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Abstract 

In the last decade several efforts were devoted to model sediment-particle transport in rivers 

as a stochastic process. Experimental observations are therefore needed to validate these 

models and to provide the correct probability distribution of selected stochastic variables. The 

kinematics of sand particles is investigated here using non-intrusive imaging to provide a 

statistical description of bedload transport under incipient motion conditions. In particular, 

we focus on the alternation between motion (particle steps) and rest regimes to quantify the 

probabilistic distribution of the particles waiting time, which is suggested by many studies to 

be responsible for anomalous diffusion. The probability distributions of the particle step time 

and step length, streamwise and spanwise velocities, acceleration, and waiting time are 

quantified experimentally. Results suggest that variables describing the particle motion 

regime are thin-tailed distributed, whereas the waiting times exhibit a power-law distribution. 

A specific class of waiting times during which the grain is observed to oscillate without a net 

displacement is classified as active and is analyzed separately from the other, so-called deep 

waiting times.  The experimental results, obtained under five different transport conditions, 

describe grain-scale kinematics and dynamics at different wall shear stress. They provide 

both a benchmark dataset for validating particle-transport numerical simulation and critical 

input parameters for the stochastic modeling of bedload transport. 

1 Introduction 

Bed load is a common mechanism of sediment transport for sand particles in natural 

flow, characterized by cyclic sequences of particles moving and resting on the sediment bed. 

[e.g. Roseberry et al., 2012; Furbish et al, 2012; Lajeunesse et al, 2010; Fan et al., 2014, 

2016; Gonzales et al. 2017]. The physical mechanisms governing bed-load transport are 

highly complex due to (i) the turbulent fluctuations of the flow and (ii) random interactions of 

grains with each other and with the bed, over a wide range of bed topography and 

corresponding flow scales, from the grain size to the reach [e.g. Furbish et al, 2012b]. These 

circumstances make the nature of particle trajectories random itself and the bed-load transport 

highly variable in time and space, in particular at low flow rates [Ergenzinger, 1988; Ancey, 

2010].  For such reasons, following the pioneering work of Einstein [1950], who introduced 

the probabilistic description of particle motion, recent efforts have been carried out to 

properly describe the motion of sediment particles transported in the proximity of the bed as a 

stochastic process [Weeks et al., 1996, Ancey et al., 2006; Schumer et al., 2009, Ancey, 2010, 

Foufoula- Georgiou and Stark, 2010, Touchette et al., 2010; Bradley et al., 2010; Baule and 

Sollich, 2012, Furbish et al., 2012a; Furbish and Schmeeckle, 2013; Fan et al., 2014, 2016; 

Ancey and Heyman, 2014, Pelosi et al., 2014, Zhang et al., 2014, Ballio et al. 2018]. The 

stochastic approach is computationally more efficient compared to high-fidelity direct 

numerical simulations of fluid and particle flows [Schmeeckle and Nelson, 2003, Escauriaza 

and Sotiropoulos, 2009, 2011; Bialik et al., 2012; Durán et al., 2012; Schmeeckle et al., 

2014; Gonzales et al. 2017], but requires input distribution parameters. Experimental data on 

single particle motion have thus become fundamental to inform those stochastic models. 

Considerable experimental research has been focused on the quantitative description of 

individual particle motion [among others: Niño and Garcia, 1996; Lajeunesse et al., 2010; 

Roseberry et al., 2012; Ancey and Heyman, 2014, Campagnol et al 2013, 2015], leading to a 

statistical description of particle velocities, hop or step distances, associated travel or step 

times and waiting times, ultimately providing data for the calibration of stochastic models 

[see, e.g., Papanicolaou et al., 2002, Furbish et al. 2012, Fan et al., 2014, 2016; Schumer et 

al., 2009]. 
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Some existing findings on the probability density functions (PDFs) of particle-scale 

kinematic variables, such as velocity, step length and waiting times are summarized here: 

1) The PDF of the streamwise component of the particle velocity (up) has been mostly 

characterized by thin tails: the exponential distribution was recognized by Lajeunesse et al. 

[2010], Roseberry et al. [2012] and Houssais et al. [2012], though it is not clear if this is true 

only for the tail or also for the entire range of velocity values; Gaussian distributions were 

observed, among others by Martin et al. [2012], Ancey and Heyman [2014] and Heyman et 

al. [2014]. 

2) Several studies considered thin-tailed distributions for the step distance Ls and step 

times Ts , suggesting both the exponential distribution [e.g., Einstein, 1937, 1950; Sayre and 

Hubbell, 1965; Schmidt and Ergenzinger, 1992; Habersack, 2001; Wu and Yang, 2004; Fan 

et al. 2016] and the gamma distribution [e.g., Yang and Sayre, 1971; Lajeunesse et al., 2010], 

as opposed to the heavy-tailed distributions proposed by Bradley et al. [2010] and Ganti et al. 

[2010]. In particular, the last study showed analytically how a heavy-tailed distribution for 

particle step length arises in a sediment mixture where exponentially distributed step lengths 

are assumed for each grain size.    

3) When a particle stops, little is known about its resting/waiting time (average value 

variability, distribution). To assess the PDF of the particle resting/waiting time, hereafter 

referred to as Tw, several measurements were performed under very different hydraulic 

conditions, bed material composition, and methodology, both in the laboratory [Wong et al., 

2007; Martin et al., 2012; Heyman et al., 2013; Martin et al., 2014, Cecchetto et al. 2018] 

and in the field [Olinde and Johnson, 2015], resulting in waiting-time distributions’ tails 

ranging from heavy to thin according to the prevailing factors, as we discuss in Section 5. 

The high interest in the assessment of those PDFs for particle-scale kinematic 

variables lies in the circumstance that particle dispersal and, in particular, the diffusion 

exponents of the stochastic process describing particle motion may relate directly to the 

parameters of the probability distributions of particle motion characteristics, such as step 

lengths and/or waiting times [Nikora et al., 2002; Schumer et al, 2009b: Ganti et al., 2010; 

Pelosi et al., 2014]. For instance, it has been suggested that, if the probability density 

functions of up, Ls, Ts and Tw are all thin-tailed, the resulting particle diffusion regime is 

always normal for all scales [Han and He, 1980], except for super-diffusion at very short 

initial time scales due to particle inertia, i.e. ballistic motion [Nikora et al., 2002; Fan et al., 

2014; Mo and Raizen, 2019]. Following seminal works by Week et al. [1996] and Schumer et 

al. [2009b], recent simulations by Fan et al. [2016] showed that the anomalous sub-diffusion 

of bed load particles can arise from the thick-tailed distribution of the waiting times [see also 

Ganti et al. 2010 and Pelosi et al. 2016]. In this context, the need to collect more 

experimental data both from the laboratory and the field in order to achieve a deeper 

understanding of particle transport at the grain scale is apparent. First, we aim to estimate 

probability density functions (PDFs) of particle-scale kinematic variables, such as velocity, 

acceleration, step and waiting times, and their dependence on the bed surface shear stress. 

The second objective is to understand better the link between the variability in the waiting-

time distribution function, and related tails, and the forces acting on the grains, with some 

emphasis on turbulence-induced drag and the frictional forces resulting from the interaction 

with the bed surface.  

The experimental challenge is to focus on both the temporal domain and the spatial 

domain, in which particles are identified as active (moving) or passive (resting). With this 

purpose, under low transport and for a flat bed, a Lagrangian description of sediment 

kinematics is employed. This approach may be advantageous (i) to identify key time scales of 
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the forces acting at the grain scale and their potential relation to known turbulent time scales, 

and (ii) to predict statistical properties of the advection and dispersion of an ensemble of 

particles, all requiring a predictive understanding of the time spent by a particle resting on the 

bed surface [see e.g. Fan et al. 2016, Gonzales et al., 2017]. The PDFs of resting times Tw, to 

the best of our knowledge, have been quantified experimentally under very different transport 

and hydraulic conditions [Wong  et al., 2007; Martin et al., 2012; Hassan et al., 2013; 

Heyman et al. 2013 and Olinde & Johnson 2015, Cecchetto et al. 2018], which are compared 

in more detail in our discussion section. Some of the reasons why experimental results show 

different trends and distribution, in particular for the waiting time, involve both technical 

limitations and the overlap of various interconnected transport mechanisms occurring under 

different shear stress, hydraulic conditions, and bedform evolution. The intrinsic limitations 

in the spatial or temporal domain size of the sand-grain kinematics measurements are known 

to prevent a robust analysis on the tails of the particle velocity or step-length distribution 

[Phillips et al., 2013, Martin et al., 2014]. While we acknowledge this limitation in our work, 

we also recognize a recent approach that could mitigate this problem [Ballio et al., 2019]. 

Another potential source of variability is the effect of sediment-mixture heterogeneity 

[Houssais and Lajeunesse [2012], which could be related to the different waiting-time 

distributions proposed in the literature. All of these issues are important for the physical 

understanding of sediment-transport mechanisms, for the correct prediction of particle 

trajectories (micro-scale), and for the advection and diffusion properties of the particle 

ensemble (macro-scale), as discussed above [Han and He, 1980, Nikora et al., 2002; Fan et 

al., 2014, Week et al., 1996, Schumer et al 2009b, and Fan et al. 2016]  

In this contribution we investigate the kinematics of natural sand particles moving on 

an erodible bed in the absence of bedforms. Recent experimental advancements, enabling 

underwater imaging at affordable costs, allow us to monitor particle motion at high spatial 

and temporal resolutions. Such measurements have been performed and are presented here to 

study particle transport under five different hydraulic conditions and shear-stress intensities, 

covering the transition from incipient motion to bed-load transport over a flat surface. With 

specific reference to the cyclic sequence of step and resting times of the sediment grains, we 

focus on the distribution of particle velocities, accelerations, step and waiting times, and on 

the joint probability distribution of particle hop distances and associated travel times. 

Particular emphasis is given to the waiting times, their identification, and proposed 

classification. In order to provide also a phenomenological picture of particle motion, we 

further investigate the accelerating and decelerating regimes of particles using Lagrangian 

statistics, which are critical for the correct modeling of the forces acting on the particles. 

 

 

2 Laboratory experiments and measurements 

2.1 Experimental apparatus 

The experiments were conducted in a 15-m-long rectangular flume in the St. Anthony 

Falls Laboratory at the University of Minnesota. Different hydraulic conditions were tested 

under low bedload transport (see Table 1). Near-bed longitudinal (u) cross stream (v) and 

vertical (w) instantaneous velocities were measured with an acoustic Doppler velocimeter 

(ADV) sampling at 200Hz an observation volume located 0.015 m above the bed surface. 

The shear velocity wuu *
 was estimated using the velocity fluctuations u’ and w’ at the 

measurement location and compared with the estimate based on the logarithmic fit of the 

mean velocity profile. An 8% underestimation was calculated, and compensated for, in the 
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wuu *
 estimate. The Froude number, Fr=U/(gh)1/2, based on the mean cross sectional 

velocity U and flow depth h, varied from 0.27 to 0.30. The mean cross sectional velocity is 

quantified as U=Q/Bh, where Q is the flow discharge and B=0.9 m is the channel width. 

Experiments S1 to S5, described in Table 1, were designed to explore a range of low-

bedload-transport conditions without generating bedforms. The Reynolds number, Re=Uh/ , 

where   is the kinematic viscosity, varied from 38,700 to 50,300. The Shields number
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  varied from 0.021 to 0.040.  The sediment particles used in all 

experiments are from a coarse quartz sand mixture with uniform gradation, and a median 

diameter D50 = 1.1 mm (D20 = 0.9 mm, D80 = 1.4 mm). The sand and water densities are s = 

2650 and  = 1000 Kg m-3, respectively.  The hydraulic flow conditions in our first 

experiment were imposed to be at the lower limit of critical mobility. This was achieved 

using visual underwater inspection at the channel test section. Along with particle video 

capturing, we measured flow discharge, depth and slope of the free surface to obtain a 

reliable estimate of the shear velocity. In the following experiments, we changed in small 

steps the flow discharge (in both directions) to cover a range of transport conditions, with the 

specific constraint to not induce bedforms. To ensure minimal disturbances on the surface, 

before each experiment the erodible bed was flattened with a plate board, to be parallel to the 

prescribed channel slope, and the water level and discharge were raised very slowly. The 

observing time of each experiment was limited to 20 minutes, under which the bed surface in 

the channel test section was observed to remain flat. Following the water drainage from the 

channel we never observed any bedform or geomorphic features in the test section.  

In the range of episodic surface-particle transport to low bed-load transport, as 

monitored here, physical scaling arguments suggest that video length should not be based 

necessarily only on the channel flow spatio-temporal domain, but rather on the particle-scale 

kinematics. Based on velocity measurements, 20-second videos represent 100–200 integral 

time scales of the flow, and about 200 particle step times (defined as the time in which the 

particle is moving without a stop or rest). Anticipating some of the results presented below, a 

6-cm (0.06-m) observation volume represent 60 particle diameters and about 10 times the 

average step length. Therefore, the extent of our spatio-temporal domain is considered wide 

enough in all relevant dimensions to cover the particle kinematics in the range of conditions 

explored here. Under higher transport with migrating bedforms and/or an active thick layer of 

sediment experiencing burial and entrainment events, the quantification of the particle 

waiting time would need a different approach, like the one originally pursued by Wong et al. 

[2007] and Pelosi et al. [2014, 2016]. 

2.2 Particle tracking 

A slightly submerged camera was used to image the bed surface at 120 frames per 

second over a 6.3–7.3 cm (stream wise) × 4.7–5.5 cm (spanwise) domain with 640×480 pixel 

resolution. Those videos provided the image datasets for tracking particle motion. The field 

of view was illuminated by a downstream-located halogen lamp equipped with a lighting 

reflector paper to diffuse the light and to reduce background image fluctuations due to free-

surface undulation. Videos of particles transported as bedload and actual trajectory data can 

be accessed in the supplementary material accompanying this paper (see also the 

acknowledgements section). The full dataset comprises 26–34 videos for each of the five 

shear-stress conditions. The duration of each video is 20 s (2400 frames, spaced by 0.0083 s), 

which is enough to provide a detailed description of the particles’ step-and-rest intermittent 

motion.  
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The code for detecting and tracking particles is based on Matlab image tools. First, we 

employ a feature detection and extraction algorithm to record the coordinates of each active 

particle moving across successive frames. The functions ForegroundDetector and 

BlobAnalysis are used respectively to separate the background from the moving particle in 

the foreground and to connect the identified foreground objects, i.e., the moving particle. The 

foreground detection is completed using a two-dimensional Gaussian filter model. For each 

area detected in motion and thus identified as a particle, we estimated the centroid in each 

frame to specify its (xp, yp) position. The centroids of each active particle as it moved within 

successive frames were marked and converted to streamwise and cross-stream coordinate 

positions, respectively. The second algorithm is designed to identify the positions of 

corresponding active particles between different frames. The metric we used to link particles 

between successive frames include the displacement angle with respect to the streamwise 

direction and the maximum distance, as well as the history of the particle motion. For each 

particle, comparative links are attempted for a number of neighboring target particles in the 

next time frame: the optimal link is based on the projected position according to the actual 

particle velocity, when available (minimal acceleration), or on a nearest neighbor. Additional 

constraints to guide our tracking involve (i) maximum particle velocity not to exceed the 

mean flow velocity Um measured by the ADV at roughly four particle distance from the wall; 

(ii) maximum particle acceleration not to exceed ½Um in one  t; (iii) backwards particle 

motion not to exceed 1/10 of the particle diameter in one time step  t . Once particles are 

linked, the streamwise and cross-stream displacement of each particle linked in a trajectory 

are estimated xp = xp(t +  t) – xp(t) and  yp= yp(t +  t) – yp(t)  between frames. From 

the displacements, we estimated the instantaneous particle-velocity components up =  xp/ t 

and vp = yp / t, where  t = 0.0083 s is the sampling interval.  From all the particles that 

moved at some point over the entire duration of 32 videos (e.g., for Exp. case S1), we 

identified a datasets of 20684 unique spatial coordinates organized in 261 particle 

trajectories. The entire duration of 57 videos (experimental case S2, S3) formed a dataset of 

58543 unique spatial coordinates (816 particle trajectories). Experiments S4 & S5, 

characterized by higher transport, contributed to more than 90658 spatial coordinates (1989 

particle trajectories). A significant number of particles were not linked in trajectories due to 

tracking ambiguities, or to particles exiting the field of view at the beginning of the 

recording, or entering the field of view at the end of the recording. In particular, the missing 

links contribute to break a trajectory into smaller disconnected sections, where velocity and 

acceleration become less reliable and which require a strict vetting process. Some details on 

the vetting of particle trajectory are included below and in Table 2: The total number of the 

particle trajectories is Nraw. The particle trajectory with an integrated displacement less than 

5*D50 were discarded. The number of particle trajectories left is Ngt. This represents a reliable 

dataset for particle velocity and acceleration. However, aiming at investigating the waiting 

time, we further and significantly restricted the whole datasets to long particle trajectories, 

with integrated displacement over 10 D50, and experiencing at least one step-stop-step 

sequence of motion and rest. The final number of the trajectory selected is reported as Ns. To 

avoid unrealistic particle links from frame to frame, all Ns particle trajectories were inspected 

visually in the temporal and spatial domain. We acknowledge that there are unavoidable 

uncertainties in the automated particle-tracking process. However, the uncertainties and 

tracking ambiguities decrease when the mean inter-particle distance in the spatial domain is 

much smaller than the mean particle travel length from frame to frame. Thus, to monitor 

optically the ensemble motion of particles, increase in bed shear stress controlling particle 

activity and thus the inter-particle distance must be counter-balanced by an increase in the 

acquisition frame rate. This constraint set the limits of our higher-shear-stress experiment.  

However, linking moving particles into trajectories was not the only challenge we had to 
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face: in order to determine the sequence of hops (or steps) and resting (or waiting) times of 

bedload particles, we had to be very careful in the definition of particle “in motion” as 

opposed to particle “at rest”. In the low-transport regime investigated here, many particles 

were observed to oscillate back and forth without contributing to net streamwise 

displacement. Although particles travelled downstream, some particles moved upstream 

instantaneously (up < 0), likely due to the rocking motion before the actual hop. To account 

for all these uncertainties, a cutoff (streamwise) velocity uc=0.015 m/s was selected, 

corresponding to a displacement of about 1/10 of the particle diameter in one t , as reported 

above. We then defined a particle with up < uc to be at rest. Conversely, a particle is 

considered to be in motion if up ≥uc.  

2.3 Quantification of positioning velocity and acceleration error 

Our tracking algorithm detects the moving particle as a coherent, finite sub-image region 

where pixels change their intensity compared to the local background. In particular, the 

outcome of the tracking procedure, in addition to the centroid, provides the streamwise and 

spanwise extent of the particle image region, which can be used to estimate an equivalent 

particle diameter. Because of the sand grains’ complex geometry and its orientation 

variability, the projected shape, light reflection, and two-dimensional image of every particle 

change as the particle moves through each frame in sequence. Since the particle diameter 

physically cannot change, we can estimate the error in the positioning as a function of the 

standard deviation (D’) of the equivalent diameter along a trajectory (see Figure 1). 

Specifically, we infer that the maximum error in the true centroid location is ½ < D’ >, where 

the averaging operator is performed along many trajectory portions where the particle is 

considered to be in motion. Figure 1(b) shows the variability of one particle equivalent 

diameter along a trajectory. 

To reduce this uncertainty in true centroid locations, a light diffuser was added to render the 

light more uniform and avoid excessively bright pixels within the true particle outlines; this 

allowed increasing the average size of the detected area of the particle up to the true size of 

the median particle D50=0.0011 m, which was obtained through progressive sieving of the 

flume bed material. In Figure 1(b), D’ is estimated to be about 0.11Dave, where Dave=1.25 mm 

is the average diameter of the particle along the very same trajectory: the error, 

approximately 5.5% Dave =0.07 mm, is in our opinion acceptable. The displacement error 

propagates as velocity and acceleration errors of 0.0084 m s-1 (about half of the cutoff 

velocity uc) and 1.008 m s-2, respectively. There are other sources of error that result in a 

reduced ability to link particles into a trajectory. First, there may be two or more target areas 

recognized on the projected surface of the same particle. The minimum diameter of the object 

recognized as a particle is set at 0.25mm, which is a compromise between the requirement to 

identify dimly illuminated particles and the one to avoid independent recognition of the same 

particle leading to tracking ambiguities and significant errors in velocity estimates. A second 

solution to limit errors associated with centroid ambiguities due to multiple target areas was 

to filter out trajectories based on the total displacement, integrated along the full trajectory, as 

mentioned above, and then filter out steps smaller than half of the particle radius (Ls < D50/4).  

The last procedure, implemented to avoid error propagation in the particle motion statistics, 

consists of a smoothing filter applied to the particle velocities along the trajectory, thus in the 

Lagrangian time coordinate. This operation was performed on the limited subsets of long 

trajectories (Ns) that were also visually inspected one by one, representing the core of our 

processed datasets (see Table 2). This sequence of data vetting and validation is very costly in 

terms of actual loss of information, but it is necessary to provide long trajectories and reliable 
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statistics. Figure 2 illustrates an ensemble of particles tracked over the field of view in one 

video recording.  

2.4 Definition of particle steps (motion) and rests (waiting time) 

Figure 3 shows a spatio-temporal sequence of steps and resting states of a single particle 

transported on the bed surface. From a purely spatial reconstruction of the trajectory we 

cannot clearly define the periods in which a particle is moving (step or hop) or resting. 

Therefore, such a distinction has to be made based on the temporal evolution of the particle 

velocity. Here we chose the streamwise velocity component to define the step time Ts and the 

waiting times Tw. Accordingly, we can define also the step length Ls as the distance covered 

by the particle in each step time. The conditions defining the particle’s step and waiting 

regimes are based on (1) a cutoff velocity, above which the particle is considered in motion, 

and (2) a finite integrated streamwise displacement exceeding D50/4, which is required to 

treat the rocking, oscillatory motion of particles with finite velocity, but no net displacement, 

as a contribution to the waiting time. We tested a range of cutoff velocity values (0.005 m/s, 

0.01 m/s, 0.015 m/s, 0.018 m/s, and 0.02 m/s) to quantify their effects on the definition of the 

particle waiting and step times. After comparing statistics of the average waiting times for 

each cutoff velocity, and after visual inspection of all the selected instantaneous trajectories 

(as depicted in Figures 2 and 3), we identified an optimal range of 0.01–0.015 m/s. This is 

consistent with the cutoff velocity of 10–30 mm/s adopted by [Lajeunesse et al., 2010]. We 

eventually picked a threshold value of 0.015 m/s, which corresponds to about twice the error 

that we estimated due to particle centroid uncertainty. Note that (i) the velocities of particles 

were filtered before estimating the step and wait period; (ii) each waiting time is delimited by 

two step times, never by the beginning or by the end of a trajectory or the video acquisition; 

and (iii) step time and step length potentially suffer from truncation bias effects due to 

particles entering or exiting the field of view. 

3 Results 

This section is structured to provide, first, results on the bedload particles in the 

motion regime, and later to present the statistics on the waiting times. The first subsection 

therefore will be focused on the streamwise and the spanwise components of the particle 

velocity, up and vp respectively, on the step length Ls and step time Ts , and on streamwise 

component of the particle acceleration as. Because of the low number of moving particles 

detected at the lowest shear stress conditions S1 (see Table 2 and section 4), in this section 

we focus on the probability distribution of resting and moving particle properties for the 

experimental cases S2 to S5.  

3.1 Statistical description of particles in motion 

The distributions of the particle streamwise velocity component up for the different 

experimental conditions are presented in Figure 4. The tails of the reported PDF are, in all 

cases, following an exponential distribution.  However, for low velocity values the 

distributions exhibit a shift in shape that was observed by Lajeunesse et al. [2010] but not by 

Roseberry et al. [2012], suggesting the use of a gamma function: 
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where, a and b are parameters with a > -1, and b > 0, and Γ is the gamma function. When a=1, 

Γ(1)=1 and Equation (1) reduces to an exponential distribution.  
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We argue this change in shape partially depends on the above definition of rest and 

motion regimes. In particular, if we consider all the non-zero particle velocities, including 

both the motion and the ambiguous rocking back-and-forth state, the velocity distributions 

maintain the exponential trend in a lower range, and show a finite probability for negative 

velocities, observed by Roseberry et al. [2012] and interpreted here as the result of particles 

rocking. However, because we are very interested in quantifying the waiting times, we 

defined a non-zero, finite threshold velocity to mark the separation between motion and rest 

states; in this respect, we classify the particles in oscillatory motion as particles at rest, 

without contributing to the PDFs shown in Figure 4, since they do not experience a net 

streamwise displacement.  Particle-size heterogeneities may be another cause for this trend, 

since the PDF(up) calculated on our data is similar to the distribution provided by Houssais 

and Lajeunesse [2012], estimated in a bimodal sediment bed. Because the distribution is a 

thin-tailed gamma function, the mean particle velocity is well defined, converging to its real 

value under the given observation time. With weakly increasing shear velocity u* , from 

experimental conditions S2 to S5, <up> increases slightly from 0.067 to 0.086 m s-1. It seems 

reasonable that the shear velocity is the relevant scale for the particle velocity, since both 

quantities are related through a sediment mass flux formulation. The ratio between the 

particle and the shear velocity is in fact only weakly varying, with up/u*= 3.1~3.5. This is in 

agreement with known formulations describing up=C(u* -u*c) with C in the range 13.4–14.3 

(Abbot and Francis [1977]) and 6.8–8.5 (Nino et al.[1994]), compared to our average C=12.6 

with estimated values between 9.8 and 14.2 (see also a recent review by Ali and Dey [2019]). 

We observe that the PDF of the cross-stream particle velocity vp is symmetric and 

could be well described by a Gaussian function centered on zero, as shown in Figure 5, 

consistent with the experimental results of Lajeunesse et al. [2010]. However, the tails of the 

distribution depart from the Gaussian function and resemble an exponential function, as 

suggested by the experimental result of Roseberry et al. [2012]. A transition between these 

two distributions is observed under all the experimental conditions, for cross-stream velocity 

values larger than |vp|> 0.1m s-1 so it appears to be a genuine feature of this dataset. Note that 

the r.m.s. (root mean square) streamwise and spanwise particle velocity components are up rms 

=0.044, 0.051, 0.052, 0.054; vp rms = 0.029, 0.032, 0.033, 0.038, which are a fairly consistent, 

scaled representation of the local streamwise and spanwise fluctuating velocities in the 

corresponding rough wall turbulent boundary layer. In particular, from ADV measurements, 

we estimated at a vertical location z/D50 =13.6 the root mean square flow velocities urms = 

0.050, 0.053, 0.055, 0.061 and vrms =0.037, 0.038, 0.043, 0.045, leading to urms/vrms=1.36, 

1.39, 1.27, 1.33. These values are just slightly smaller than up rms/vp rms=1.52, 1.59, 1.58, 1.42, 

which are, however, estimated closer to the bed surface, confirming that turbulent motions 

have a strong effect on the particle velocity variability [see e.g. Niño and Garcia, 1996]. The 

other source of particle velocity variability would be the interaction with the resting particles 

at the bed surface. 

The distribution of particle acceleration is plotted in Figure 6. Due to the exponential 

distribution of the particle velocity, we expect and observe a Laplacian distribution of 

streamwise acceleration. The form of the function is: 
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where μ is the location parameter and is estimated with the median value of as 

(reported in the range of 0.23 to 0.33, thus close to the expected value of zero, given the wide 

range of acceleration values), and b is the scale parameter estimated as < abs(as -μ) >. The 

values of the two parameters are provided in the caption of Figure 6. It is noteworthy that the 
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standard deviation of the streamwise acceleration arms, as well defining the width of the 

distribution, increases with the shear velocity from 4.4 to 5.2, 5.4, 6.1 ms-2, for the four cases 

respectively. From a dimensional perspective we can normalize the acceleration with u*/Ts, 

leading to arms Ts/u* = 26.4, 29, 29, 29.7 (see Section 4). 

The distributions of step (or travel) time Ts and step length Ls of moving particles are 

plotted in Figures 7 and 8 respectively, for all four cases. All the PDFs show consistently the 

thin tails of the exponential distribution, which allows us to reasonably compare averaged 

values, for increasing shear velocity and mass flux. The mathematical form of the distribution 

is 




/1
)( x

x exf  , where x refers to Ts or Ls, and the only parameter is the mean value 

(provided in the captions of Figs. 7 and 8). In particular, we note that the travel time does not 

change significantly with u* for the range investigated, suggesting that the increased mass 

flux is more correlated to an increase in particle velocities, and a decrease in waiting time, as 

discussed later, rather than to an increase in the step time. In fact, the average step length 

<Ls>, which is expected to converge thanks to the exponential thin-tailed distribution of Ls  

shown in Fig. 8, increases slightly with u* , proportional to the increase in < up >. Note that 

the shape of the histogram of Ls in our experimental results is more consistent with the one 

reported by Lajeunesse et al. [2010] than with that repoted by Roseberry et al. [2010], where 

the distributions are approximated as a gamma function.  

 The step length and time were observed to be correlated and jointly distributed 

following a power law [Roseberry et al., 2012; Fan et al., 2014]. Our results confirm the 

power law distribution for varying shear velocity, but on a slightly different exponent (Fig. 

9). The various groups were fitted by an exponent in the range of 1.25–1.29, as compared to 

5/3 ~ 1.67 found by Roseberry et al. [2012], and plotted for comparison (22–25% difference). 

Because of the weak dependence between Ls and u*, the power-law exponents are gently 

decreasing with increasing transport rates. The difference between our and Roseberry et al. 

[2012] results might be attributed to our slight heterogeneity in the particle-size distribution 

[see Houssais and Lajeunesse, 2012]. Note that the step-length distributions can be heavy-

tailed, with power law decay arising from heterogeneity in grain sizes and other complexities 

in natural bed sediment [Ganti et al., 2010]. 

 

3.2 Lagrangian description of moving particles 

The description of bedload transport in terms of step length, step time, and particle velocity is 

consistent with an Eulerian reference system, in which a fixed observer is monitoring the 

moving particles. An alternative description of bedload transport can be provided by looking 

at the particle velocity along the trajectory, as a function of the Lagrangian time , starting at 

 =0 when the particle begins a step. Visual examination of particle velocities along 

trajectories revealed a fairly common trend, showing that particles experienced high velocity 

at the beginning of their trajectory that then decreased slowly. To provide a statistical 

representation of this trend we perform an average of the streamwise velocity conditioned on 

the travel (Lagrangian) time , i.e., on the time frame since the beginning of the step (Fig. 

10a). In the ensemble we only include trajectory portions longer than 0.15 s in which 

particles are moving, thus with no effects from the waiting time and no selection-bias effects 

due to shorter trajectories. The limiting choice of the maximum   resulted as a compromise 

between the need to include a sufficient number of long trajectories in the conditional 

averaging (in this case 60) and the need to describe statistically a segment of the particle 

motion on the same order of the averaged step time. In Figure 10 we included results from 
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two different sets S4 and S5; due to increasing transport rate, the S5 set had longer 

trajectories and we could extend  up to 0.24 s. The averaging operation performed on the 

streamwise acceleration results shows that the particle first experiences a sudden streamwise 

force when it is accelerated and entrained into the flow and then a gentle but more persistent 

drag as it slows down (Fig. 10b). This asymmetry in the Lagrangian history of particle 

velocity and acceleration suggests that the first particle displacement in the step could be 

caused by an energetic event, e.g. a particle-particle collision [see, e.g. Frey and Church, 

2011] or a strong sweep event (thus a local streamwise drag [see e.g. Nino and Garcia, 

1998]). The slightly negative acceleration slowing down the particle velocity before rest 

could be due to either (i) the ejection events, following sweeps, combined with the higher 

inertia of the solid particle maintaining a velocity larger than the surrounding fluid, and 

inducing fluid drag acting now in the opposite direction, or due to (ii) frictional contacts with 

the particles on the bed surface. Note that the switch in the sign of the acceleration, 

potentially corresponding to the end of the ballistic regime, occurs at approximately  = 0.05–

0.1s, leading to a dimensionless Lagrangian time   u* / ds ~1–2. This is in very good 

agreement with the results by Campagnol et al. [2015], thus supporting the frictional rough 

wall turbulence scaling and its effect on particle transport.  

3.3 Statistical description of resting particles  

The waiting, or resting time, plays a key role in relating the intermittent particle 

kinematics to the actual sediment transport rate and mass flux, in particular under low 

bedload transport conditions. In order to quantify waiting time statistics and their 

probabilistic distribution unequivocally under a limited spatio-temporal observation domain, 

we rely on particles that, in their trajectory, are classified as in motion state before and after 

the resting state, as shown in Figure 3. However, as previously discussed, particles often 

oscillate back and forth, and thus exhibit a non-zero velocity, when they stop in a specific 

location without contributing to net displacement. We define those as active waiting times, in 

the sense that the particle is still actively moving but not contributing to the mass flux. In 

other cases, both the particle velocity and their streamwise net displacement are zero, 

implying that the particle has clearly stopped and the trajectory is interrupted; these are 

referred to as deep waiting times, as sketched in Figure 11.   

The deep waiting time identification may lead to some ambiguities because, if the 

tracking of one particle stops when the particle is at rest, we have to be sure that the next step 

begins with the very same particle in the very same location. In addition, we have to note that 

the estimates of deep waiting times are strongly conditioned by our limited sampling interval 

(maximum consecutive recording time of 20s); implying that we may face a significant 

selection effect. In the current analysis, we first show the distribution of the active waiting 

time, which is affected less by these limitations. The active waiting times are significantly 

shorter than the deep waiting times; the particle’s oscillatory motion is indeed a signature of 

the local flow conditions approaching critical mobility, when weak turbulence fluctuations 

may be enough to entrain the particle in the flow again (see Table 1). Note that the cutoff 

velocity uc has a weak effect on the waiting time classification: by varying uc from 0.011 to 

0.02 m s-1 in the S5 case the average active waiting time decreases from 0.16 to 0.14 s, 

whereas the deep waiting time increase from 3.18 to 3.54 s. The distinction between the 

active and deep resting states is based on the particle’s probability of landing, or not, under 

relatively low turbulent flow conditions or in a sheltered spot within the bed surface; thus, it 

involves both flow and roughness heterogeneities. It is reasonable to expect that particles 

within the bed surface matrix are more difficult to entrain as compared to particles that 

remain exposed to the flow. This is one aspect of the armoring mechanism, for low bedload 
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transport, and could be sufficient to explain the difference between deep and active waiting 

times. In terms of turbulent flow heterogeneities, we speculate that a time scale of 0.1 s, 

consistent with the mean active waiting time, can be derived as a ratio of the particle diameter 

to the shear velocity D50 / u* ~ 0.04–0.05 s; the latter is referred to as a representative time 

scale for near surface (rough wall) turbulent fluctuations, based on a measure of surface 

roughness heterogeneities ~ D50 and near wall velocity u* . We also estimate the integral time 

scale of turbulence, from the streamwise velocity fluctuations measured by the ADV at 

z/D50=13.6, in the range between 0.2 and 0.3 s, which can be interpreted as a separation time 

scales between consecutive sweeps, and covering multiple ejections events [Sumer and Oguz, 

1978, Rashidi et al., 1990; Nino and Garcia, 1996; Tardu, 2002]. The comparison of these 

time scales suggests that active waiting times predominantly depend on the turbulent forcing 

scales, with weaker effects from trapping or sheltering mechanisms due to roughness 

heterogeneities. The latter are inferred to influence the deep waiting times more significantly. 

In all experimental cases, the distribution of the active waiting time Twa is a power law 

function (see Equation (3) and Fig. 12). We estimated the power-law exponents, decreasing 

from  b=-1.3 to -1.9 (for cases S2 to S5), suggesting that the tail thickness increases with 

decreasing transport rate and decreasing u* . The tails of the power law distribution are 

expressed as: 

b

wwT aTTf
w

)(                                                 (3) 

where, Tw denotes the waiting time, referring to Twa and Twd ; a and b are parameters 

with a ~ 0.1. The estimated variations of the b exponent suggest that the lower the transport 

rates, the higher the probability of observing rare but very long waiting times, which 

contribute to increase the average active waiting times. It is important to stress that the above 

power-law exponents do not ensure the convergence of the mean values with respect to the 

total observation time, leading to a questionable estimate of < Twa > (Table 3). Note however 

that in the highest transport condition, Twa exhibits a power law distribution with b= -1.9, 

which is very close to the convergence threshold exponent b=-2, suggesting that at any larger 

shear stress the average of the active waiting time would be independent of the observation 

time. The observed trend in the power-law exponent is amplified for the deep waiting times, 

with their distributions plotted in Figure 13. As expected, the PDF does not change 

mathematical form, with the exponents consistently increasing from -1.32 to around -0.83, 

with u* decreasing. The latter values, in good agreement with the results from Cecchetto et al. 

[2018], unambiguously identify the thick tails of the distributions, thus compromising the 

statistical convergence of the mean (as well as the median, for b > -1). The first consequence 

is that average waiting times become more and more dependent on the amount of data 

collected and on the monitoring period. Therefore, the waiting time values provided for the 

sake of completeness in Table 3 must be taken with a lot of caution. 

3.4 Waiting-time distribution between migration events  

An Eulerian analysis was performed on the interval time between sequential particle 

migration events, defined by crossing a virtual target cross-section in the field of view. 

Following the procedure of Heyman et al. [2013] we defined the resulting waiting time 

associated with variation of the bedload flux as Twf. as sketched in Figure 14. The red curve in 

Figure 14b identifies the kth migration event, where N is the total number of particles crossing 

the target section during the kth migration event (at least one particle should cross, N ≥ 1). 

The blue line denotes the period with no migration events in the target cross-section. Twfk is 

the waiting time of particle migration 𝑇wf𝑘 = 𝑆𝑘 − 𝑆𝑘−1, calculated as the interval time 
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between the k th and (k-1)th migration events, Sk  and Sk-1 respectively. The probability 

distribution of Twf is shown in Figure 15. Here, we only show results at two flow conditions, 

S2 and S4, with  u* = 0.022 and 0.024, respectively. In our experimental conditions, the shape 

of the Twf distribution follows again a power-law function. It is relevant to note that the 

exponent decreases significantly from -1.23 to -2.14 as u* increases from 0.22 to 0.24, which 

is much faster than the change of active waiting time Twa with u*. The rapid thinning of the 

Twf tail suggests that the distribution of Twf may evolve into an exponential function under 

high bed shear stress and intense transport, as proposed by Einstein [1950] and quantified by 

Heyman et al. [2013]. In the PDF of Twf in Figure 15, we do not observed a time-scale 

separation marking a change in the distribution, as observed by Heyman et al. [2013]. The 

reason might be that we are still under low transport. The Heyman et al. [2013] experiments 

were conducted on a steep slope (7%) with shallow water and migrating bedforms. The latter, 

in particular, might affect the waiting-time distribution introducing (bedform) timescales that 

are not necessarily contributing to the core of the turbulent high-frequency spectrum 

responsible for bedload transport near critical mobility, and therefore change the probability 

of occurrence of instantaneously high shear stress at the bed. It is noteworthy that the shape 

of the waiting time distribution is confirmed, as compared to the active and deep waiting 

times. However, the exponent varies: the bedload flux waiting time is much closer to the 

active waiting time (for the S2 case they are within the range 1.55–1.39, in the S4 case the 

range is [1.97–2.14]). This could be a consequence of the fact that active and bedload-flux 

waiting times are estimated from particles that are either moving or oscillating, and thus well 

exposed to the fluctuating drag of the turbulent flow. The main difference is in the method, 

since Twf does not require the identification of the resting section of a particle trajectory and 

thus is less sensitive to the velocity cutoff velocity threshold. The reasonable agreement 

between the Twf  and Twa  distributions partially supports our procedure.  

4  Particle statistics under varying shear stresses   

Experiments have been performed under varying shear velocities close to the Shields 

critical conditions. Additional preparatory experiments were conducted at lower shear stress, 

and the number of moving particles was recorded to identify unequivocally the threshold of 

motion for our bed-material composition (see Fig. 16 and note that the low number of 

particles reflects the strict trajectory-selection procedure). Specifically, the extrapolated shear 

velocity corresponding to the limiting case of no moving particles has been obtained as 

u*c=0.0173. The resulting range of low bedload transport comprises u*/u*c between 1.1 and 

1.5. Within this range, bedload transport can be described in terms of particle-scale kinematic 

properties as described in the Results section, above. Let us consider the S1 case as a 

reference and the S5 case as the most active one, likely to display the largest differences in 

the examined variable space. First we note from Table 1 that the particle step time Ts remains 

fairly invariant (~3%), as opposed to the particle step length Ls (40%) which in fact increases 

due to an increase in particle velocity up (33%). The increase in particle velocity is both 

sustained by higher mean velocity values (15% at z/D50=13.6) and mostly by an increase in 

turbulence level manifested by the shear velocity, or more directly by the Reynolds stresses 

(44%). The increased turbulence perceived by the particle is also reflected in the increase 

standard deviation of the particle acceleration (28%). The mean active waiting time decreases 

substantially (29%), implying that particles, after a completed step, are more likely to be 

destabilized again with increasing shear stress, due to sweeping turbulent events. The deep 

waiting times are observed to be about 19–23 times longer than the active waiting times, 

under the total observation period investigated. They decrease by 14% under increasing shear 

stress (S2–S5), significantly less than the active waiting times (29% in the range). This is 

likely due to the fact that large deep waiting time values are not captured in our observation 
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period, and that deep waiting times may be more affected by the roughness heterogeneity of 

the bed and particle self-organization (e.g., Sun et al., 2015) and less dependent on the wall 

shear stress. The ratio of active to total waiting times (as number of events) increased from 

34% (S2) to 39% (S3), 48% (S4), and 60% (S5). 

However, the number of particles in motion on the bed, within the camera field of 

view, as observed in an Eulerian perspective, varied dramatically, with the particle activity 

increasing by more than 300% with increasing u*. This means that our Lagrangian statistics 

do not provide an exhaustive description of the underlying bedload transport mechanism. In 

particular, this discrepancy highlights that the difference in the average waiting time is clearly 

underestimated, due to the fact that for the lowest transport condition, the convergence is not 

satisfied and the number of trajectory and waiting-time samples is not sufficient. The latter 

consideration is a straightforward consequence of the thick tails in the deep waiting time 

distribution, and should not be related to our data-acquisition strategy. In other words, longer 

measurements would still lead to an underestimation of the mean deep waiting times. 

Therefore, the truly key parameter resulting from this experimental study able to guide future 

transport models is not the average waiting time value but its power-law distribution (Table 

3). Because the exponents seem to depend on the channel hydraulic conditions and wall shear 

stress, it is important to discuss their variability in a broader framework and compare them 

with estimated values from the literature. 

As presented in Table 2 and discussed in section 2, the strict selection process 

required to identify waiting times unambiguously reduces the number of trajectories 

considerably. We quantified the selection-bias effect on the distribution of particle velocity, 

step time and step length by analyzing trajectories simply longer than 4D50 . For the hydraulic 

conditions S4, increasing the number of trajectories from 261 to 2097, we observed a 

significant decrease in the averaged step time and step distance values (from 0.13 s to 0.08 s 

and from 8.2 mm to 4.5 mm, respectively), and a slight decrease in the mean particle velocity 

from 0.085 m s-1 to   0.078 m s-1. However, the distributions were observed to exhibit 

consistent exponential tails for the three kinematic variables, for both data selections. We also 

verified that the choice of the velocity threshold defining the transition between motion and 

rest did not affect step length and step time statistics. Varying the threshold from 0.01 to 0.02 

m s-1 led to less than 5% variation in the mean Ls and Ts values, for case S5, and negligible 

changes in the distributions. A possible explanation for the step-time invariance is that steps 

are defined in between resting times, which are less frequent at increasing transport rates, 

thus biasing our samples in the motion regime to short spatio-temporal extent. 

 

5 Discussion 

Three different experimental procedures have so far been used to quantify the 

distribution of particle resting times under varying transport conditions: (i) particle imaging 

methods [Heyman et al., 2013, Martin et al. 2014, Cecchetto et al. 2018], (ii) tracer-particle 

detection during high transport events [Olinde and Johnson, 2015] and (iii) bed-elevation 

measurements allowing for the reconstruction of resting times based on the time interval 

between local deposition and erosion events [Voepel et al. 2013, following Wong et al. 2007]. 

There seems to be an agreement that high transport rates, often associated with steep slopes, 

high Froude numbers, and bedform migrations are characterized by an exponential 

distribution of waiting times, shifting to a power-law distribution at progressively lower 

transport rates. The thinnest tails of the waiting time distribution were identified as an 

exponential decay function by Heyman et al. [2013] using the time interval between 

consecutive mass flux contributions. The transport regime was intense with supercritical 
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Froude number, antidune formation, and *~0.1. Martin et al. [2014] used a narrow and short 

channel with a steep (6%) slope and provided Eulerian resting times using 2D imaging from 

the side. The tails of the exceedance probability were thick, with slope approximately -1, 

corresponding to a PDF power-law distribution with an exponent of  -2. Such a value is 

consistent with the active-waiting-time distribution estimated here, but not as thick as the 

deep waiting time. Martin et al. [2014] used glass beads with uniform diameter, which likely 

reduced the ability of bed-surface heterogeneities to trap and shelter particles on the bed, thus 

reducing the probability of very long waiting times. Cecchetto et al. [2018] used an annular 

flume under low bedload transport, in a similar range as that investigated here, and observed 

consistent thick-tailed distributions of the waiting times, ranging from -1.3 to -1.0.  

The effect of particle-size dispersion is accounted for in the field measurements by 

Olinde & Johnson [2015] based on the deployment and recovery of tracer particles during 

high sediment-transport events. Olinde & Johnson [2015] estimated an exceedance 

probability with a thick-tailed power-law distribution with exponents ranging from 0.24 to 

0.72, with reported average of 0.67, corresponding to a PDF exponent b =-1.34, thus in line 

with the measurements provided here for the deep waiting times (-0.83 to -1.32). Another 

interesting comparison of our findings regarding the particle waiting time PDF can be made 

with the results found by Voepel et al. (2013) that analyzed the dataset of Wong et al. (2007). 

This dataset is made up of time series of bed fluctuations measured at different streamwise 

locations during flume experiments under equilibrium conditions in the absence of bedforms, 

with bedload transport of well sorted fine gravel (D50 ~ 7 mm) in near-critical conditions. In 

an Eulerian-based fashion, Voepel et al. (2013) analyzed these data and found the particle 

waiting time PDF under the hypothesis that (i) the time of particle deposition equates to the 

time that a fluctuating bed moves upwards and (ii) the time of particle entrainment equates to 

the time that a bed moves downwards. In more detail, they analyzed the run with * =  0.117 

and by pooling together the time series of resting time computed at different bed elevations in 

the above-mentioned hypothesis, they estimated the empirical unconditional sediment-

waiting-time distribution (i.e., the overall waiting time PDF) as a tempered Pareto 

distribution. The latter shows a power-law decay (heavy-tailed with infinite mean) up to a 

cutoff value, defined by a crossover time, depending on bed fluctuation and deposition depth; 

after that, the tail of the distribution becomes exponential (thus thinner and with finite mean).   

For the case of the Wong et al. [2007] data, Voepel et al. [2013] found the exponent of 

the power law decay associated with resting time PDF equal to -1.72, in accordance with our 

results that exhibit a power-law decay with exponents ranging from -1.32 to -0.83 with a 

reasonable trend of decreasing exponents with increasing * (from 0.029 to 0.042). In our 

experiments, the time of measurements is not long enough to observe a possible exponential 

tail but it is the first case that a Lagrangian-based experiment with coarse sand captures the 

power law decay of the waiting time PDF (at least up to a cutoff value). The power-law decay 

that fitted the waiting time PDF obtained in our experiments is also in agreement with the 

findings of Nikora et al. [2002], according to whom the intermediate stage of the motion may 

be characterized by both normal and anomalous diffusion (both super-diffusive and sub-

diffusive), depending on what factors dominate. In our case, a sub-diffusive behavior may be 

hypothesized due to the thickness of the particle waiting time PDF and the exponential tail of 

the particle step length. 

It is not simple to infer a general guideline to predict the waiting-time distribution 

from scattered experimental data in a variety of hydraulic and transport conditions and bed-

material composition. However, we infer that in all the above experiments the waiting-time 

distribution appears to be controlled primarily by the grain-size heterogeneity and the 

sediment-transport rates. For low to moderate transport and non-perfectly homogeneous 
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sand-grain distributions, the waiting time PDF is predominantly observed as a power law, 

with power-law coefficient in the tails starting around -2 and approaching -1, toward critical 

mobility. Further in-depth analysis is required to understand this transition, as this experiment 

is not designed specifically to study the particle behavior at incipient sediment motion when a 

jamming transition occurs [Ausillous et al., 2016]. However, we may speculate that the 

particle transport intermittency [Singh et al., 2009b; Lee and Jerolmack, 2018] and non-

locality [Pelosi and Parker, 2014] that characterize the onset of motion are likely to be 

responsible for long resting times contributing to the heavy tails of the distribution [Schumer 

et al., 2009b] at low transport rates. For larger transport rates and steeper slopes, it is possible 

that the entire upper layer of the bed is mobilized, reducing the intermittency and the effects 

of grain-size heterogeneity. In that case, a Poissonian particle transport process can be 

assumed correctly and the waiting-time distribution shifts from thick to thin exponential tails, 

as observed by Heyman [2016]. In terms of future research efforts, it is still not clear how 

bedform formation and migration can change the waiting-time distribution, as well as the 

characteristics of the particle motion regime and their possible relation to rough wall 

turbulence scaling, as discussed here.  

6 Conclusions 

A series of experiments has been performed to study the kinematic properties of 

sediment particles of non-perfectly uniform size (D50 = 1.1mm, D20 = 0.9mm, D80 = 1.4mm) 

during bedload transport at conditions close to critical mobility. Particle trajectories have 

been captured by a slightly submerged camera, and the error in positioning has been 

quantified using the fluctuation in estimated particle size along the same trajectory. The 

investigated parameter space comprise 5 different conditions for u*/u*c in the range between 

1.1 and 1.5, with the critical velocity value defined as the limiting case of no particle 

transported. Particular care was devoted to the classification of particle motion and resting 

regimes and to the associated statistical properties. The results of our experiments showed 

that particle streamwise and spanwise velocity components, as well as the step time and step 

length exhibit thin, exponential tails under all the investigated transport conditions; the 

acceleration also shows a thin-tailed Laplacian distribution (see, e.g., Roseberry et al. [2012] 

Ancey and Heyman [2014] and Heyman et al. [2014]). 

 Reasonable scaling quantities for normalization and modeling of particle kinematics 

variables in the motion regime are identified as the sediment diameter (length scale) and the 

shear velocity u* (velocity scale). The Lagrangian evolution of particle velocity and 

acceleration, thus along a trajectory, shows, on average, a sharp increase when the particle 

starts moving, followed by a gentle, longer, decrease. Such temporal asymmetric behavior 

suggests a fast destabilizing effect from particle collisions or turbulent sweep motions, 

followed by a more persistent deceleration likely due to particle wall interactions or turbulent 

ejection events. The transition is marked by a switch in sign of the particle acceleration which 

occurs at a Lagrangian time  u*/D50 ~1–2, confirming the rough-wall frictional scaling 

proposed by Campagnol et al. (2015). The waiting times have been distinguished as active 

and deep. Active waiting time includes particles rocking back and forth, unable to find a 

stable position in the bed-sediment matrix. Active waiting time scales with the integral time 

scale of the turbulent flow near the wall, and can be approximated as ~ D50 /u* . The deep 

waiting times, instead, point at particles unequivocally resting on the bed, and thus obeying a 

much longer and elusive time scale. Both the probabilistic distributions of the active and deep 

waiting times exhibit power-law tails, in particular near critical mobility conditions. A lack of 

convergence for the mean deep waiting time values is inferred, which implies that a larger 

spatio-temporal observation domain may still not be enough to quantify the waiting-time 

statistics unambiguously. The lack of convergence can be interpreted in terms of biased 
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estimates due to the combination of thick-tailed distributions and limitations in data 

acquisition, such as truncation (see Ballio et al. 2019). However, based on comparison with 

the literature, and in view of the observed trends between active and deep waiting times, 

increasing the wall shear stress, it is likely that the power-law tails may become less thick 

with increasing transport rates and with more uniform bed-material composition, approaching 

an exponential distribution. The reduction of tail thickness with increasing Shields parameter 

is also expected to reduce the bias of the waiting-time estimates. The overall mass flux 

contribution by bedload transport under the investigated conditions appears to be governed 

mostly by the particle velocity up, reasonably scaling with u* (see Abbot and Francis [1977], 

Nino et al.[1994]), and by the waiting times. The particle step time is observed to remain 

fairly invariant, whereas the step length is mostly affected by up. The variability of up is 

quantified in terms of streamwise acceleration variance, which also depends on u* and thus on 

the turbulent intensities. 

In summary, we recognize that the particle episodic motion comprises two regimes: 

one is the motion or step regime, which is fairly well known, characterized by thin-tailed 

distributed variables, and interpretable with the phenomenology and the scaling of rough wall 

turbulence (in the absence of bedforms). The other one, the waiting or resting regime, is less 

tractable and more affected by measuring limitations due to the thick-tailed, power-law 

distributed, deep waiting times, which force average values to depend on the spatio-temporal 

domain of the experimental observations, under the near-critical mobility condition explored 

here. A very recent method was proposed by Ballio et al. [2019] to mitigate the effect of 

spatial and temporal censorship and to estimate unbiased averaged values for the step time, 

length and, especially, waiting times: those authors specifically addressed the case of power-

law-distributed waiting times, suggesting that our statistics could be compensated and the 

shape of the distributions reassessed recursively in future analyses. The effect of varying 

transport conditions should still be addressed by more experimental and numerical works 

(see, e.g., Gonzales et al. [2017] and Yager et al. [2018]) on bedload transport to 

unambiguously unveil the transition from thick to thin tails in the waiting-time distribution. 

That information is critical to expand the more computationally effective stochastic modeling 

to particle transport and to understand the link between the waiting-time distribution and the 

sub-diffusive dispersion of particles in river beds inferred by Fan et al [2016]. 
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Table 1:  Hydraulic flow conditions: U1.5 is the average flow velocity at z= 1.5cm above the 

bed, h is the flow depth, u*  is the shear velocity, 
2

*u  is the bed shear stress, θ is the 

Shields number, Fr and Re are the Froude and Reynolds numbers 

 

 

 

 

 

 

 

 

 

 

 

 

  

Series 
U1.5 

(m/s) 

h 

(m) 
u*  

(m/s) 
Re Fr 

τ  

(Pa) 

 

θ 

S1 0.33 0.157 0.018 39559 0.277 0.333 0.021 

S2 0.34 0.169 0.022 43110 0.279 0.467 0.029 

S3 0.35 0.172 0.023 44828 0.280 0.514 0.032 

S4 0.37 0.177 0.024 48685 0.294 0.565 0.035 

S5 0.38 0.179 0.026 50331 0.300 0.672 0.042 
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Table 2:  Image recording parameters and particle tracking statistics 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

   Series 

Sampling 

window size 

(mm*mm) 

sampling 

interval 

(sec) 

Nraw Ngt Ns 

Unique spatial 

coordinates of 

Ns 

Duration 

(sec) 

S1 80*60 0.0083 14220 678 261 20684 32*20 

S2 63*48 0.0083 65777 3765 416 36388 32*20 

S3 63*48 0.0083 68220 3962 400 22155 25*20 

S4 71*53 0.0083 131659 8084 781 35271 34*20 

S5 73*55 0.0083 160936 13792 1208 55387 24*20 
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Table 3. Particle transport average statistics <  > under varying shear velocity  u* in S1-S5 

hydraulic conditions. U1.5 is the streamwise flow velocity at z=1.5cm above the bed. Twa and 

Twd are the two definitions of waiting time (active and deep, respectively, as described in 

Chapter 3.3). Ts is the step time. Ls is the step distance. up is the streamwise velocity 

component of particle. std (as) is the standard deviation of the streamwise acceleration 

component of the particle. b indicates the exponents of the active and passive waiting time 

power-law distribution defined in Equation (3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Series 

 

u*  

(m/s) 

< U1.5 >  

 (m/s) 

< Twa > 

(s) 

< Ts > 

(s) 

< Ls > 

(mm) 

< up >  

(m/s) 

std (as) 

(m/s2) 

< Twd > 

(s) 

 

bactive 

  

bpassive 

S1 0.018 0.327 0.24 0.08 3.45 0.050 4.38 - - - 

S2 0.022 0.372 0.21 0.13 6.96 0.067 4.44 4.07 -1.55, -0.83 

S3 0.023 0.372 0.19 0.12 7.70 0.079 5.24 3.54 -1.33 -1.09 

S4 0.024 0.377 0.17 0.13 8.17 0.085 5.38 3.98 -1.69 -1.13 

S5 0.026 0.397 0.15 0.13 8.85 0.086 6.05 3.51 -1.94 -1.32 
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Figure 1. a) Particle trajectory in the streamwise-spanwise (x,y) spatial coordinates; b) 

variability of the particle equivalent diameter along  the particle trajectory during motion and 

resting regimes (used here as a measure of experimental uncertainty) . 
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Figure 2. Tracked particles moving on the bed surface (Experiment S2). Time is reported in 

color coding with respect to the start of the video recording. Black circle denotes the first 

particle location detected. 
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Figure 3.  a) Particle trajectory on the [x,y] bed surface; b) Streamwise velocity component 

of the same trajectory plotted in time, allowing for the identification of the steps time Ts and 

length Ls (or hops) and the waiting (or rest) times Tw. 
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Figure 4. Distribution of the streamwise particle velocity component up for the four 

experimental conditions S2 to S5 in panels (a) to (d). The PDF is reported in semilog scale in 

all the insets. The parameters of the four distributions, referring to Equation (1), are (a, b) = 

(3.244, 0.022), (3.055, 0.028), (2.827, 0.030), and (2.618, 0.033). 
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Figure 5. Distribution of the spanwise particle velocity component vp for the four experiment 

conditions S2 to S5 in panels (a) to (d). The PDF is reported in semilog scale in all the insets.  

Two functions were used to fit the data: the red dashed line denotes the Gaussian fit whereas 

the black solid line denotes an exponential fit. The Standard deviations, std (vp), are 0.029, 

0.032, 0.033, and 0.038, respectively. 
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Figure 6. Distribution of the streamwise particle acceleration component as for the four 

experiment conditions S2 to S5 in panels (a) to (d). The PDF is reported in semilog scale in 

all the insets. The standard deviation of as is 4.4, 5.2, 5.4, and 6.1 m s-2 for cases S2 to S5. 

The parameters of the four distributions, referring to Equation (2), are (μ, b) = (0.33, 3.02), 

(0.30, 3.55), (0.23, 3.63), and (0.28, 4.10). 
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Figure 7.  Distribution of the particle step time Ts for the four experimental conditions S2 to 

S5 in panels (a) to (d). The PDF is reported in semilog scale in all the insets. The mean value 

of the four experimental conditions is: <Ts > =0.13, 0.12, 0.13, 0.13 s. The exponent of the 

PDF parameter is -1/<Ts >. 
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Figure 8.  Distribution of the particle step length Ls for the four experimental conditions S2 

to S5 in panels (a) to (d). The PDF is reported in semilog scale in all the insets. <Ls >=0.70, 

0.77, 0.82, 0.89 cm. The exponent of the PDF parameter is -1/<Ls>. 
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Figure 9. Joint scatter plot of the particle step time Ts and step length Ls for the four 

experimental conditions S2 to S5. The power law exponents were estimated as 1.30, 1.28, 

1.26 and 1.26 with R2=0.92, 0.88, 0.89, 0.87 (S2–S5), respectively, compared with 

SR=5/3~1.67 (the slope of the experiment of Roseberry et al., [2012]). 
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Figure 10. Conditional average of streamwise velocities up (a) and acceleration as (b) along 

particle trajectories as a function of the Lagrangian time  , from experimental cases S4 and 

S5. To avoid sampling bias both datasets were obtained by averaging 60 trajectories of 

particles in motion for at least the largest time  explored here. 
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Figure 11. Schematic representation of the active and deep waiting time. up is the stream 

wise velocity of particles, and sp is the net displacement of the particle centroid. 
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Figure 12.  Distribution of active waiting time for the four experimental conditions S2 to S5 

in panels (a) to (d), with power-law exponents estimated as -1.55, -1.33, -1.69 and -1.94, 

respectively. The form of the power law is provided in Equation (3). 
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Figure 13.   Distribution of the deep waiting time for the four experimental conditions S2 to 

S5 in panels (a) to (d). The form of the power law is provided in Equation (2). The exponent 

of four curve is -0.83, -1.09, -1.13, -1.32. The value of a is 0.19, 0.29, 0.33, 0.49. 
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Figure 14. Sketch of the waiting time of the bed load flux Twf. (a) N Particles crossing the 

target section during the transport event e, induce (b) dichotomic mass flux increase that are 

separated by the time Twf. 
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Figure 15. Distribution of the waiting time of bed load flux Twf for the two experimental 

conditions S2 and S4 in panels (a) to (b), with power-law exponents estimated as -1.39 and -

2.14, respectively. The PDF line is fitted in log-log scale, and the PDF form is provided in 

Equation (3). 
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Figure 16. The number of the particles in motion Npim on the bed surface as a function of the 

dimensionless shear stress *. Npim is estimated in each frame (sample interval ~0.01s) over 

an area of (~7.3 cm × 5.5 cm), from the selected Ns trajectories (Table 2). 

 


