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Milk mineral concentration is important from both the perspective of processing milk into dairy products and its nutritive value for
human consumption. Precise estimates of genetic parameters for milk mineral concentration are lacking because of the
considerable resources required to collect vast phenotypes quantities. The milk concentration of calcium (Ca), potassium (K),
magnesium (Mg), sodium (Na) and phosphorus (P) in the present study was quantified from mid-IR spectroscopy on 12 223 test-
day records from 1717 Holstein-Friesian cows. (Co)variance components were estimated using random regressions to model both
the additive genetic and within-lactation permanent environmental variances of each trait. The coefficient of genetic variation
averaged across days-in-milk (DIM) was 6.93%, 3.46%, 6.55%, 5.20% and 6.68% for Ca, K, Mg, Na and P concentration,
respectively; heritability estimates varied across lactation from 0.31 ± 0.05 (5 DIM) to 0.67 ± 0.04 (181 DIM) for Ca, from
0.18 ± 0.03 (60 DIM) to 0.24 ± 0.05 (305 DIM) for K, from 0.08 ± 0.03 (15 DIM) to 0.37 ± 0.03 (223 DIM) for Mg, from 0.16 ± 0.03
(30 DIM) to 0.37 ± 0.04 (305 DIM) for Na and from 0.21 ± 0.04 (12 DIM) to 0.57 ± 0.04 (211 DIM) for P. Genetic correlations
within the same trait across different DIM were almost unity between adjacent DIM but weakened as the time interval between
pairwise compared DIM lengthened; genetic correlations were weaker than 0.80 only when comparing both peripheries of the
lactation. The analysis of the geometry of the additive genetic covariance matrix revealed that almost 90% of the additive genetic
variation was accounted by the intercept term of the covariance functions for each trait. Milk protein concentration and mineral
concentration were, in general, positively genetically correlated with each other across DIM, whereas milk fat concentration was
positively genetically correlated throughout the entire lactation with Ca, K and Mg; the genetic correlation with fat concentration
changed from negative to positive with Na and P at 243 DIM and 50 DIM, respectively. Genetic correlations between somatic cell
score and Na ranged from 0.38 ± 0.21 (5 DIM) to 0.79 ± 0.18 (305 DIM). Exploitable genetic variation existed for all milk minerals,
although many national breeding objectives are probably contributing to an indirect positive response to selection in milk mineral
concentration.
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Implications

The present study quantified the extent of exploitable genetic
variation in milk minerals among Holstein-Friesian cows.
Results indicated that 19% (potassium) to 54% (calcium) of
the phenotypic variability in milk mineral concentration was
due to differences in genetic merit. Because milk mineral
content can be predicted using mid-IR spectroscopy of indi-
vidual cow milk samples, breeding for changes in milk
mineral content is possible, and achievable at a low cost.
Moreover, breeding goals that consider milk protein and
somatic cell score are likely to be already indirectly altering at

the desired direction the genetic merit of milk mineral
concentration.

Introduction

Although milk global demand is consistently growing,
meeting specific targets for product quality is still a critical
challenge for the dairy sector (FAO, 2017). One strategy to
maximize industry profit is to maximize milk added value;
such a strategy can be achieved through market segmenta-
tion so that the industry can differentiate its product port-
folio, like for example providing the market with products of
superior human nutritive value. Milk is an important source† E-mail: giovanni.niero@phd.unipd.it
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of functional molecules including long-chain fatty acids
(Parodi, 1999), essential amino acids (McDermott et al.,
2016), thiols (Niero et al., 2015), vitamins and antioxidants
(Niero et al., 2017) and minerals (Gaucheron, 2005). Macro-
minerals in milk are generally referred to as calcium (Ca),
potassium (K), magnesium (Mg), sodium (Na) and phos-
phorus (P) (Cashman, 2006), and these are important for
human adults and infants, through their involvement in the
homeostasis of the musculoskeletal and cardiovascular sys-
tems (Cashman, 2006; Haug et al., 2007; Whelton and He,
2014).
Milk mineral concentration is known to vary by several

factors, such as breed (Carroll et al., 2006; Niero et al., 2016),
stage of lactation (Carroll et al., 2006; van Hulzen et al.,
2009), parity number (Kume et al., 1998) and udder health
status (Summer et al., 2009). Substantial additive genetic
variation has been reported in both Dutch Holstein-Friesians
(1860 cows; van Hulzen et al., 2009), and Danish Holsteins
and Jerseys (456 and 436 cows, respectively; Buitenhuis
et al., 2015). Because of the time and cost of reference
laboratory analyses, measuring milk minerals on a large scale
is, however, resource intensive. This challenge represents a
limit to estimating precise genetic parameters for milk
minerals, as well as being able to deliver high accuracy
estimates of genetic merit for individual animals on a
routine basis.
The use of mid-IR spectroscopy in generating a predicted

phenotype for several milk and animal factors has been
documented for a plethora of milk quality traits (De Marchi
et al., 2014), including milk mineral concentration (Soyeurt
et al., 2009; Toffanin et al., 2015a; Visentin et al., 2016).
Toffanin et al. (2015b) reported heritability estimates of
0.10 ± 0.04 for Ca and 0.12 ± 0.04 for P in cow milk pre-
dicted by mid-IR spectroscopy; this study was based on 2458
Holstein-Friesian cows from 220 herds. To our knowledge,
however, no study has attempted to quantify the change in
genetic (co)variances for milk mineral composition through-
out the lactation in dairy cows. Also, no estimates of
repeatability of bovine milk mineral concentration exist.
Therefore, the objective of the present study was to

quantify, using random regressions fitted across lactation to
Italian Holstein-Friesian dairy cattle, the additive genetic
variation in milk mineral concentration predicted using mid-
IR spectroscopy, as well as the covariances between such
traits and milk chemical composition, acidity and somatic cell
score (SCS).

Material and methods

Data
Between January 2012 and December 2013, a total of
132 380 milk samples from 15 173 dairy cows were collected
in the Bolzano Province (Italy) as described by Visentin et al.
(2017b). In the present study, only milk samples collected
from Holstein-Friesian dairy cattle were retained; therefore,
the data set included 16 846 milk samples from 2020 cows

and 2838 lactations all producing in 95 single-breed com-
mercial herds. All animals were milked twice daily, in the
morning (AM) and again in the afternoon (PM). During each
monthly test-day recording, a milk sample was alternately
collected during one milking session, immediately preserved
with Bronysolv (ANA.LI.TIK Austria, Vienna, Austria), trans-
ported to the milk laboratory of the South Tyrolean Dairy
Association (Sennereiverband Südtirol, Bolzano, Italy), and
processed according to International Committee for Animal
Recording recommendations. Almost 55% of the cows par-
ticipating in the present study calved between July and
December. For each milk sample, milk chemical composition
(protein, casein, fat, and lactose percentage and urea con-
centration) and acidity (pH) were estimated from the
respective mid-IR spectrum generated by a MilkoScan
FT6000 (Foss Electric A/S, Hillerød, Denmark). The resulting
milk spectrum, containing 1060 transmittance data points in
the region between 5000 and 900 cm− 1, was stored.
Somatic cell count (SCC, cells/μl) was measured using Fos-
somatic (Foss Electric A/S) and transformed to SCS through
the formula SCS= 3+ log2(SCC/100).

Generation of predicted milk mineral composition and edits
Prediction models. In 2014, a total of 251 individual bovine
milk samples were collected in the same area from herds
contributing to the data of the present study. Full details on
the data set can be retrieved from Visentin et al. (2016). Milk
samples were analyzed in the laboratory of the Department
of Agronomy, Food, Natural Resources, Animals and Envir-
onment of the University of Padova (Legnaro, Italy) for Ca, K,
Mg, Na and P concentration (mg/kg) using inductively cou-
pled plasma optical emission spectrometry, Ciros Vision EOP
(SPECTRO Analytical Instruments GmbH, Kleve, Germany)
after mineralization. Prediction models for milk minerals
were developed using partial least squares regression ana-
lysis as described by Visentin et al. (2016). The prediction
models included a vector of each measured milk mineral as
the dependent variable, whereas spectra wavelengths (con-
verted from transmittance to absorbance by taking the log10
of the inverse of the transmittance) were considered as pre-
dictor variables. The coefficient of determination (root mean
square error in parentheses) in external validation was 0.67
(122.00mg/kg), 0.69 (120.00mg/kg), 0.65 (12.50mg/kg),
0.40 (70.00mg/kg) and 0.68 (88.12mg/kg) for Ca, K, Mg, Na
and P, respectively. A full description of the reference
methodology to measure milk minerals, as well as the
development of the prediction models is presented in
Visentin et al. (2016).

Generation of predicted phenotypes. The loadings on each
wavelength from the developed prediction models were
applied to the large spectral data set. First, principal com-
ponent analysis (PROC PRINCOMP; SAS Institute Inc., Cary,
NC, USA) was applied to the large spectral data set as well as
to the data set with reference values of milk mineral com-
position; this was undertaken to identify milk spectra (i.e.
samples) from the larger data set which were similar to those
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used to develop the prediction models as previously
employed by Visentin et al. (2017a). For this reason, the
Mahalanobis distance from the centroid of the cluster of milk
spectra with known mineral composition was computed for
each milk spectrum from the larger spectral data set as
described by Brereton (2015); if a milk spectrum had a
Mahalanobis distance greater than the 97.5% percentile of a
χ 2 with 6 degrees of freedom (i.e. the lowest number of
eigenvectors with eigenvalues >1), then this spectrum was
discarded from further statistical analysis. Predicted milk
minerals were computed only for the 15 599 milk spectra
retained after the principal component analysis.

Data editing. Obvious data errors of milk chemical compo-
sition were discarded from the data set. Records were
retained if taken between 5 and 305 days-in-milk (DIM) for
the first 10 parities. Lactations number ⩾ 5 were grouped
into a compressed parity class. Contemporaries were defined
as cows milking in the same herd test-date and con-
temporary groups with<3 observations were discarded. Milk
mineral composition was set to missing if the predicted milk
mineral value was >3 standard deviations from the mean of
that respective mineral. Following all these edits, the final
data set consisted of 12 223 milk samples from 1717
Holstein-Friesian cows and 2549 lactations.

Statistical analysis
(Co)variance components of predicted concentration (mg/kg)
for each milk mineral (Ca, K, Mg, Na and P), milk chemical
composition (percentage of protein, casein, fat and lactose),
urea concentration (mg/dl), pH and SCS were estimated in
ASREML (Gilmour et al., 2011) using random regression
models fitted across lactation. The pedigree was traced back
six generations (where available) and included a total of
9476 animals, including 1485 sires and 6476 dams. A total of
10 residual groups based on DIM were defined as 5 to 30
DIM, 31 to 60 DIM, 61 to 90 DIM,…, 240 to 270 DIM, 271 to
305 DIM. Homogeneity of variance was assumed within the
residual group, whereas heterogeneity with no residual
covariance was assumed among groups. The model fitted
was as follows:

ylmnop=HTDl +
Xn
i=1

ParmbnDIMn +
Xn
i=1

CowobnDIMn

+
Xn
ði=1Þ

PEwithinobnDIMn + PEacrosso +elmnop

where ylmnop is predicted milk mineral composition, milk
chemical composition, urea, pH or SCS; HTDl the fixed effect
of the lth contemporary group (1128 classes); Parm the fixed
effect of the mth parity (five classes: 1, 2, 3, 4, ⩾ 5); bn the
nth-order of Legendre polynomial on DIM; Cowo the random
additive genetic effect of the oth cow; PEwithino the random
effect of the within-lactation permanent environmental
effect of the oth cow; PEacrosso the random effect of the

across lactation permanent environmental effect of the oth
cow; and elmnop the residual term.
The most parsimonious order of the fixed Legendre poly-

nomial was based on the estimated lactation profile for each
milk mineral. The most parsimonious order of the random
Legendre polynomial was chosen based on: (i) the Log-
likelihood ratio test (Wilks, 1938); (ii) the Akaike information
criterion; and (iii) the smallest eigenvalue of the resulting
additive genetic covariance matrix. In the first instance, a
first-order covariance function was fitted only to the additive
genetic effect; second a first-order Legendre polynomial was
fitted to the within-lactation permanent environmental
effect. Subsequently, the order of the random Legendre
polynomial was incremented of one unit first on the additive
genetic effect and then on the within-lactation permanent
environmental effect.
Covariance function coefficients were calculated as

δ 2=ΦκΦ′, where δ 2 is the 301× 301 covariance matrix for
the traits studied,Φ the 301× n Legendre polynomial matrix
of DIM regression coefficient and κ the estimated n× n
covariance matrix of the random terms fitted with covariance
functions (i.e. additive genetic and within-lactation perma-
nent environment). Standard errors of heritability estimates
were calculated using a Taylor series expansion (Fischer
et al., 2004).
Genetic correlations between milk mineral composition,

milk chemical composition, urea, pH and SCS at each DIM
were calculated using a series of bivariate random regression
models by fitting the same model previously described.
Residual groups were as described for the univariate analy-
sis, but residual covariance was estimated between traits in
each group. The order of Legendre polynomial was the same
as for the univariate analyses. Standard errors of the genetic
correlations were estimated as in Falconer and MacKay
(1996):

SE rAð Þ=
1�r2Affiffiffi

2
p

� � σh2
x
σh2

y

h i

h2
xh2

y

h i
2
4

3
5

where SE and σ denote the standard error, rA the genetic
correlation between trait x and trait y and h2 denotes the
heritability for trait x or trait y.
Eigenvalues and eigenvectors of the additive genetic cov-

ariance matrix for each trait studied were calculated using
PROC IML (SAS Institute Inc.), whereas eigenfunctions were
calculated as:

ψ i xð Þ=
Xp�1

j=0

kψ i

� �
jΦj xð Þ

where [kψi
]j is the jth element of the ith eigenvector of K, Φj

the jth element of the p− 1 order of fit of the Legendre
polynomial matrix and x the DIM.
A repeatability animal model was also used to estimate

variance components for milk mineral composition, milk
chemical composition, urea, pH, and SCS by fitting the same
model previously described for the random regression
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analysis, but excluding the sets of Legendre polynomial and
by fitting the interaction between parity and DIM classes (10
classes: 5 to 30 DIM, 31 to 60 DIM,…, 271 to 305 DIM).
To evaluate the impact of having repeated measurements

per individual on the response to selection for each milk
mineral individually, the following formula was used (Walsh
and Lynch, 2014):

Rx=i hx σgx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

1 + txðn�1Þ
r

where Rx is the response to selection for trait x, i the selection
intensity (assumed 1), hx the square root of the heritability
for trait x, σgx the additive genetic standard deviation for trait
x, n the number of samples collected for each individual and
tx the repeatability for trait x. The response to selection for
each mineral was quantified separately and aimed at com-
paring the response achievable with n= 1 and n= 15 (i.e. 5
test-days in the first three lactations).

Results

The number of milk samples at the peripheries of the lacta-
tion was 960 (5 to 30 DIM) and 1237 (271 to 305 DIM). In the
remaining part of the lactation, the number of samples per
stage ranged from 1220 (241 to 270 DIM) to 1303 (91 to 120
DIM). Table 1 reports the total number of samples, the mean,
and the estimated variance components (and ratios) for milk
mineral concentration and milk chemical composition esti-
mated using the repeatability animal model. Estimates of
heritability (repeatability in parentheses) for milk minerals
ranged from 0.19 (0.25) for K to 0.54 (0.66) for Ca con-
centration. Heritability estimates for milk chemical compo-
sition varied between 0.25 for the fat percentage to 0.39 for
protein and casein percentage. The heritability estimate for

urea concentration, pH and SCS was 0.26, 0.48 and 0.11,
respectively (Table 1). The coefficient of genetic variation
(CVg) for the minerals ranged from 3.33% (K concentration)
to 6.61% (Ca concentration). Of the traits reflecting milk
composition, the CVg varied from 1.99% (lactose percen-
tage) to 6.89% (fat percentage). The largest CVg was for urea
concentration and SCS (10.73% and 17.34%, respectively),
whereas almost no genetic variation existed for pH (0.01%).
The CVg of the concentration of minerals, genetically inde-
pendent of the genetic merit on milk protein percentage, was
5.87% for Ca, 3.31% for K, 4.37% for Mg and 6.23% for P.
Independent of the genetic merit for SCS, the CVg of Na was
4.31%. The response to single-trait selection after one
selection round with one measurement per individual was
62.88mg/kg (Ca), 24.45mg/kg (K), 3.61mg/kg (Mg),
10.56mg/kg (Na) and 40.34mg/kg (P). When the number of
records per individual was increased to 15, the response to
selection was 76.11mg/kg, 44.64mg/kg, 6.40mg/kg,
16.09mg/kg and 53.85mg/kg for Ca, K, Mg, Na and P,
respectively. For every percentage increase in the genetic
merit for protein concentration, the genetic merit of mineral
concentration increased by 231.57mg/kg (Ca), 9.59mg/kg
(K), 30.13mg/kg (Mg), 11.41mg/kg (Na) and 205.06mg/kg
(P). Similarly, a one-unit reduction in genetic merit for SCS is
expected to contribute to a reduction in genetic merit of
18.21, 1.19, 0.50, 22.02 and 1.32mg/kg for Ca, K, Mg, Na
and P concentration, respectively.

Random regression analyses
For all milk minerals, the order of the fixed Legendre poly-
nomial was quadratic, whereas the polynomial order was
quadratic for the random additive genetic effect and linear
for the within-lactation permanent environmental effect.

Genetic variation. The change in the estimated genetic
standard deviation of Ca, K, Mg, Na and P concentration
across lactation is depicted in Figure 1. The genetic standard
deviation for Ca, Mg and P increased until mid-lactation (151
to 180 DIM) and decreased thereafter. This trend was more

Table 1 Mean, genetic standard deviation (σg), heritability ( h 2; stan-
dard error in parentheses), repeatability ( t; standard error in par-
entheses) and coefficient of genetic variation (CVg) estimated using the
repeatability animal model for calcium (Ca), potassium (K), magnesium
(Mg), sodium (Na) and phosphorus (P) concentration, chemical com-
position, pH and somatic cell score (SCS) of cow milk

Traits n Mean σg h 2 t
CVg
(%)

Ca (mg/kg) 12 208 1295.29 85.58 0.54 (0.04) 0.66 (0.01) 6.61
K (mg/kg) 12 165 1684.48 56.09 0.19 (0.03) 0.25 (0.01) 3.33
Mg (mg/kg) 12 198 136.89 7.88 0.21 (0.03) 0.27 (0.01) 5.76
Na (mg/kg) 12 223 439.06 21.56 0.24 (0.04) 0.39 (0.02) 4.91
P (mg/kg) 12 220 995.04 62.25 0.42 (0.04) 0.53 (0.01) 6.23
Protein (%) 12 223 3.29 0.17 0.39 (0.05) 0.61 (0.01) 5.04
Casein (%) 12 223 2.59 0.12 0.39 (0.05) 0.62 (0.01) 4.80
Fat (%) 12 223 3.98 0.27 0.25 (0.04) 0.43 (0.01) 6.89
Lactose (%) 12 223 4.76 0.09 0.37 (0.04) 0.59 (0.01) 1.99
Urea (mg/dl) 12 223 20.25 2.17 0.26 (0.04) 0.42 (0.01) 10.73
pH (units) 12 223 6.58 0.0001 0.48 (0.04) 0.62 (0.01) 0.01
SCS (units) 11 318 2.72 0.47 0.11 (0.03) 0.55 (0.01) 17.34
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Figure 1 Genetic standard deviation (SE in parentheses) for calcium (Ca)
(––□––, mg/kg; 4.63 to 5.23), potassium (K) (––♦––, mg/kg; 4.51 to
7.14), magnesium (Mg) (––Δ––, mg/kg; 0.62 to 0.91), sodium (Na)
(––●––, mg/kg; 1.76 to 2.47) and phosphorus (P) (––× ––, mg/kg; 3.70
to 5.32) concentration during cow lactation estimated using the random
regression animal model.
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evident for P than for either Ca and Mg concentration. The
lactation profile of the genetic standard deviation of K and
Na concentration was somewhat opposite to what observed

for Ca, Mg and P. The genetic standard deviation ranged
from 68.09 ± 5.57mg/kg (7 DIM) to 100.17 ± 5.23mg/kg
(305 DIM) for Ca concentration, from 55.52 ± 4.52mg/kg
(99 DIM) to 66.21 ± 7.14mg/kg (5 DIM) for K concentration
and from 5.78 ± 1.03mg/kg (15 DIM) to 10.59 ± 0.58mg/kg
(237 DIM) for Mg concentration (Figure 1). The genetic
standard deviation varied between 18.78 ± 1.86mg/kg (57
DIM) and 32.95 ± 2.47mg/kg (305 DIM) for Na concentra-
tion, and between 54.53 ± 5.04mg/kg (12 DIM) and
72.83 ± 3.43mg/kg (196 DIM) for P concentration (Figure 1).
The lactation profile of the CVg was similar to the one of the
genetic standard deviation for all traits. The lowest CVg was
4.90% (11 DIM), 3.06% (151 DIM), 3.79% (7 DIM), 4.29%
(62 DIM) and 4.62% (6 DIM) for Ca, K, Mg, Na and P con-
centration, respectively. The greatest CVg was at 179 DIM
(7.89%; Ca concentration), at 301 DIM (4.09%; K con-
centration), at 260 DIM (8.32%; Mg concentration), at 304
DIM (7.24%; Na concentration) and at 192 DIM (7.69%; P
concentration; data not shown).
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Heritability estimates. The estimated heritabilities of milk Ca,
K, Mg, Na and P concentration at each DIM are in Figure 2. In
all instances, the heritability estimates were the lowest at the
onset of lactation, coinciding with the stage of greatest
residual variance (Supplementary Table S1). Heritabilities
ranged from 0.31 ± 0.05 (5 DIM) to 0.67 ± 0.04 (181 DIM) for
Ca concentration, from 0.18 ± 0.03 (60 DIM) to 0.24 ± 0.05
(305 DIM) for K concentration, from 0.08 ± 0.03 (15 DIM) to
0.37 ± 0.03 (223 DIM) for Mg concentration, from
0.16 ± 0.03 (30 DIM) to 0.37 ± 0.04 (305 DIM) for Na con-
centration and from 0.21 ± 0.04 (12 DIM) to 0.57 ± 0.04 (211
DIM) for P concentration (Figure 2).

Decomposition of the additive genetic (co)variance matrix.
The analysis of the geometry of the additive genetic covar-
iance matrix of milk minerals revealed that the largest
eigenvalue explained from 88.16% (Na concentration) to
92.78% (K concentration) of the additive genetic variance.
The smallest eigenvalue explained between 1.27% (P con-
centration) and 3.92% (Na concentration) of the total addi-
tive genetic variance (data not shown). The eigenfunction
associated to the largest eigenvalue did not change sign over
the entire lactation for any mineral. The eigenfunction
associated to the middle eigenvalue changed sign after mid-
lactation for the different minerals, with the exception of K

concentration in which this eigenfunction changed sign at 90
DIM. The eigenfunction associated with the smallest eigen-
value turned from positive to negative between 60 and 90
DIM, but returned positive again between 241 and 270 DIM;
the exception was K concentration, where the change of the
sign (from positive to negative) occurred at 22 DIM, which
returned positive at 215 DIM (data not shown).
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to 0.17) and phosphorus (–× –; 0.04 to 0.16) during cow lactation
estimated using the random regression animal model.
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Figure 5 Genetic correlations (SE in parentheses) between (a) lactose
percentage and concentration of calcium (–□–; 0.05 to 0.11), potassium
(–♦–; 0.06 to 0.08), magnesium (–Δ–; 0.05 to 0.12), sodium (–●–; 0.06
to 0.12) and phosphorus (–× –; 0.06 to 0.12), and (b) concentration of
urea and calcium (–□–; 0.06 to 0.11), potassium (–♦–; 0.09 to 0.13),
magnesium (–Δ–; 0.07 to 0.11), sodium (–●–; 0.09 to 0.14) and
phosphorus (–× –; 0.06 to 0.11) during cow lactation estimated using
the random regression animal model.
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to 0.21) and phosphorus (–× –; 0.06 to 0.21) during cow lactation
estimated using the random regression animal model.
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Within-trait genetic correlations. The genetic correlations
estimated between either 5 DIM, 150 DIM and 305 DIM with
all other DIM within each mineral separately are depicted in
Figure 3. The within-trait genetic correlations were almost
unity between adjacent DIM but they did weaken when
correlating data from both lactation peripheries with each
other (Figure 3). The minimum of the within-trait genetic
correlation was 0.56 ± 0.07 (5 DIM v. 305 DIM), 0.73 ± 0.06
(5 DIM v. 184 DIM), 0.36 ± 0.25 (5 DIM v. 305 DIM),
0.57 ± 0.10 (5 DIM v. 214 DIM) and 0.48 ± 0.10 (5 DIM v.
305 DIM) for Ca, K, Mg, Na and P concentration, respectively
(Figure 3).

Between trait genetic correlations. The largest standard error
of the estimated genetic correlations were calculated at the
beginning of the lactation between 5 and 30 DIM, coinciding
with the residual group with the lowest number of observa-
tions (i.e. 960 records; Supplementary Table S2) and also
with the lowest estimates of the heritability (Figure 2; Sup-
plementary Table S1). When the number of samples included
in the residual group increased, concurrently with the herit-
ability estimates, standard error of the genetic correlations
decreased (Supplementary Table S3; Supplementary Table
S4). The genetic correlations between protein percentage
and minerals across DIM were generally positive and
strengthened as the lactation progressed (Figure 4). The
genetic correlations between protein percentage with both K
and Na concentration changed from negative to positive at
61 DIM and 78 DIM, respectively. Milk fat percentage was
positively genetically correlated with Ca, K and Mg con-
centration irrespective of DIM, with the strongest correlation
estimated at 190 DIM (0.56 ± 0.03 between fat and Ca), 200
DIM (0.31 ± 0.07 between fat and K) and 305 DIM
(0.74 ± 0.23 between fat and Mg). The genetic correlations
between milk fat percentage and Na concentration were all
negative until 243 DIM, and those between milk fat per-
centage and P changed sign at 50 DIM (Figure 4). The genetic
correlations between both milk lactose and urea concentra-
tion with the different milk minerals were negative, with very
few exceptions (Figure 5); the strongest genetic correlations
were estimated at 5 DIM (−0.62 ± 0.06 between lactose
percentage and K concentration, and −0.78 ± 0.07 between
urea and Mg concentration; Figure 5). The genetic correla-
tions between SCS and Na ranged from 0.38 ± 0.21 (5 DIM)
to 0.79 ± 0.18 (305 DIM), although they varied from
−0.29 ± 0.21 at 5 DIM between SCS and K concentration to
0.18 ± 0.07 at 37 DIM between SCS and Mg concentration
(Figure 6).

Discussion

The objective of the present study was to estimate (co)var-
iance components of milk minerals predicted using mid-IR
spectroscopy in a large data set of Holstein-Friesian dairy
cows. All traits were heritable and exhibited substantial

genetic variation, implying that genetic selection would be
fruitful.

Variance components
Heritable genetic variation in bovine milk minerals has
already been demonstrated previously (van Hulzen et al.,
2009; Buitenhuis et al., 2015; Toffanin et al., 2015b) but the
results from the present study only partially agreed with
these previous studies. Indeed, heritability estimates for Ca
and P (from the repeatability model) in the present study
were greater than those documented by Toffanin et al.
(2015b), who reported estimates of 0.10 and 0.12 for Ca and
P, respectively, in Italian dairy cows. Buitenhuis et al. (2015)
failed to detect a genetic variance for milk K and Na con-
centration in 456 Danish Holstein cows, whereas van Hulzen
et al. (2009) reported heritability estimates of 0.46 and 0.60
for milk K and Mg concentration, respectively, in 1860 Dutch
Holstein cows; the latter estimates are larger than estimates
of the present study. Only Toffanin et al. (2015b), however,
estimated variance components of mid-IR predicted milk
mineral concentration, reporting lower genetic variability
compared with the population used in the present study. The
environmental variance from the studies of Buitenhuis et al.
(2015) and van Hulzen et al. (2009), who studied mineral
concentration measured using inductively coupled plasma-
atomic emission spectroscopy, was generally lower than the
environmental variance in the population investigated in the
present study, thus contributing to the generally larger her-
itability estimates in the former except for the null heritability
for K and Na concentration in Buitenhuis et al. (2015). Such
apparent inconsistency was no surprising as the accuracy of
prediction of mid-IR prediction models was less-than-unit
(Toffanin et al., 2015a; Visentin et al., 2016) and subse-
quently predicted phenotypes contain prediction error,
resulting in an inflation of the residual term.
The use of random regressions as carried out in the current

study did not assume a constant genetic variance throughout
lactation, and therefore facilitated the estimation of the
genetic variance at each DIM. With the exception of K, the
change of the genetic variance throughout lactation mirrored
the change in shape of the respective phenotypic mean lac-
tation profile (Visentin et al., 2017b), although the nadir at
31 to 60 DIM was more evident in the mean rather than in
the genetic variance. The reduced heritability estimates at
the onset of lactation indicated that environmental factors
which are not accounted for in the statistical model of the
present study have affected mineral concentration only in
this specific part of the lactation. Such a phenomenon of the
greater residual variance in early lactation was also docu-
mented by Hurley et al. (2017) in the estimation of variance
components of feed efficiency traits in grazing Irish dairy
cattle. Random regression models, however, can facilitate
more effective and efficient breeding programs for improving
the studied traits (Kirkpatrick et al., 1990) and are nowadays
commonly used in the analysis of longitudinal data in dairy
cattle (van der Werf et al., 1998; Bastin et al., 2012; Hurley
et al., 2017).
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Practical implications
The use of mid-IR spectroscopy to generate predicted
phenotypes. The heritability and repeatability estimates of
milk mineral concentration in the present study suggest that,
ignoring parental contribution, a sire must have information
on at least 15 (Ca), 46 (K), 42 (Mg), 37 (Na) and 20 (P) progeny
to achieve a reliability of 70% for estimated genetic merit for
milk mineral concentration using traditional genetic evalua-
tion methods. Therefore, an economic disadvantage exists in
recording milk minerals on a large scale for breeding pur-
poses. To date, the only viable solution to reduce phenotyping
cost of detailed milk constituents is the use of mid-IR spec-
troscopy (De Marchi et al., 2014). Indeed, once prediction
models are developed and validated, the cost of generating
such phenotypes is negligible. Another benefit of usingmid-IR
predicted phenotypes is the possibility of obtaining multiple
measurements on a large number of animals, leading to an
increase in the response to selection after one selection round.
Because the phenotypic variance of milk minerals explained
by the prediction models was moderate, predicted pheno-
types contain prediction error which may be a limitation for
the implementation of milk payment schemes. Such an issue
should not, however, discourage the development of breed-
ing schemes for improved milk quality, including milk miner-
als, especially in countries specialized in milk manufacturing.
Indeed, from the industry point of view, the delivery of milk
suitable for processing is a relevant issue (FAO, 2017) and,
because of the presence of exploitable genetic variation, it
could be targeted also by breeding. The involvement of sta-
keholders in the development of a selection index for milk
quality should be encouraged in all phases of the imple-
mentation because milk quality is not only economically
important but also is related to public health issues, as in the
case of milk minerals. Another important issue related to the
use of mid-IR spectroscopy would be to set up a quality con-
trol system to monitor the accuracy of prediction across a
wide range of diverse management and breeding systems.
Indeed, if selection pressure on milk minerals is applied, the
genetic gain would result on a base change of the reference
population. One strategy to control any deterioration in the
accuracy of prediction would be to analyze, using gold stan-
dard methods, any milk samples that deviate substantially
from the metrics of the reference population; one such metric
could be the Mahalanobis distance of the spectrum of each
sample from the spectral of the reference population.

Alteration of the lactation profile of milk minerals. Results
from the present study clearly demonstrated that breeding
strategies could also potentially alter the lactation profile of
milk minerals and identify animals deviating considerably
from a standard lactation profile (Kirkpatrick et al., 1990; van
der Werf et al., 1998). Such strategies, which are commonly
used in the genetic evaluation of production traits in dairy
cattle worldwide, are extremely advantageous in production
systems characterized by seasonal calving in which milk
supply, and consequently milk composition, is subjected to
substantial variability across calendar months of the year

(Berry et al., 2013). In all instances in the present study, the
first eigenfunction was positive throughout lactation and
was associated with the largest proportion of genetic var-
iance. This suggests that most of the potential of breeding for
milk mineral concentration is on the ability to alter the height
of the lactation profile across all DIM. Breeding, however,
through selection pressure on the relevant eigenfunction,
could still be used to change the lactation profile for each
mineral separately in order to meet specific targets and
requirements from the dairy industry. A similar conclusion
was proposed by Visentin et al. (2017c) who estimated var-
iance components for milk processing characteristics also
using random regression models.

Impact of current breeding objectives. Given the positive
genetic correlations among all the milk minerals examined in
the present study (with the exception of the zero genetic
correlation between Ca and Na), selection alone for one milk
mineral is expected to also increase the concentration of the
other minerals. Such an implication may have negative con-
sequence from a nutritional point of view as the current
nutritional guidelines recommend to reduce the ingestion of
Na (Whelton and He, 2014). Therefore, if milk mineral con-
centration is considered as a breeding objective, Na should
be included as a goal trait with negative selection pressure to
hold it constant, or eventually reduce it. Given the correla-
tions with Na were all less than one, then a reduction in
mean genetic merit for Na simultaneous with an increase in
genetic merit for the other minerals is possible. Indeed, the
reduction of the CVg of Na after adjustment for the correla-
tion with the other studied minerals was almost null for Ca,
20% for K, 7% for Mg and 4% for P. Breeding objectives of
Holstein cattle in various countries, such as Switzerland,
Germany, Spain, France and Italy place emphasis also on
protein and fat percentage (Miglior et al., 2005). In the Ita-
lian Holstein-Friesian cattle population, the genetic gain
achieved since the year 1997 is 0.06 and −0.45 units for
protein percentage and SCS, respectively (ANAFI, 2017).
Therefore, the genetic merit since 1997 of Ca, K, Mg, Na and
P has increased, on average, by 13.89mg/kg, 2.38mg/kg,
1.81mg/kg, 0.69mg/kg and 12.30mg/kg, respectively,
solely attributable to indirect selection from selection on
protein percentage. Similarly, because of the positive corre-
lation between SCS and Na concentration, since the year
1997 the genetic merit of Na of the Holstein-Friesian popu-
lation has decreased by 9.91mg/kg, as selection attempts to
reduce SCS. The national breeding objectives of Holstein-
Friesian cattle are therefore indirectly selecting for improving
the nutritive value of bovine milk. However, the CVg of
minerals adjusted for protein concentration and SCS suggests
that for all minerals the most relevant proportion of variation
is still not fully exploited by the national breeding schemes
for improving cattle genetic merit of milk minerals. The
application of breeding schemes aiming to enhance milk
composition may lead to an improvement in both the nutri-
tional value and technological properties of the milk. Milk
and dairy products play a central role in human health for the
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fulfillment of dietary minerals recommended daily intake.
Moreover, milk minerals and in particular Ca, Mg and P, are
involved in the stabilization of casein micelles and thus in
milk rennet reactivity (Franzoi et al., 2018). Using the evi-
dence from the present study, the maximum accuracy of an
animal’s genetic merit for milk minerals ranges from 17%
(Na) to 72% (Mg). Having access to the actual milk mineral
phenotypes would increase the accuracy of estimated
breeding value (EBV) for such traits and, with information on
30 progeny, which is the minimum number of progeny nee-
ded for the official publication of bulls genetic merit for
production traits in Italian Holstein-Friesian population, the
accuracy of EBV would be >80% for all the minerals con-
sidered in the present study.
In a restriction of selection index where the only goal trait

is protein percentage, if an economic value is applied
separately to each mineral so that the emphasis given to
both traits equates, the genetic gain of mineral increases by
13% (Mg) to 44% (Ca). The exception was represented by K
where the response in such scenario was more than doubled
given the relative weak genetic correlation all throughout
lactation, as evidenced from the present study. However, the
actual genetic gain would be dependent also on all
covariances existing between milk minerals and all traits in
the national breeding goal, but also on the economic weight
placed on them as well as on the selection intensity and the
number (and type) of information available nationally.
Genetic selection has to deal with physiological and chemical
issues that might limit the magnitude of the genetic change
achievable. In particular, the major restriction for milk
mineral content relates to the saline equilibrium between
milk and blood, to the complex balance ratios among milk
minerals, and to the solubility of minerals in milk. Because of
these, it is likely that genetic selection for milk mineral
content would predominantly enhance the organic portion of
milk minerals, as this is not directly involved in the isotonic
equilibrium between milk and blood (Gaucheron, 2005). This
hypothesis is corroborated by the parallel increase of milk
protein and casein content achievable through genetic
selection, resulting again in a greater quantity of colloidal
Ca, Mg, and P (Franzoi et al., 2018). Finally, breeding
strategies applied in recent decades in dairy cows con-
tributed to cows, on average, producing a greater quantity of
milk. From a biochemical point of view, this greater milk
volume could potentially support the solubility of greater
amount mineral salts. Consequently, although breeding
schemes selecting for protein concentration and SCS may
be partially contributing to a positive (indirect) response to
selection in milk mineral concentration, the full potential to
genetically improve milk minerals is still not totally exploited
and can be only achieved with the direct selection.

Conclusions

Results from the present study clearly reveal that exploitable
genetic variation exists for the concentration of all minerals
in bovine milk. Therefore, breeding strategies can alter the

milk mineral in dairy cow milk, which has implications for
dairy processors; nonetheless, a favorable correlated indirect
response to selection in milk minerals is already expected to
be occurring in most breeding programs that select for pro-
tein concentration and SCS. Direct selection, however, could
augment further the genetic gain but also importantly alter
the lactation profile on milk minerals concentration in order
to suit a particular product portfolio.
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