

exp iq: rj 0ð Þ� rkðtÞ
� �� �* +

ð6Þ

where vi(t) is the velocity of the ith particle at time t. In the second expression of the
CAF both ri(t) and vi(t) are subject to numerical noise. Since the ISF depends on
particle positions only the more efficient avenue, with regard to noise suppression,
is to calculate the CAF by equation (5). In Fig. 7 we show that this is indeed the
case by comparing the results of direct calculations, via equation (6), with that
obtained by equation (5). It is seen that, as the number of independent
configurations used in the direct calculation is increased from 14 to 500 to 3,500,
the results converge towards those resulting from the second derivative. However,
even with the largest ensemble of configurations, the inflection occurring in this
case for tB2, is only just apparent, whereas the second derivative offers a much
better estimate of the inflection with only 500 independent configurations. These
results are also in agreement with previous work48 that found these types of
correlation functions can be obtained far more efficiently, without introducing
artefacts, by numerical differentiation of correlators dependent on particle
positions only.

Extended hydrodynamic analysis. In the extended hydrodynamic theory, the ISF
is expressed as25–28

f q; tð Þ ¼
X
j¼h;�

Aj qð Þexp � zjðqÞt
� �

; ð7Þ

where Ah and zh(q) are the real parameters that characterize the extended heat
mode and conjugate pairs, A� ¼Aþ *, z� (q)¼ zþ *(q), the extended sound
modes. We performed fits of the right hand side of equation (7) to the ISF by the
method of least squares as described in numerous previous works. The only
quantity of interest in the present context is the frequency,

os qð Þ ¼ Imz� ðqÞj j: ð8Þ
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