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 The proposed scheme provides an effective approach to include high-resolution 

topographic information in a coarse model grid cell. 

 The proposed scheme can be used in any hydrological or land-surface model to 

estimate variance of downward solar radiation within each model grid cell. 

Abstract 

Subgrid variability of solar downward radiation at the surface can be important in 

estimating subgrid variability of other radiation-driven variables, such as snowmelt and 

soil temperature. However, this information is ignored in current hydrological and 

weather prediction models as only the mean downward solar radiation of model grid is 

used. In this study, a parameterization for estimating subgrid variability of downward 

solar radiation from the model grid mean using high-resolution Digital Elevation Model 

(DEM) data is proposed. This scheme considers aspect and slope effects on the subgrid 

variability. The advantage of this scheme is that computations are performed at the same 

resolution as the considered hydrological or weather prediction model, and subgrid 

topographic properties derived from high-resolution DEM data are used as static inputs. 

This proposed scheme has been verified in mountainous and flat areas, respectively. It is 

found that the scheme can well estimate the subgrid variability of downward solar 

radiation. Also, effects of the DEM resolution on the calculated subgrid variability and the 

spatial correlation of downward solar radiation are studied. Results show that modeled 

subgrid variability highly depends on the resolution of the DEM, while the spatial 

correlation is negligibly time-dependent. The proposed scheme can be used in any 

hydrological and weather prediction model to estimate subgrid variability of downward 

solar radiation. For example, it is planned to be tested in future NOAA regional and global 
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weather models to account for the effects of the subgrid variability of downward solar 

radiation on the snow model of the land-surface component. 

1 Introduction 

Solar radiation is the energy source for all forms of life, and it determines dynamics of 

many landscape processes such as transport of soil temperature and moisture, snowmelt, 

photosynthesis and transpiration, with direct impact on human society (Hofierka and 

Suri, 2002).  Among others, the spatial variability of solar radiation affects the 

hydrological cycle and surface energy budget. For example, it affects snowmelt rate, and 

this contributes to the spatial variability of snow distribution (He et al., 2019). Further, 

the spatial variability of snow distribution results in differences in surface energy fluxes, 

which can potentially affect the vertical structures and mixing processes in the 

atmospheric boundary layer (Wu et al., 2015). 

The subgrid variability issue is common in Earth-system models at almost any spatial 

resolution. Recently, the hydrology community identified 23 unsolved scientific problems 

in hydrology, and four of them are related to spatial variability and scaling (Blöschl et al., 

2019). Generally, a common basic assumption in Earth-system models is that state 

variables and processes are uniform within a model grid, which is determined by the 

spatial resolution (Yano, 2016). However, elements of the Earth system are generally 

heterogeneous and the part of spatial variability within a model grid, referred to as 

subgrid variability, still could be substantial. Basically, two long-established approaches 

are used in the practice for representing subgrid variability. One is the statistical dynamic 

approach (e.g. Avissar, 1992; Liang et al., 1996) and the other is the mosaic approach (e.g. 

Avissar and Pielke, 1989; Smirnova et al., 2016). In general, the spatial resolution of 

atmospheric and land-surface models ranges from one kilometer to tens of kilometers for 
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different applications. For example, the NOAA operational hourly updated numerical 

weather prediction systems, the Rapid Refresh (RAP) and High-Resolution Rapid Refresh 

(HRRR), are implemented at the 13-km and 3-km spatial resolution, respectively 

(Benjamin et al., 2016). The National Water Model (NWM), which is an operational 

hydrological model that simulates and forecasts streamflow over the entire continental 

U.S., runs at a spatial resolution of one kilometer (https://water.noaa.gov/about/nwm). 

Even a spatial resolution of a few kilometers is considered as high resolution in these 

applications, it is still too coarse to fully capture effects of surface heterogeneity. For 

instance, land hydrology depends on surface morphology and soil characteristics that can 

be highly variable in space down to extremely fine scales of a few meters (Giorgi and 

Avissar, 1997).  

The subgrid variability of downward solar radiation can be useful as long as such 

information is provided for each model grid cell since variabilities of other processes (e.g. 

snowmelt, evaporation, and soil temperature) affected by solar radiation may be 

estimated from it. For example, He and Ohara (2019) proposed a model for representing 

subgrid variability of snow, and the subgrid variability of downward solar radiation 

information is needed in the model. At the subgrid scale, heterogeneity of downward 

solar radiation can be remarkable as solar irradiance is dramatically modified by rough 

topography. Although effects of topography on the downward solar radiation have been 

well formulated (Linke 1922; Lee 1963; Bras 1990; Sproul 2007) at point scale, subgrid 

topographic influences are usually simplified or neglected in hydrological and land-

surface models and only model grid cell mean values are used.  However, an increasing 

number of studies have found that the subgrid topographic effects on downward solar 

radiation need to be considered for large scale applications (Helbig and Löwe 2012; Lee 
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et al. 2011; Lai et al. 2010; Essery and Marks 2007; Dubayah et al. 1990; He and Ohara 

2019). These applications include weather-prediction models (e.g., NOAA HRRR and RAP 

models, Benjamin et al 2016) where requirements for accurate near-surface predictions 

necessitate subgrid-scale effects of topography.  Therefore, to maintain computation 

performance, it is necessary to have a parameterization scheme that can efficiently 

estimate subgrid variability of downward solar radiation from topographic properties of 

the model grid. Such a scheme is proposed in this study. Topographic properties become 

more available with the development of new measurement techniques. For example, one-

third arc-second Digital Elevation Model (DEM) data of the CONUS can be freely accessed 

online (https://www.usgs.gov/core-science-systems/ngp/tnm-delivery/), and 

topographic properties can be computed easily from these DEM data. 

There are some studies have looked at subgrid variability of downward solar radiation 

(Dubayah et al. 1990; Müller and Scherer 2005; Essery and Marks 2007; Lai et al. 2010; 

Helbig and Löwe 2012; Löwe and Helbig 2012), but they focus on estimating model grid-

cell mean rather than variance of downward solar radiation within a model grid cell.  

Dubayah et al. (1990) derived two equations for estimating mean and variance of direct 

solar radiation by assuming a constant terrain slope and uniformly distributed aspect.  

However, these assumptions are too limiting and may lead to substantial errors in the 

weather prediction application on the regional and global scales.  Müller and Scherer 

(2005) proposed a subgrid-scale parameterization scheme computing mean of radiation 

fluxes for a model grid cell by considering topography at fine resolution. With this 

method, mean downward solar radiation of the model grid cell can be estimated more 

accurately compared to Dubayah et al. (1990), but they did not compute the variance 

within a model gird cell, and also, they did not separate time-dependent variables from 

https://www.usgs.gov/core-science-systems/ngp/tnm-delivery/


 
©2019 American Geophysical Union. All rights reserved. 

static variables. Essery and Marks (2007) developed parameterizations for spatial 

averages, standard deviations, and distributions of direct and diffuse downward solar 

radiation with the assumption of fitted Laplace and extreme-value distributions of slope 

components and horizon angles.  Helbig and Löwe (2012) presented a complete radiation 

parameterization scheme accounting for shading, limited sky views, and terrain 

reflections in radiation estimation, but they used the scheme of Dubayah et al. (1990) for 

estimating mean of direct solar radiation with the limitations mentioned above.  All these 

studies focus more on representing grid-cell mean downward solar radiation, but give 

less attention to computing variance of downward solar radiation within a model grid 

derived from the actual topography. 

The purpose of this study is to develop a parameterization scheme to compute variance 

of downward solar radiation in a model grid cell using the high-resolution DEM data of 

the model grid cell. More specifically, we establish a relationship between subgrid 

variability of downward solar radiation and subgrid variability of terrain. The advantage 

of using the subgrid variability of terrain is that these properties are time-independent, 

can be treated as static inputs, and would not cause additional computation cost in 

application. We will investigate how subgrid slope and aspect variability control the 

variance of downward radiation. Also, effects of the spatial resolution of the DEM data on 

the calculated subgrid variability of downward solar radiation will be evaluated. Finally, 

the spatial correlation of downward solar radiations will be investigated using the 

proposed scheme through spatial autocorrelation function. 

This paper has five sections: introduction, methods, results, discussion, and conclusions. 

Section 2 gives a detailed explanation on the proposed parameterization scheme and a 

short description of a sophisticated solar radiation model that provides verification on 
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the proposed scheme. Section 3 describes results of this study. Discussion and 

conclusions are presented in Sections 4 and 5, respectively.  

2 Methods 

2.1 Subgrid variability of direct irradiance 

Generally, solar radiation is composed of three components: direct radiation, diffuse 

radiation, and reflected radiation. These three components have different characteristics.  

As mentioned by Dubayah et al. (1990), variations in the diffuse and reflected irradiance 

make relatively little contribution to the overall variance as compared with variability in 

the direct irradiance. Thus, only the variability from the direct irradiance is considered in 

this study and the variabilities of diffuse and reflected radiation are ignored.  

The direct irradiance on a plane normal to the direct beam, In, can be calculated as (Linke 

1922; Bras 1990) 

      𝐼𝑛 = 𝑊0 exp(−𝑇𝐿𝑎1𝑚) (1) 

where 𝑊0 is the solar constant [1367 W/m2], 𝑇𝐿 is the Linke atmospheric turbidity 

coefficient, 𝑚 is air mass, 𝑎1 is the Rayleigh optical thickness of air mass 𝑚. The direct 

irradiance on a panel of arbitrary slope and aspect, 𝐼𝐷, is given by 

      𝐼𝐷 = 𝐼𝑛 cos𝜃 (2) 

where 𝐼𝑛 is surface direct irradiance from Equation (1) [W/m2], 𝜃 is angle of incidence of 

the direct irradiance onto the panel surface. From the solar geometric relationships 

(Sproul 2007), 

cos𝜃 = sin(𝛽)sin(𝛾)𝐶1 + sin(𝛽)cos(𝛾)𝐶2 + cos(𝛽)𝐶3

with        𝐶1 = cos(𝛼𝑠) sin(𝛾𝑠)

      𝐶2 = cos(𝛼𝑠) cos(𝛾𝑠)

      𝐶3 = sin(𝛼𝑠)

 (3) 
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where 𝛽 is slope of the panel, 𝛾 is aspect of the panel (North is zero, and is measured 

positive to the East), 𝛼𝑠 is elevation angle of the sun, 𝛾𝑠 is azimuth (aspect) angle of the 

sun. Substituting Equations (1) and (3) into (2) gives 

       𝐼𝐷 = 𝑊0 exp(−𝑇𝐿𝑎1𝑚)[sin(𝛽)sin(𝛾)𝐶1 + sin(𝛽)cos(𝛾)𝐶2 + cos(𝛽)𝐶3]  (4) 

This is the equation calculating direct irradiance on a panel of arbitrary slope 𝛽 and 

aspect 𝛾 with the given sun’s position 𝛼𝑠 and 𝛾𝑠. 

Next, we derive an equation for calculating the mean of direct irradiance at a model grid 

cell by considering the subgrid variability of topography. It is assumed that a model grid 

cell area consists of many subgrid areas, and direct irradiance at subgrid scale can be 

calculated through Equation (4). If slope, aspect, and direct irradiance of subgrid area 𝑖 

are denoted as 𝛽𝑖 , 𝛾𝑖 , and 𝐼𝐷,𝑖 , respectively, the mean direct irradiance, 𝐼𝐷, of the model 

grid cell area can be calculated as 

     
𝐼𝐷 = ⟨𝐼𝐷,𝑖⟩

= ⟨𝑊0 exp(−𝑇𝐿𝑎1𝑚)(sin(𝛽𝑖)sin(𝛾𝑖)𝐶1 + sin(𝛽𝑖)cos(𝛾𝑖)𝐶2 + cos(𝛽𝑖)𝐶3)⟩
 (5) 

where ⟨⟩ is the ensemble-average operator. To simplify Equation (5), it is assumed that 

the Linke atmospheric turbidity coefficient 𝑇𝐿, Rayleigh optical thickness 𝑎1, air mass 𝑚, 

and the sun’s position parameter 𝐶1, 𝐶2, and 𝐶3 are homogeneous within the model grid 

cell area. This should be a reasonable assumption since the atmospheric conditions and 

position parameters of the sun have small variation over distances of order of magnitude 

of 10 km. Also, this assumption will be verified in section 3.1. Then, Equation (5) can be 

simplified as 
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𝐼𝐷 = 𝐼𝑛(⟨𝐴1,𝑖⟩𝐶1 + ⟨𝐴2,𝑖⟩𝐶2 + ⟨𝐴3,𝑖⟩𝐶3)

with          𝐴1,𝑖 = sin𝛽𝑖sin𝛾𝑖

        𝐴2,𝑖 = sin𝛽𝑖cos𝛾𝑖

        𝐴3,𝑖 = cos𝛽𝑖

 (6) 

This equation calculates the mean direct irradiance of a model grid cell including effects 

of the subgrid variability of slope and aspect within it. To apply this equation to a model 

grid, central latitude of the grid, date, local time, and subgrid DEM data should be 

provided. The verification of this equation is presented in section 3.1. From the above 

equation, the coefficient for mean, 𝐶𝑚 , is defined as 𝐶𝑚 = (⟨𝐴1,𝑖⟩𝐶1 + ⟨𝐴2,𝑖⟩𝐶2 + ⟨𝐴3,𝑖⟩𝐶3) 

in this paper for later discussion. 

To quantify the variability of direct irradiance within a model grid cell, an equation for 

calculating variance of direct irradiance is derived as well. We can write subgrid 

topographic related values in the Reynolds decomposition forms 

𝐴1,𝑖 = 𝐴1,𝑖
′ + ⟨𝐴1,𝑖⟩

𝐴2,𝑖 = 𝐴2,𝑖
′ + ⟨𝐴2,𝑖⟩

𝐴3,𝑖 = 𝐴3,𝑖
′ + ⟨𝐴3,𝑖⟩

 (7) 

These equations decompose each subgrid area value into a model grid cell mean term and 

a subgrid fluctuation term. The first term on the right-hand side (RHS) of Equation (7) is 

the fluctuation term, and the second term on the RHS of Equation (7) is the model grid 

cell mean term. Then, we have 

var(𝐼𝐷) = ⟨(𝐼𝐷,𝑖 − 𝐼𝐷)2⟩ = 𝐼𝑛
2⟨(𝐶1𝐴1,𝑖

′ + 𝐶2𝐴2,𝑖
′ + 𝐶3𝐴3,𝑖

′ )2⟩ = 𝐼𝑛
2𝐶𝑣

with         𝐶𝑣 = 𝐶1
2⟨𝐴1,𝑖

′2 ⟩ + 𝐶2
2⟨𝐴2,𝑖

′2 ⟩ + 𝐶3
2⟨𝐴3,𝑖

′2 ⟩ + 2𝐶1𝐶2⟨𝐴1,𝑖
′ 𝐴2,𝑖

′ ⟩ +

            2𝐶1𝐶3⟨𝐴1,𝑖
′ 𝐴3,𝑖

′ ⟩ + 2𝐶2𝐶3⟨𝐴2,𝑖
′ 𝐴3,𝑖

′ ⟩

 (8) 

This equation calculates variance of direct irradiance of a model grid cell by considering 

subgrid variability of aspect and slope. From Equation (8), we can see that the variance 
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of downward solar direct irradiance is a linear combination of variances (the first three 

terms of 𝐶𝑣) and covariances (the last three terms of 𝐶𝑣) of the subgrid topographic 

information. The required information for applying this equation is the same as for 

Equation (6), namely, central latitude of the model grid, date, local time, and subgrid DEM 

data. From Equation (8), the coefficient for variance, 𝐶𝑣 , is defined in this study for later 

discussion. This equation is useful since it tells us that the spatial variability of downward 

solar direct radiation can be calculated from the variance and covariance of subgrid 

topographic information, which is time-independent. Time independence means that 

these values need to be calculated only once and can be treated as static inputs.  The 

shadowing effect was not included in Equation (8) although it would be complete to 

include the process (e.g. Li and Weng, 1988). The reasons are: (1) the incoming solar 

radiation is heavily attenuated when the sun is low enough for shadowing to occur 

(Dubayah et al., 1990); and (2) shadowing is time dependent and has to be estimated at 

the subgrid scale at every time step, increasing computation cost significantly.  

In hydrological and land-surface models the radiation forcing provides the grid-cell mean 

downward solar radiation, ID (Equation (6)), rather than the direct solar irradiance 𝐼𝑛 . 

Therefore, to estimate the variance of the downward solar radiation from the given grid-

cell mean, we can substitute Equations (6) into (8) and obtain 

       var(𝐼𝐷) = 𝐼𝐷̅
 2 𝐶𝑣

𝐶𝑚
2  (9) 

Equation (9) is ready to be used in any hydrological and land-surface models for 

estimating subgrid variability of downward solar radiation in a model grid cell from the 

provided mean downward solar radiation of the model grid. The interaction of solar 

radiation with surface is determined by two groups of factors: time-dependent 

parameters (declination angle, solar hour angle); and time-independent parameters 
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(elevation, surface slope and aspect, and latitude). In Equation (9), the time-dependent 

coefficients are evaluated at the model grid cell scale at every time step. The time-

independent subgrid terrain properties are computationally intensive, but they are pre-

processed and treated as static inputs.  

2.2 Solar radiation model r.sun 

In order to verify the proposed parameterization scheme of this study, results of a 

sophisticated solar radiation model called r.sun were used to compare against results of 

the proposed scheme. r.sun is a GIS-based model, and it is based on previous work done 

by Hofierka (1997) and implemented in the GRASS Geographic Information System 

(GIS) environment (Neteler and Mitasova 2013).  This model considers the spatial 

variation of downward solar radiation due to terrain and terrain-shadowing effects, and 

it can calculate direct, diffuse, reflected, and total solar irradiance (Hofierka and Suri, 

2002). Its applicability has been demonstrated in many applications (e.g. Šúri and 

Hofierka, 2004; Ruiz‐Arias et al., 2009; Hofierka and Kaňuk, 2009; Nguyen and Pearce, 

2010; Pintor et al., 2015). The algorithm of r.sun is described in the paper by Hofierka and 

Suri (2002). The fundamental required input data of r.sun are DEM data. 

Model r.sun calculates solar radiation based on the resolution of DEM data. For example, 

if the resolution of the provided DEM data is 50 m, then solar radiation at every 50 m 

pixel is calculated based on the time, location, and sun’s position. By providing high-

resolution DEM data to model r.sun, mean and variance of solar radiation over a specific 

region can be calculated based on the high-resolution solar radiation from model r.sun. 

This method is different from the proposed scheme of this study. The proposed scheme 

does not calculate solar radiation directly from the provided resolution of the DEM data, 

but calculates coefficients for mean 𝐶𝑚 and variance 𝐶𝑣 (i.e. from Equations (6) and (8)) 
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from the provided resolution of the DEM data. It then calculates mean and variance of 

solar radiation over the specific region from these two coefficients, time, location, and 

sun’s position. 

3 Results 

3.1 Verification 

To verify these derived equations for calculating mean (Equation (6)) and variance 

(Equation (8)) of downward direct irradiance, comparisons to model r.sun have been 

conducted (Fig. 1).  Although shading effect is not included in the proposed scheme, it is 

considered in model r.sun for all verifications.  Two grids, one from a mountainous area 

and another from a flat area and both covering 13-km × 13-km at 50-m spatial resolution, 

have been used in this study for testing and analyzing.  Table 1 gives the basic elevation 

statistical information of these two grid cells, referred to in the following discussion as 

Grid 1 (mountains) and Grid 2 (flat). From the statistics of Table 1, it can be seen clearly 

that Grid 1 has more variation in elevation than Grid 2, and this motivates the choice of 

these two grid cells. 

First, mean and variance of downward direct solar irradiance of Grid 1 and Grid 2 have 

been calculated through the proposed scheme (Equations (6) and (8)) and verified by 

comparing to values computed through model r.sun.  To make results of these two 

methods comparable, exactly the same parameters (refer to Hofierka and Suri 2002) as 

in model r.sun were used in calculating 𝐼𝑛 , which is direct irradiance on a horizontal panel 

given in Equation (1). In calculating the sun’s position parameters, latitudes of center 

points of Grid 1 and Grid 2 (see Table 1) have been used. The topographic trigonometric 

variables at subgrid scale (𝐴1,𝑖, 𝐴2,𝑖 , and 𝐴3,𝑖) were computed using Equation (6). Then, 

the mean (⟨𝐴1,𝑖⟩, ⟨𝐴2,𝑖⟩, and ⟨𝐴3,𝑖⟩), variance (⟨𝐴1,𝑖
′2 ⟩, ⟨𝐴2,𝑖

′2 ⟩, and ⟨𝐴3,𝑖
′2 ⟩), and covariance 
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(⟨𝐴1,𝑖
′ 𝐴2,𝑖

′ ⟩, ⟨𝐴1,𝑖
′ 𝐴3,𝑖

′ ⟩, and ⟨𝐴2,𝑖
′ 𝐴3,𝑖

′ ⟩) of these trigonometric variables were calculated on a 

grid scale for both grids. With these calculated grid-scale 𝐼𝑛  and topographic mean, 

variance, and covariance, the mean and variance of downward direct solar irradiance 

were calculated for Grid 1 and Grid 2 through Equations (6) and (8).  To validate results 

from proposed scheme, the mean and variance of downward direct solar irradiance for 

Grid 1 and Grid 2 were also calculated through subgrid scale values from model r.sun.  

These calculations were performed for every hour on four different days. These four days 

were selected from winter (1 January, Julian day=1), spring (1 April, Julian day=91), 

summer (1 July, Julian day=182), and fall (1 October, Julian day=274), respectively. 

Comparisons of results from the proposed scheme and model r.sun are given in Fig. 1 and 

Table 2.  The results from the proposed scheme are marked with solid line and the results 

from the model r.sun are marked with triangles.  In Table 2, Nash-Sutcliffe Efficiency 

(NSE) (e.g. He et al., 2019), which ranges from negative infinity to 100%, is used as the 

index for evaluating the similarity of the results between the proposed scheme of this 

paper and the model r.sun.  Both Fig. 1 and Table 2 show that the results from the two 

different methods match very well.  Also, it shows that the calculated variances from 

Equation (8) are a little bit higher than the calculated variances from the model r.sun 

when the sun’s elevation angle is low. 

Table 2 shows that all NSEs for different days are very large and some of them even up to 

100% (perfect match of two time series), which means the results from the proposed 

scheme and model r.sun are very similar. 

In deriving Equations (6) and (8), it was assumed that the Linke atmospheric turbidity 

coefficient 𝑇𝐿, Rayleigh optical thickness 𝑎1, air mass 𝑚, and the sun’s position parameters 

𝐶1, 𝐶2, and 𝐶3 are homogeneous within the grid cell.  This assumption will be verified here 
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through a comparison of the spatial distribution of downward solar irradiance with and 

without the assumption.  Spatial distribution of downward direct solar irradiance at 

subgrid scale is calculated using Equation (4), which includes this assumption. On the 

contrary, model r.sun calculates the spatial distribution of downward direct solar 

irradiance at subgrid scale without making this assumption.  Maps and histograms of the 

spatial distribution of downward solar radiation and the difference for Grid 1 and Grid 2 

at 14:00 (local time) on 1 April (day=91) are shown in Fig. 2.  This figure demonstrates 

that the calculated spatial distribution of downward direct solar irradiance from 

Equation (4) is very similar to the one from the model r.sun (for example, Fig. 2a and b 

for Grid 1).  Also, both results show clearly that downward solar radiation in the 

mountainous grid is more heterogeneous than the flat grid. Maps and histograms of total 

radiation (sum of direct, diffuse, and reflected radiation) from the model r.sun are also 

presented in Fig. 2 for later discussion. 

The proposed scheme has been also compared against the previous method from 

Dubayah (1990), and results are given in Figure 3 for different seasons. In this figure, 

results from model r.sun are also marked with triangles and treated as reference values. 

The results show that the method from Dubayah (1990) overestimates standard 

deviation when the sun’s elevation angle is relatively high, while the method from this 

study has improved performance over that from Dubayah (1990). 

The proposed scheme does not take into account shadowing effects, and the impact of 

this limitation has been evaluated using simulations from the model r.sun. The results 

from the r.sun simulations with and without shadowing effect for Grid cell 1 (Table 1) at 

different dates (Figure 4) show that ignoring shadowing effect causes some errors in 
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calculated variability (standard deviation) of radiation within the grid cell. However, the 

errors are still relatively small compared to the total variability.   

These results lead us to conclude that Equations (6) and (8) are accurate enough to study 

the subgrid variability of solar radiation, and further discussions are presented in Section 

4. 

3.2 DEM data resolution effects on the subgrid variability 

To investigate effects of DEM data resolution on the calculated subgrid variability of 

downward solar radiation, mean and variance of solar direct irradiance have been 

calculated at different resolutions for Grid 1 and Grid 2. Since downward direct irradiance 

𝐼𝑛 on a horizontal surface is homogeneous within a model grid, only the coefficients for 

mean and variance have been calculated and analyzed in this section. The coefficient for 

mean and the coefficient for variance have been defined from Equations (6) and (8). One 

advantage of these coefficients is that they are normalized by the magnitude of solar 

irradiance and can be compared with each other. However, they are time-dependent. In 

this study, coefficients have been calculated at 8:00, 10:00 12:00, 14:00, and 16:00 local 

time on 1 April (day=91) to investigate effects of the DEM resolution on the subgrid 

variability. For this purpose, the resolution of DEM data is decreased from 10 meters to 

1,000 meters in 20-m increments, and the results are shown in Fig. 5. From these results, 

we can see that: (1) effects of resolution on the calculated subgrid variability of 

downward direct solar irradiance is time dependent; (2) the effect of resolution on the 

calculated subgrid variability of downward direct solar irradiance is much larger than for 

the calculated mean; (3) the resolution is longer important for variance (Cv) in the 

mountainous Grid 1, than in the flat Grid 2; (4) the calculated coefficient for variance (Cv) 

decreases exponentially with the decrease of spatial resolution, while the coefficient for 
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mean (Cm) changes slightly only in the mountainous Grid 1 due to differences in 

representation of terrain slope and aspect at different resolutions of DEM data, and (5) 

for a specific grid, the effect of time of the day on the variability of solar irradiance is less 

important than topography.  

3.3 Spatial correlation of the downward direct solar irradiance 

Spatial correlation of downward solar irradiance will be studied in this section using the 

spatial Autocorrelation Function (ACF).  Dubayah et al. (1990) studied the spatial 

correlation of downward solar radiation using semi-variograms. However, the magnitude 

of the semi-variogram depends on the magnitude of the data. This makes it difficult to 

compare the calculated semi-variogram curves at different times even for the same grid. 

ACF is a normalized function (Box et al. 2015); therefore, using it to study the spatial 

correlation of downward solar radiation at different times is more convenient than using 

a semi-variogram. ACFs of downward direct solar irradiance are calculated at five 

different local times (8:00, 10:00, 12:00, 14:00, and 16:00) on day 91 for Grid 1 and Grid 

2 in 50-m increments up to five kilometers, and the results are given in Fig. 6. These 

results demonstrate that ACFs of downward direct solar radiation at different times are 

very similar, and this means that the spatial correlation of downward direct solar 

irradiance does not change significantly with time. The correlation lengths of Grid 1 and 

Grid 2 are different as the correlation length varies with topography. From Fig. 6, it can 

be seen that the correlation length is larger in the mountainous area (Grid 1) than the flat 

area (Grid 2).  More details on the potential usage of spatial correlation is given in the 

discussion section.   
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4 Discussion 

The effectiveness of the proposed parameterization scheme (i.e. Equations (6) and (8)) 

has been verified through comparing it against the model r.sun, which is a sophisticated 

solar radiation model, over a mountainous area (Grid 1) and a flat area (Grid 2). The 

results have demonstrated that the proposed scheme is accurate enough in estimating 

the mean and variance of subgrid downward direct solar irradiance within a model grid. 

In deriving the parameterization scheme, it is assumed that direct solar irradiance 𝐼𝑛 on 

a horizontal plane and the sun’s position parameters 𝐶1, 𝐶2, and 𝐶3 are homogeneous 

within a model grid. This assumption has been verified by comparing the calculated 

spatial distributions of downward direct solar irradiance using Equation (4) against the 

results of model r.sun (Fig. 2). Maps and histograms of the calculated spatial distribution 

of downward direct solar irradiance show that the assumption is reasonable since the 

results with and without this assumption are almost the same.  In validating these 

assumptions, it can be seen from Fig. 1 that the calculated variance from the proposed 

model is larger than the model r.sun.  From the equation for calculating variance, we know 

that two factors contribute to the magnitude of variance/standard deviation.  The first 

factor is the magnitude of downward direct solar irradiance, and the second factor is the 

variability of downward direct solar irradiance.  Ignoring the shadowing effect increases 

the magnitude of solar radiation, thus increasing the variance. Also, ignoring the 

shadowing effect reduces the variability of solar radiation, thus reducing the variance. In 

our results, the magnitude of solar radiation from the new model is larger than that from 

r.sun (as we can see from the left two panels of Figure 1), and the variance is larger as 

well.  This demonstrates that the first factor is dominating over the second one.  

The second assumption in this study is that the variance of downward solar radiation can 

be approximated by the variance of downward direct solar radiation, and contributions 
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from the other two components (diffuse and reflected radiation) are negligible. To verify 

this assumption, spatial distributions of total downward solar irradiance from model 

r.sun were shown in Figs. 2 c and g. Comparing with the spatial distributions of downward 

direct solar irradiance (Figs. 2 a, b, e, and f) and their difference (Figs. 2 d and h), we can 

see that their variances, spatial distributions, and shapes of histograms are highly similar 

although their means are different. This illustrates that it is reasonable to assume that the 

variance of total downward irradiance is dominated by the variance of downward direct 

solar irradiance. This is also consistent with the findings from Dubayah et al. (1990). In 

addition, the results clearly show that the variability of solar radiation is much larger in 

the mountainous area (i.e. Grid 1) than in the flat area (i.e. Grid 2). When the sun’s 

elevation angle is low, the magnitude of diffuse radiation could be larger than direct 

radiation, and this may result in larger variance from diffuse radiation (e.g. Liu and 

Jordan, 1960). However, effects of variance on the related processes, such as snowmelt, 

soil moisture, and evaporation, are not significant as the total radiation is fairly small 

when the sun is low.  

The calculated spatial variability of downward direct solar irradiance depends critically 

on the resolution of DEM data. Equations (6) and (8) are convenient for studying effects 

of the resolution on the calculated subgrid variability of downward solar radiation since 

only the coefficients for mean and variance are needed to be calculated while the 

magnitude of the real solar irradiance is not needed. Section 3.2 is a good example to 

demonstrate the capability of these two coefficients. It has been realized that the 

resolution of DEM data affects the representation of variability on solar radiation. 

However, there is no specific study on how the calculated variability changes with 

resolution. In Section 3.2, their relationships were investigated with these two 
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coefficients. It is found that the mean does not change much with decrease of resolution, 

but the variance exponentially decreases with the decrease of resolution.  The 

magnitudes of coefficient for variance reveal that the spatial variability of the downward 

direct solar radiation is much larger in the mountainous area than in the flat area (see 

Fig. 5). It also has been known that the effects of topography on the variance of solar 

irradiance depend on time as the variance changes with solar position. In addition, it can 

be seen that the time effect on the variability of downward solar radiation in the 

mountain area (i.e. Grid 1) is stronger than in the flat area (i.e. Grid 2) because the terrain 

varies a lot more in the mountain area.  

The subgrid variability of downward solar radiation can be estimated using high-

resolution DEM data through Equations (8) and (9). The proposed scheme treats those 

required topography properties as static inputs which are pre-calculated from the high-

resolution DEM data. The proposed scheme does have some time dependent parameters, 

but they are separated from topographic parameters and calculated at the grid scale 

rather than the subgrid scale. Thus, the computational cost of the proposed scheme is 

very low. Generally, land-surface and hydrological models use the model grid cell mean 

downward surface solar radiation as the atmospheric forcing. The variance of subgrid 

downward solar radiation can be estimated from the given model grid cell mean surface 

solar radiation and other parameters through the derived Equation (9) of this study. This 

would provide additional information on the downward solar radiation that can be 

potentially used by other processes in estimating subgrid variability, such as snow melt, 

evaporation, and soil temperature. Also, the proposed scheme provides an effective way 

to take high-resolution topographic information into consideration in modeling. This is 
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important in mountain hydrology modeling (de Jong, 2015) and large-domain parameter 

estimation for hydrological and land-surface models (e.g. Mizukami et al., 2017). 

Spatial correlation of the downward direct solar radiation is another important 

characteristic that is useful in modeling. For example, if the Fokker-Planck equation 

approach is adopted in representing subgrid variability (e.g. He and Ohara, 2019), then 

spatial correlation lengths of stochastic variables will be critical in determining the 

diffusion coefficient. From this study, it is found that spatial correlation of the downward 

direct solar radiation is difficult to describe quantitatively with a general model. 

However, ACFs of the downward direct solar radiation have shown that the correlation 

length is only slightly time dependent (Fig. 6).   In particular, it is found that time effect 

on correlation length can be ignored in the mountain area (Grid 1). This characteristic is 

important as it has good potential to simplify calculations in studying effects of subgrid 

variability of downward solar radiation on other processes, such as snow melting. Since 

we have related terrain variability to radiation variability, it is possible to predict spatial 

correlation of radiation from terrain considerations. However, it is generally time 

dependent, which means that the spatial correlation needs to be calculated at each time. 

The above-mentioned characteristic, namely the time effect on correlation length can be 

ignored in the mountain area, means that only one spatial correlation would be a 

reasonable approximation for different times.  

5 Conclusions 

A parameterization scheme for estimating mean and variance of subgrid downward solar 

irradiance by using high-resolution DEM data is proposed in this study. The spatial 

distribution of radiation and terrain variability are related in a straightforward way 

through this scheme. This scheme can also be used to approximately evaluate the 



 
©2019 American Geophysical Union. All rights reserved. 

variability of subgrid downward solar radiation, which is composed of direct, diffuse, and 

reflected radiation. The proposed scheme has been applied to two grid cells with the size 

13-km × 13-km for verifying its performance. Results from the proposed scheme were 

compared against the results from the sophisticated radiation model r.sun. These 

comparisons have shown that the proposed scheme performs very well. The following 

conclusions have been drawn from this study: 

(1) In determining spatial variability of solar radiation at scale on the order of magnitude 

of 10 km, it is reasonable to assume that heterogeneity of direct solar irradiance on a 

horizontal plane and the sun’s position parameters can be ignored. At this or smaller 

scale, terrain plays a more important role in affecting downward solar radiation than the 

others.   

(2) The subgrid variability of downward solar radiation can be estimated from high-

resolution DEM data through the proposed scheme of this study. Although the subgrid 

variability is time dependent, the proposed scheme of this study will not significantly 

increase computational cost since the required topography information only needs pre-

processing at one time and then is used as a static input.  Also, the proposed scheme 

provides an effective approach to include high-resolution topographic information in 

model grids. 

(3) The resolution of the DEM data has big effects on the calculated subgrid variability of 

the downward solar radiation. The high-resolution DEM data can represent the subgrid 

variability much better than the coarse-resolution DEM data, and the variance of subgrid 

downward direct solar radiation exponentially decreases with the decrease of the 

resolution of the DEM data.  Resolution of DEM data does not obviously affect mean of the 
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downward solar radiation.  Also, it was found that the effect of time on the variability of 

solar irradiance decreases with decrease in resolution. 

(4) The spatial correlation of the downward direct solar radiation obviously varies with 

topography, but it only slightly changes with time.  

The next step is to apply this subgrid variability of solar radiation within a full 

weather/land-surface prediction model to consider subgrid variability of other radiation-

driven processes. For instance, Smirnova et al (2016) showed that improved 

representation of subgrid snow processes can result in more accurate 2-m air 

temperature prediction in such a model.  Application of this new parameterization 

scheme to weather prediction will be described in a subsequent paper. 
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Fig. 1. Comparisons of the calculated mean (left) and standard deviation (right) of 
downward direct solar irradiance from the proposed scheme (i.e. Equations (6) and (8)) 
and model r.sun. Results from model r.sun are denoted with dash lines with triangle 
markers, and results from the proposed scheme were denoted with solid lines. Different 
days are in different colors. The top panel is from the mountainous area (Grid 1) and the 
bottom panel is from the flat area (Grid 2) at the locations shown in Table 1. The 
differences between the proposed scheme and model r.sun are plotted as the subplots at 
the bottom of each panel 
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Fig. 2. Comparisons of the calculated spatial distribution of downward direct solar 
irradiance and their histograms from Equation (4) and the model r.sun. The top panel is 
from the mountainous area (Grid 1) and the bottom panel is from the flat area (Grid 2). 
(a) and (e) are downward direct solar irradiance from Equation (4), (b) and (f) are 
downward direct solar irradiance from the model r.sun, (c) and (g) are total (sum of 
direct, diffuse and reflected) solar irradiance from model r.sun, (d) and (h) are difference 
of downward direct solar irradiance between Equation (4) and model r.run (i.e. (b)-(a) 
and (f)-(e)). These values are for 14:00 (local time) on 1 April (day=91), again using 
locations in Table 1. 
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Fig. 3. Comparison of the calculated standard deviations between the proposed scheme 
of this study (red lines) and Dubayah (1990) (green lines). Results from model r.sun are 
also shown in black lines and treated as reference values. The top panel is from the 
mountainous area (Grid 1) and the bottom panel is from the flat area (Grid 2) at the 
locations shown in Table 1. From left to right, the corresponding dates are Jan 1, April 1, 
Jul 1, and Oct 1.  
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Fig. 4. Comparison of (mean – right, standard deviation – left) solar radiation with 
(dashed lines) and without (solid lines) shadowing effect from r.sun model for 
mountainous Grid 1 (Table 1). Lower panels show the differences between results with 
and without shadowing effect. Different colors represent days from different seasons 
(black - Jan 1, red - April 1, green - July 1, and blue - October 1).  
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Fig. 5. The calculated coefficients for mean (Cm) and variance (Cv) (both are defined in 
Equations (6) and (8)) at different spatial resolutions of DEM data. They are calculated 
for 8:00, 10:00, 12:00, 14:00, and 16:00 local time (shown in different colors) on day 91 
(1 April). The top panel is from the mountainous area (Grid 1) and the bottom panel is 
from the flat area (Grid 2). 

 

  



 
©2019 American Geophysical Union. All rights reserved. 

 

Fig. 6. Autocorrelation functions (ACFs) of downward direct solar irradiance at different 
times shown in different colors on day 91. The left panel is from the mountainous area 
(Grid 1) and the right panel is from the flat area (Grid 2). 
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Table 1. Elevation statistics of the two grids 

NO    From   Range   Mean  
Stand 

deviation 
Mean slope 

(degree) (longitude,latitude) 
Grid cell 1   Mt. area   1081 m   2645 m   188.8 m  15.1 (119.715W,38.141N) 
Grid cell 2   flat area    55 m   1127 m   11.5 m  0.5 (102.165W,40.843N) 

 

 

 

 

 

 

 

Table 2. Nash-Sutcliffe Efficiency (NSE) of the calculated mean and standard deviation 
from the proposed model and model r.sun.  As mentioned in Table 1, Grid 1 is from the 
mountainous area and Grid 2 is from the flat area. 

NO  Day=1  Day=91  Day=182  Day=274 
Grid 1, mean 99.9%  100.0%   100.0%  100.0% 
Grid 2, mean 99.9%   100.0%  100.0%  100.0% 

Grid 1, standard deviation 97.9%  97.6%   96.6%  99.1% 
Grid 2, standard deviation 99.8%   99.8%  99.7%  99.9% 

 


