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Abstract 

The present study assesses the added value of high-resolution maps of Precipitable Water 

Vapor (PWV), computed from Synthetic Aperture Radar Interferograms (InSAR), in short-

range atmospheric predictability. A large set of images, in different weather conditions, 

produced by Sentinel-1A in a very well monitored region near the Appalachian Mountains, 

are assimilated by the WRF model. Results covering more than 2 years of operation indicate 

a consistent improvement of the water vapor predictability up to a range comparable with the 

transit time of the air mass in the InSAR footprint, an overall improvement in the forecast of 

different precipitation events, and better representation of the spatial distribution of 

precipitation. This result highlights the significant potential for increasing short-range 

atmospheric predictability from improved high-resolution PWV initial data, which can be 

obtained from new high-resolution all-weather microwave sensors.  

 

Plain Language Summary 

Weather forecasts will never be perfect because our models are simplified representations of 

nature and our observations of the atmosphere are inaccurate. In this study we show, 

nevertheless, that it is possible to improve such forecasts by interpreting the atmospheric 

signals in spaceborne radar observations of the Earth surface, indicative of the distribution of 

water vapor. Better and more detailed maps of water vapor are found to lead to better 

forecasts not just of water vapor, but also of precipitation. A two and a half years assessment 

covering a wide range of weather conditions in a very well monitored region near the 

Appalachian Mountains, USA, suggests that the proposed methodology has a significant 

impact in the quality of the forecasts and could easily be implemented. 

 

1 Introduction 

Accurate weather forecasts at different ranges are critical for most human activities 

and have gained increased relevance in a world more vulnerable to extreme weather events 

and water shortages. The quality of the initial state in those forecasts is, of course, one of the 

key elements of their success, and its uncertainty is one of the reasons for the development of 

the modern ensemble forecast techniques (Bauer et al., 2015). The present study explores the 

possibility of further reducing the initial state uncertainty through the assimilation of a new 

source of very-high resolution Precipitable Water Vapor (PWV) data, obtained from 

Synthetic Aperture Radar Interferograms (InSAR).  

In the absence of surface deformation, and after the mitigation of the ionospheric and 

hydrostatic phase signals (Hanssen, 2001; Wadge et al., 2002; Mateus et al., 2013a, 2013b; 

Kinoshita et al., 2013; Remy et al., 2015, Mateus et al., 2017), InSAR images can be used to 

compute the spatial distribution of PWV, offering one of the few data sources with a 

horizontal resolution relevant for the atmospheric mesoscale. Its impact in short-range 

numerical weather prediction (NWP) was recently assessed in three studies. Pichelli et al. 

(2015) found improvements in hindcasting weak to moderate precipitation (< 15 mm/3-h) in 

a three-dimensional variational (3D-Var) data assimilation of InSAR-PWV maps using the 

mesoscale weather prediction model MM5 and ENVISAT-ASAR data over the city of Rome, 

Italy. Mateus et. al. (2016) showed a significant improvement in the atmospheric moisture 

content, and on the formation of light precipitation up to 9 hours after the assimilation time in 

a 3D-Var data assimilation experiment using InSAR-PWV maps, estimated from the 

ENVISAT-ASAR data, and the Weather Research and Forecast (WRF) model over Lisbon, 
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Portugal. Mateus et al. (2018) showed that in a case with two successive deep convection 

storms, which could be both well forecasted only after InSAR data assimilation using two 

PWV maps estimated from new generation SAR images obtained by Sentinel-1 A over Adra, 

Spain, with the 3D-Var method and the WRF model.  The latter result suggested the high 

potential added value of the new InSAR data, and the need for a systematic evaluation of its 

value in a representative range of weather conditions, which is the objective of the current 

study. 

The availability of a high-quality gridded dataset of precipitation, and of a good 

network of GNSS observations, make the continental USA ideal testing ground for 

evaluation. The present work focuses on a subsector, near the Appalachian Mountains (cf. 

Figure 1), characterized by a humid continental climate with frequent precipitation events 

strongly modulated by the complex topography, resulting in high spatial and temporal 

variability (e.g., Nogueira and Barros, 2015). On the one hand, a significant fraction (30-

50%) of its precipitation is associated with light rain from fog and low-level clouds (Wilson 

and Barros, 2014). On the other hand, this region is also often affected by strong precipitation 

events, often leading to flooding, debris flows and landslides (Tao and Barros, 2014).  

Furthermore, these intense events can have multiple origins, including the passage of cold 

season synoptic-storms and warm-season mesoscale convective systems, tropical depressions 

and localized convection. Here it is hypothesized that both light and heavy precipitation 

events should be sensitive to the detailed distribution of PWV. This region has a further 

advantage of having Sentinel-1A observations (at 23:45 UTC) almost synchronized with the 

main NWP analysis at 00 UTC, clearly separating the effect of the InSAR PWV data from 

other gains one might obtain from an update of the initial state and initial conditions in the 

middle of a simulation.  

 

2 Data and Methods 

2.1 InSAR data 

Sentinel-1A operates a C-Band Synthetic Aperture Radar (SAR) producing very high-

resolution imagery with a pixel of 5×20 m
2
, returning to the same Earth view every 12 days. 

In each passage, the system can produce two images in the ascending (day side) and 

descending (night side) sides of its orbit. However, in the study area, only ascending images 

taken at about 23:45 UTC were generally available in the period from January 2016 to May 

2018. Each Single Look Complex (SLC) image produced by the SAR covers a rectangle of 

about 170×255 km
2
 in the chosen region. Two adjacent images along the flight pass were 

merged in a single interferogram for the present study following the method described in 

Mateus et al. (2017), covering a rectangle of about 340×255 km
2
 as shown in Figure 1. 

Overall, 51 interferograms (maps of phase difference) were computed whenever possible 

from SAR images 12 days apart, or in the case of a missing image (19 cases) from images 

separated by 24 days by means of the Sentinel Application Platform 

(http://step.esa.int/main/toolboxes/snap/). A spatial multilook-filter was applied to reduce the 

phase noise, leading to InSAR interferograms with a resolution of about 350×350 m
2
. Before 

applying the phase unwrapping algorithm, estimates of the ionospheric and hydrostatic 

components were subtracted keeping only the contribution due to the atmospheric water 

vapor. Areas with high spatial phase decorrelation (possibly due to water surfaces, 12-day 

changes in vegetation or anthropogenic activities) were masked out. After a visual analysis of 

the interferometric phase and coherence maps, a total of 6 interferograms were eliminated 
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from this study due to the high percentage of temporal decorrelation (mainly due to changes 

of the vegetation in summertime), leaving 45 interferograms for further analysis.  

During the dataset time span, there were no relevant seismic events in the study area, 

so that the remaining interferometric phase includes only the atmospheric water vapor 

contribution. The unwrapped phase was converted in ∆PWV quantity using an adaptation of 

the formulation by Bevis (1992, 1994). These maps were calibrated with 4 Global Navigation 

Satellite System (GNSS) observations (white circles in Figure 1), to eliminate an arbitrary 

constant in the phase. Finally, the InSAR differential PWV maps were converted into 

absolute PWV maps using an estimate of the PWV distribution at the first simulated date, 

obtained by the same exercise on the earlier date using the same WRF model, following 

Mateus et al. (2018). Other comparable methods were proposed by Pichelli et al. (2015) and 

Alshawaf et al. (2015). The final maps, when compared against all available GNSS 

observations have a final root mean square error below 2 mm. 

 

Figure 1. Study area: SAR footprint (dashed line rectangle); GNSS stations (white 

triangles, circles locate those used for calibration); domains of simulation (top left insert). 

Gray shading represents terrain elevation. Arrows represent the water vapor flux estimated as 

the product of 700 hPa wind by PWV for each of the 45 hindcast experiments. Arrow colors 

indicate the change in RMSE of accumulated rainfall in 12 h. 

2.2 WRF model configuration 

For the present study, the WRF model used exactly the setup described in Mateus et 

al. (2018), except the number, area, and dimension of the domains. In this case the model had 

two domains, the inner domain (d02 in Fig. 1) with 3 km horizontal resolution, covering 

longitudes 79.8˚ - 89.4˚ West and latitudes 30.5˚ - 38.2˚ North, and the parent domain (d01 in 

Fig. 1) with 9 km horizontal resolution covering longitudes 68.6˚ - 96.3˚  West and latitudes 

24.3˚ - 44.7˚  North. The outer domain was forced by NCEP GFS boundary conditions.  

2.3 Data assimilation  



 

 

© 2019 American Geophysical Union. All rights reserved. 

 The 3D-Var data assimilation method (Barker et al., 2004) was used in this 

experiment. The first-guess error covariance matrix required by 3D-Var was computed by the 

National Meteorological Centre (NMC) method (Parrish and Derber, 1992), based on 

differences between forecasts at different ranges valid at the same time. Four full months 

(February, May, August and November 2017, sampling the annual cycle), were simulated 

offline to compute the first-guess error covariance. For the observation covariance error 

matrix, the default value of 2 mm in the 3D-Var PWV assimilation scheme was adopted to 

represent all sources of error. The WRF Data Assimilation (WRFDA) package was used with 

default options, except for the use of a smaller distance (15 km) in the “thinning” algorithm, 

which samples one datapoint from the 350 m filtered InSAR data, in each 15 × 15 km
2
 grid 

box to assimilate. This distance is a compromise to maintain the assumption that the 

observations are statistically independent in space, as required by the 3D-Var scheme, and 

was successfully tested in Mateus et al. (2018).  

Two sets of 45 experiments were made, the control (CTRL) run starting at 1800 UTC 

and running for 30 hours, and then a 24-hour A-InSAR run, which uses the output of CTRL 

at 0000 UTC (after a 6-hour spin-up) as first-guest to assimilate the PWV data (valid at 23:45 

UTC) into new initial conditions.  

 

3 Results 

Results from the 45 simulation pairs (corresponding to CTRL and A-InSAR, for each 

of 45 available interferograms) will now be assessed against two sets of independent 

observations: hourly time series of PWV estimated by 41 GNSS stations (from the CORS and 

SuomiNet networks), and Stage IV, a merged gauge-radar gridded precipitation dataset at 4 

km resolution covering the continental USA, obtained from the National Oceanic and 

Atmospheric Administration (NOAA) National Centers for Environmental Prediction 

(NCEP) (Lin and Mitchell, 2005; Nelson et al., 2016). GNSS PWV measures both the 

temporal and spatial behavior of the simulations, in a smooth continuous and slowly varying 

column integrated water vapor, in relatively coarse columns a few tens of kilometers across. 

Here Stage IV precipitation is summed over each 12-hour period (from 6-hour data) allowing 

the evaluation of fine spatial detail, while avoiding (by time averaging) the problems coming 

from slight errors in the storm’s propagation speed across the domain.  

For each of the 45 hindcast experiments, the CTRL and A-InSAR simulations were 

compared, using a two-tailed t-test (Snedecor and Cochran, 1989). For that purpose, each 

dataset was characterized by 100 regularly spaced and co-located grid points within the 

InSAR area. The null hypothesis assumed that both datasets were statistically equal, i.e. 

drawn from the same distribution, and the alternative hypothesis that they were statistically 

different. The test was applied every hour after the assimilation time, at the 0.05 significance 

level until a null hypothesis was accepted. In 15 simulation pairs, the null hypothesis was 

accepted at assimilation time (hour 0) indicating that InSAR data didn’t impact that particular 

forecast and suggesting that the corresponding initial state was already well established in the 

CTRL simulation. The remaining 30 simulations were assessed for as long as the statistical 

test found CTRL and A-InSAR significantly different.  

The PWV RMSE of both CTRL and A-InSAR, computed against GNSS observations, 

indicates that all 30 A-InSAR simulations had a better match with observations (smaller 

RMSE) while the statistical test rejected the null hypothesis (cf. Supplementary Figure S1 
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and S2), translating to a straightforward conclusion of extended skill associated with each A-

InSAR simulation. That extension in skill was found to be limited, but close, to the transit 

time of the air mass over the InSAR footprint, as shown by the dashed line in Figure 2. The 

transit time of the air mass was estimated from the mean 700 hPa velocity at assimilation 

time, which was taken as its steering level. Almost all cases show an increase in skill above 

half of the transit time (dash-dotted line). The spatial distribution of the 700 hPa velocity and 

the corresponding uncertainty in the transit time (horizontal error bars in Figure 2) are 

elaborated in Supplementary Figure S3. 

 

Figure 2. Duration of increased skill (in hours) vs. air mass transit time (in hours), for 

the 30 cases sensitive to the change in initial state. The color shading shows the mean 

equivalent potential temperature (in Kelvin) at 700 hPa level over the InSAR window 

indicating a combination of warmth and moisture of the airmass. Individual simulations 

analyzed in Figure S1, S2 and S3. 

Precipitation is, for most applications, a more crucial variable than PWV, but harder 

to forecast since it depends on both thermodynamic and dynamic constrains and is 

characterized by strong intermittency in space and time. The 12 h-mean assessment of the 

spatial skill of precipitation shown in Figure 1 indicates a reduction in its RMSE in most 

experiments, with largest improvements in the cases characterized by strong horizontal water 

vapor flux carried by tropical airmasses coming from SW. This is consistent with the fact that 

many experiments with largest improvements of the forecast skill in Figure 2 have high 

values of equivalent potential temperature.  

The time-mean solution of all simulations, representing a sample of the precipitation 

climate in the region, is analyzed in Figure 3, comparing the two sets of simulations (CTRL 

and InSAR) against observations (Stage IV). CTRL clearly underestimates the frequency of 

drier, and strongly overestimates the frequency of wetter patches. The distribution of 
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precipitation in A-InSAR is much closer to observations, with the values of the 4 first 

statistical moments (mean, variance, skewness and kurtosis) all approaching the respective 

values in the observations. One should keep in mind that Stage IV, although calibrated 

against point udometer data, is affected by inherent biases in radar estimation, particularly 

over mountainous regions (Nelson et al., 2016). Similarly, WRF simulations are affected by 

shortcomings in parametrization schemes. The result presented in Figure 3 strongly suggests, 

however, that a large fraction of WRF errors are due to errors in the initial distribution of 

water vapor. 

 

Figure 3. Histogram of the CTRL, A-InSAR and observed (Stage IV) time average 

rainfall fields. Estimates of the mean, variance, skewness, and kurtosis also shown.  

 

Because precipitation varies dramatically between meteorological events, with a large 

majority of no-rain and light-rain conditions and a small number of heavy rain events, it is 

important to check how the forecast performs in the identification of different precipitation 

classes. Using 12 hour accumulated fields, contingency tables were computed for both CTRL 

and A-InSAR against Stage IV observations, for 4 classes of accumulated precipitation: no-

rain (R<0.1 mm), light rain (0.1≤R<10 mm), moderate rain (10≤R<30 mm), and heavy rain 

(R≥30 mm). An analysis of the mismatch is presented in Table 1, where it is clear that the 

assimilation of InSAR data increased the Hit-rate (fraction of rightly forecasted events, 

Percent Correct) and reduced the misses. Misses by three-classes (forecasting heavy 

precipitation with no-rain observed, or the other way round) were reduced by a factor of 5 

(from 0.5% to 0.1%), misses by two-classes were reduced by a factor of 1.5 (from 1.8% to 

1.2%), misses in the adjacent class were only slightly reduced (from 17.2% to 15%). A look 

into the details of the contingency tables (supplementary material Figure S3) indicates that 

most gains come from a reduction in the overestimation of heavy and moderate rain events, in 

cases with no or light observed rain. As shown in Figure S4, the gains obtained in the forecast 

of observed light and no-rain events, are slightly compensated by a very small increase in the 

forecast of no and light-rain, in cases where heavy rain was observed. 
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  Table 1. Hit and miss from 4 class rain contingency table (see Figure S2). Relative 

improvement is defined as the ratio between InSAR and CTRL (hit) or between CTRL and 

InSAR (miss).    

 CTRL A-InSAR Relative Improvement 

Percent Correct  80.5% 83.7% 1.04 
m

is
s 

by 1 class 17.2% 15.0% 1.15 

by 2 classes 1.8% 1.2% 1.50 

by 3 classes 0.5% 0.1% 5.00 

 

4 Discussion and conclusions 

 

The region near the Appalachians offers favorable conditions to test the potential 

impact of high-resolution InSAR water vapor data: it is one of the best monitored regions in 

the world, with an already very good operational forecast, frequent rain, and with a 

synchronization of Sentinel-1 A images with the timing of the main meteorological analysis 

and forecast. The full already available dataset of those images constitutes a set of cases 

covering different meteorological conditions, in the different seasons. In about 2/3 of the 

simulated cases, InSAR was found to improve the forecast, with negligible impact in the 

remaining 1/3 (where the InSAR-derived PWV field was already very similar to analysis). 

Improvements were found in both the forecast skill of PWV, evaluated every hour in 41 

GNSS stations, and in different metrics of 12 h accumulated precipitation error evaluated 

against the Stage IV gridded precipitation product. 

 

Simulations made with InSAR data assimilation showed an improved forecast skill up 

to 24 h after assimilation time, with the skill improvement being limited (but close) to the 

estimated time taken by the air mass to cross the InSAR footprint. This implies that the 

forecast of slowly moving air masses benefits for a longer time from the improved initial 

state and suggests that it could be possible to generally improve the forecast if the images had 

a wider along flow extent. The improvement translated in a much better precipitation climate, 

as represented by the histogram of mean precipitation, a better spatial distribution of 12 h 

accumulated precipitation shown by a lower RMSE, and more importantly a clear 

improvement of the forecast Hit rate of different precipitation classes, especially a large 

relative reduction of the worst miss rates.  

 

These results show a strong case for the assimilation of InSAR data in weather 

forecasts, bolstering a few specific case studies of some severe deep-convection events 

(Mateus et al., 2018). The relatively large sample of cases evaluated here suggest that such 

gains were not fortuitous, but a consistent response to an improved initial state, valid in 

different weather conditions. There is, however, the need to explore the method in other 

geographical settings and with other global forcing, as some of the improvements shown here 

may be compensating for specific biases at the chosen location in GFS initial fields. On the 

other hand, the result shown in Figure 3 suggests that this approached may be useful to 

identify some of those biases. It is important to mention, however, that the assimilation of 

InSAR PWV data is not just compensating for a wet bias in the GFS forecast. Indeed, 

Supplementary Figure S5 shows that gains in skill were obtained for initial states that were 

either too wet or too dry, in comparable numbers. On the other hand, Supplementary Figure 
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S6 indicates that the data assimilation modified the water vapor profile in the lower 

troposphere, with a maximum mean impact near 850 hPa, where both positive and negative 

increments were taken in different days, with only a very slight average drying effect (about -

0.2 g/kg at 850 hPa). 

 

InSAR meteorology has the potential to become a rapidly developing field. It is a 

global and all-weather product, available at resolutions relevant for the atmospheric 

mesoscale. For InSAR to be integrated into operational forecasts, however, it needs, real-time 

delivery, ideally for shorter time differences at least daily updates over the same Earth view. 

By combining Sentinel-1A/B and ascending plus descending orbits, it is now possible to 

obtain images every 6 days, if all images are acquired (which has been the case only over 

Europe). A number of proposed Radar platforms may fill the gaps, once they are deployed.  
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