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In this work, we study the ascent dynamics of a liquid Taylor drop formed from a
lock-exchange configuration in a closed vertical pipe. We focus on the buoyancy-driven
motion of an elongated drop surrounded by a denser fluid when viscous forces dominate
over inertial and surface tension effects. While gaseous Taylor bubbles have been studied
extensively, a liquid Taylor drop moving in a closed pipe is less well understood. We
formulate an analytical model for estimating the ascent speed and drop thickness from
first principles. First, we use a lubrication approximation to solve for the velocity profiles
in the two fluids. Then, we analyse the mechanical energy balance of the whole system,
including the effect of viscous dissipation, to understand how the ascent speed and drop
thickness scale with the viscosity ratio. We show that a drop with density ratio R reaches
a stationary state with a uniform dimensionless thickness of

√
2/2 in the absence of

dissipation and
√

2R/2 in the dissipative regime. Through a comparison with existing
experimental data, we demonstrate that our model correctly predicts the ascent speed of
a Taylor drop if the material properties of the fluids and the geometry of the conduit are
known. Our theoretical framework can be generalized to an isolated Taylor drop rising in
a vertical pipe.

Key words: gravity currents, multiphase flow, lubrication theory

1. Introduction

The motion of elongated drops in vertical pipes arises in many engineering systems,
such as buoyancy-driven displacements in wells and chemical reactors (Baird et al. 1992;
Frigaard & Scherzer 1998; Sahu & Vanka 2011; Alba, Taghavi & Frigaard 2014; Hasnain &
Alba 2017; Hasnain, Segura & Alba 2017; Etrati & Frigaard 2018; Mirzaeian & Alba 2018;
Amiri et al. 2019; Oladosu et al. 2019). In nature, it is important for understanding conduit
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FIGURE 1. Sketch of the lock-exchange problem in a vertical pipe of length 2L and radius R.
At time t̂ = 0, the top part of the pipe is filled with the heavier, descending fluid (dark blue) and
the bottom part with the lighter, ascending fluid (white). When the lock is removed, a Taylor
drop of length L and thickness δ̂ forms and the front ascends at speed V̂f while the tail descends
at speed V̂t.

flow in persistently degassing volcanoes (Francis, Oppenheimer & Stevenson 1993;
Kazahaya, Shinohara & Saito 1994; Stevenson & Blake 1998; Fowler & Robinson 2018;
Suckale et al. 2018). In all of these systems, gravity is the only driving force that generates
the exchange flow of fluids with different densities.

A typical experimental mechanism that leads to the formation of elongated drops is
the lock-exchange configuration. In this set-up, a heavier fluid is initially separated from a
lighter fluid by a horizontal barrier. Retraction of this barrier at the onset of the experiment
releases the heavier fluid into the lighter fluid (see figure 1). The light fluid takes a
symmetrical bullet shape, commonly called a Taylor drop, while the heavy fluid sinks
as a film along the domain walls. Although an analytic description for the ascent speed of
the drop may be useful for many problems, including the experimental study of slug flows
(Joseph & Renardy 1992; Brauner 1998), the dynamics of an isolated Taylor drop moving
in a closed environment has not yet been quantified in detail.

Previous research has focused primarily on understanding the ascent dynamics of a
gaseous Taylor bubble (Dumitrescu 1943; Davies & Taylor 1950; White & Beardmore
1962; Brown 1965; Zukoski 1966; Viana et al. 2003). When capillary forces are negligible
and inertial effects dominate over viscous forces, the Taylor bubble rises with a speed that
is proportional to

√
gD. This result has been obtained theoretically by Dumitrescu (1943)

and Davies & Taylor (1950) using the potential flow theory for an ellipsoidal inviscid
bubble and has later been confirmed by several experiments (White & Beardmore 1962;
Brown 1965; Zukoski 1966; Viana et al. 2003). When viscous forces dominate over inertial
and surface tension effects, the ascent speed of a gaseous Taylor bubble is proportional to
ΔρgD2/μd, where μd is the viscosity of the liquid (Brown 1965; Wallis 1969). In contrast,
when surface tension dominates over buoyancy, the ascent speed and film thickness are
controlled by capillary forces (Bretherton 1961; Reinelt 1987; Batchelor 2000; Llewellin
et al. 2012; Shukla et al. 2019).
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Taylor drop in a closed vertical pipe 902 A19-3

Most existing studies assume a density contrast of multiple orders of magnitude between
the Taylor bubble and the surrounding fluid. In some natural systems, however, the two
overturning fluids have similar densities, leading to the formation of Taylor drops rather
than Taylor bubbles. One specific example where this flow configuration arises is the
conduit of a persistently active volcano (e.g. Francis et al. 1993). Persistent activity is
driven by degassing as evidenced by continual emissions of large quantities of gas, which
are occasionally punctuated by the eruption of comparatively negligible quantities of
magma (e.g. Vergniolle & Mangan 2000). Originally dissolved in the magma, volatiles
exsolve as the magma ascends, forming a large number of small bubbles. Most bubbles
remain largely or partially entrained in the ambient flow due to the high magma viscosity.
As a consequence, a Taylor drop of bubble-rich, buoyant magma can form and ascend
to the surface where the bubbles escape, depriving the magma of its buoyancy and
leaving it for recycling back to depth (e.g. Stevenson & Blake 1998; Beckett et al. 2011;
Kerswell 2011; Suckale et al. 2018). Since magma viscosity depends very sensitively
on the dissolved volatile content and temperature, the viscosity between upwelling and
downwelling magmas can vary by several orders of magnitude (Giordano, Russell &
Dingwell 2008).

Up to now, only the experiments by Stevenson & Blake (1998) and Goldsmith & Mason
(1962) constrain the ascent dynamics of Taylor drops in a regime where viscous forces
dominate over inertial and surface tension effects. While Goldsmith & Mason (1962)
investigated the motion of an isolated Taylor drop, Stevenson & Blake (1998) focused
primarily on vertical lock-exchange systems for a large range of viscosity contrasts.
Stevenson & Blake (1998) found that the non-dimensional rise speed of both isolated drops
and elongated drops formed from a lock-exchange configuration saturates at a constant
value when the viscosity of the surrounding fluid is approximately an order of magnitude
higher than the viscosity of the drop. This finding has been confirmed by models (Suckale
et al. 2018). Also, Kurimoto, Hayashi & Tomiyama (2013) and Hayashi, Kurimoto &
Tomiyama (2011) measured the ascent speed of Taylor drops with and without the effect
of surfactants when inertial forces are non-negligible. Direito, Campos & Miranda (2016)
showed numerically that the recirculation patterns inside a Taylor drop change significantly
with the viscosity ratio.

The goal of this paper is to quantify the ascent dynamics of a Taylor drop confined in a
vertical pipe when surface tension and inertia are negligible. We propose a theoretical
framework that quantifies the interplay between buoyancy and viscous forces for an
elongated Taylor drop. Our analytical model estimates the ascent speed and drop thickness
from first principles and elucidates the effect of the viscosity ratio on the ascent dynamics
of a Taylor drop. While our model is motivated primarily by the flow conditions arising
in the conduits of persistently active volcanoes, as reflected in the non-dimensional
regime we explore, it is generally applicable to Taylor drops in other fields of
application.

We derive a lubrication model for a Taylor drop formed from a lock-exchange
configuration and obtain the scaling of the ascent speed as a function of the drop thickness
and the viscosity ratio (§ 2). The lubrication model solves for the velocity profiles in the
drop and the surrounding fluid. To identify which configurations are stable, we analyse the
energy balance of the whole system. We show that the drop obeys an ordinary differential
equation for the drop thickness. The steady state is determined by the interplay of the
potential energy and the viscous dissipation produced by the motion of the flowing fluids
(§ 3). When the drop reaches its terminal ascent speed, its thickness is independent of the
viscosity ratio in the non-dissipative regime (§ 4.1).
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Our theory provides a new theoretical framework that not only explains the
lock-exchange experiments of Stevenson & Blake (1998) (§ 4.2), but that can also be
generalized to the case of an isolated elongated drop released into a vertical pipe (§ 4.3).
Our theory agrees well with the measurements of Goldsmith & Mason (1962) and provides
new physical insights into the backflow patterns in Taylor drops in the presence of large
variations in the viscosity contrast (§ 4.4).

2. Lubrication model

2.1. Governing equations
In the lock-exchange configuration, the fluids are initially unstably stratified. An elongated
Taylor drop forms after lock removal, as sketched in figure 1. Assuming immiscible flow
of two Newtonian fluids, the governing equations are continuity and Navier–Stokes in both
fluids

∇ · ûi = 0, (2.1a)

ρi

[
∂ûi

∂ t̂
+ (

ûi · ∇)
ûi

]
= −∇p̂ + μi∇2ûi − ρigeg, (2.1b)

where p̂ is the pressure and û = (v̂, ŵ, û) is the velocity vector with v̂, ŵ and û representing
the velocity components in the r, θ and z directions, respectively. The subscripts, i =
d, a, refer to the descending and ascending fluid, respectively. The dynamic viscosity and
density of the fluids are μi and ρi. The acceleration due to gravity is denoted by g and acts
in the direction of unit vector eg. The boundary conditions are no-slip and no-penetration
at the pipe wall and continuity of velocity and shear stresses at the fluid–fluid interface.
In addition, the system satisfies the exchange-flow condition, which requires that the net
volumetric flux is zero in each cross-section Â, i.e.∫

Âd

ûd · n dŜ +
∫

Âa

ûa · n dŜ = 0, (2.2)

where n is the vector normal to the pipe cross-section. The dimensional parameters
governing the flow are listed in table 1.

2.2. Dimensionless formulation and lubrication approximation
In this section, we derive a lubrication model for a Taylor drop of length L and thickness
δ̂. We assume that the drop is sufficiently long such that the fluid–fluid interface is
approximately parallel to the vertical direction, ẑ in figure 1. We can thus neglect the
velocity component in the azimuthal direction, ŵi = 0, which leaves ûi = (v̂i, 0, ûi). The
two relevant length scales in the vertical and radial directions are the length of the drop,
L, and the pipe radius R. Based on these, we define the scale parameter,

ε = R
L . (2.3)

The identification of the velocity scale is not trivial since the volumetric flux cannot be
predicted a priori. The spreading of the drop in the axial direction is controlled by a
balance between buoyancy and viscous stress. Buoyancy is the driving force and it scales
as ΔρgR, where Δρ = ρd − ρa is the density difference between the ascending and the
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Taylor drop in a closed vertical pipe 902 A19-5

Definition Parameter Definition Variable

Pipe radius R Drop thickness δ̂

Gravitational acceleration g Ascent speed V̂f

Drop length L Descent speed V̂t

Half of pipe length L Front location ĥf

Light fluid density ρa Tail location ĥt

Heavy fluid density ρd Cross-sectional area Â = πR2

Light fluid viscosity μa Light fluid cross-section Âa = πδ̂2

Heavy fluid viscosity μd Heavy fluid cross-section Âd = π(R2 − δ̂2)

Surface tension σ Kinetic energy Ê
Density difference Δρ = (ρd − ρa) Potential energy P̂
Velocity scale U = ΔρgR2/μd Viscous dissipation Φ̂

TABLE 1. List of the dimensional input parameters and variables of the problem.

descending fluid. The stress at the wall dissipates the energy and it scales as μdU/R.
By matching the two contributions, we obtain the scale for the axial velocity component

ΔρgR ∼ μdU
R

⇒ U = ΔρgR2

μd
. (2.4)

Using the continuity equations, we infer the characteristic scale of the radial component
of the velocity as εU.

We then normalize (2.1) by introducing the following dimensionless variables:

z = ẑ
L , r = r̂

R
, t = t̂

L/U , ui = ûi

U
, vi = v̂i

εU
, pi = p̂i

μdUL/R2
. (2.5a–f )

We obtain two momentum equations in the axial and radial directions for the descending
fluid

εAr
Dud

Dt
= −∂pd

∂z
+ ε

∂2ud

∂z2
+ 1

r
∂

∂r

(
r
∂ud

∂r

)
− 1

1 − R , (2.6a)

ε2Ar
Dvd

Dt
= −1

ε

∂pd

∂r
+ ε3 ∂

2vd

∂z2
+ ε

[
1
r
∂

∂r

(
r
∂vd

∂r

)
− vd

r2

]
, (2.6b)

and for the ascending fluid

εRAr
Dua

Dt
= −∂pa

∂z
+ ε

M
∂2ua

∂z2
+ 1

Mr
∂

∂r

(
r
∂ua

∂r

)
− R

1 − R , (2.7a)

ε2RAr
Dva

Dt
= −1

ε

∂pa

∂r
+ ε3

M
∂2va

∂z2
+ ε

M

[
1
r
∂

∂r

(
r
∂va

∂r

)
− va

r2

]
, (2.7b)

where
D
Dt

= ∂

∂t
+ vi

∂

∂r
+ ui

∂

∂z
, (2.8)
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Definition Parameter Definition Variable

Scale parameter ε = R/L Drop thickness δ = δ̂/R
Archimedes number Ar = ρdΔρgR3/μ2

d Ascent speed Vf = V̂f /U
Density ratio R = ρa/ρd Descent speed Vt = V̂t/U
Viscosity ratio M = μd/μa Front location hf = ĥf /L
Bond number Bo = 	ρgR2/σ Tail location ht = ĥt/L
Richardson number Ri = gL/U2 Cross-sectional area A = Â/R2

Light fluid cross-section Aa = Âa/R2

Heavy fluid cross-section Ad = Âd/R2

Kinetic energy E
Potential energy P
Viscous dissipation Φ

TABLE 2. List of the dimensionless parameters and variables of the problem.

and

Ar = ρdΔρgR3

μ2
d

, R = ρa

ρd
, M = μd

μa
, (2.9a–c)

are the Archimedes number, Ar, the density ratio, R, and the viscosity ratio, M,
respectively. The Archimedes number represents the ratio between buoyancy and viscous
forces. It is equivalent to the Reynolds number defined on our characteristic axial velocity
scale U, since Ar = ReU = ρdUR/μd. The dimensionless parameters and variables of the
problem are listed in table 2.

In our analysis, we assume an elongated Taylor drop, i.e. ε � 1, with a region of
constant drop thickness that extends over most of the length L. In this limit, the axial
derivative of ui and the terms including the radial component of the velocity vi can be
neglected from (2.6) and (2.7), provided that M � ε. Therefore, (2.6) and (2.7) reduce to
a one-dimensional set of equations

1
r

d
dr

(
r

dud

dr

)
= dp

dz
+ 1

1 − R , r ∈ [δ, 1], (2.10a)

1
M

1
r

d
dr

(
r

dua

dr

)
= dp

dz
+ R

1 − R , r ∈ [0, δ], (2.10b)

where ∂pi/∂r = 0. Both fluids share the same pressure gradient, dpd/dz = dpa/dz =
dp/dz. Since the normal stress at the fluid–fluid interface is continuous, we find that the
pressure difference between the fluids is controlled by the Bond number, Bo, as follows:

pd − pa = 1
δ

ε

Bo
, with Bo = ΔρgR2

σ
, (2.11)

where σ is the surface tension and δ = δ̂/R is the dimensionless drop thickness.
For elongated drops, the lubrication model (2.10) holds because the nonlinear terms

on the left-hand side of (2.6) and (2.7) vanish. The model applies even at finite Ar
if the viscous scaling chosen for defining the velocity scale U remains representative
of the physics of the problem. We only consider cases where the descending fluid is
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g

Vf

Vt Vt Loss of potential
energy for the system 

Gain of potential
energy for the system 

ht(t)
ht(t)

hf (t)
hf (t)

hf (t + dt)

ht(t + dt)

Vf

t = 0 t + dtt

z

r

FIGURE 2. View of the axial cross-section of the lock-exchange problem in a vertical pipe
(z–r plane) in dimensionless coordinates. The ascending front (red); the descending tail (green);
the gain of potential energy area (green diagonal stripes); and the loss of potential energy (red
diagonal stripes).

heavier compared with the ascending fluid, ρd > ρa, and, therefore, R < 1. This choice
is motivated by the problem of buoyancy-driven conduit flow in persistently degassing
volcanoes and slug flow in vertical conduits more generally.

2.3. Velocity profiles and front speed
In this section, we derive analytical expressions for the velocity profiles, as well as for the
ascent and descent speeds of the Taylor drop (illustrated in figure 2). After the release
of the lock, the fluids start moving due to buoyancy: the lighter fluid penetrates into
the heavier fluid at speed Vf while the heavier fluid displaces the lighter fluid at speed
Vt. Using a lubrication approximation, we conceptualize the Taylor drop as a region of
core-annular flow with uniform thickness δ and length |hf | + |ht|, as sketched in figure 2.

We integrate (2.10a) and (2.10b) subject to the following conditions.

(i) The pipe wall is no-slip and the radial derivative of velocity is zero at the pipe centre,

ud(1) = 0,
d
dr

ua(0) = 0. (2.12a,b)

(ii) Velocity and shear stress are continuous at the fluid–fluid interface,

ud(δ) = ua(δ),
d
dr

ud(δ) = 1
M

d
dr

ua(δ). (2.13a,b)

We obtain the velocity profiles

ud(r) = P
4

(
r2 − 1

) − δ2

2
log r, r ∈ [δ, 1], (2.14a)

ua(r) = M
P − 1

4

(
r2 − δ2) + P

4

(
δ2 − 1

) − δ2

2
log δ, r ∈ [0, δ], (2.14b)
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FIGURE 3. (a) Dimensionless pressure gradient dp/dz as a function of the drop thickness δ and
the viscosity ratio M for R = 0.8. (b) Dimensionless pressure gradient as a function of the drop
thickness δ and the density ratio R for M = 1.

where P = dp/dz + 1/(1 − R) is the dimensionless driving force of the ascending fluid.
We can eliminate the pressure gradient from (2.14a) and (2.14b) using the exchange-flow
condition (2.2), ∫ 1

δ

2πrud dr +
∫ δ

0
2πrua dr = 0, (2.15)

and find that P is a function of the drop thickness and the viscosity ratio

P = δ2 2(δ2 − 1)− Mδ2

δ4 − 1 − Mδ4
. (2.16)

This relation clarifies how the vertical pressure gradient dp/dz changes with δ, M and R
under exchange-flow condition, see figure 3. As expected, the magnitude of the driving
force increases with the density difference between the fluids, see figure 3(b).

When the drop thickness vanishes for δ → 0, the pressure gradient approaches the
single-phase limit balancing the gravitational force of the descending fluid, dp/dz →
−1/(1 − R). In the opposing limit of δ → 1, dp/dz balances the gravitational force of
the ascending fluid.

We obtain the ascent and descent speeds by integrating the velocity profiles

Vf = 1
πδ2

∫ δ

0
2πrua dr and Vt = 1

π(1 − δ2)

∫ 1

δ

2πrud dr, (2.17a,b)

yielding

Vf = −δ
2

8
4[1 + (M − 1)δ4] log δ + (4 − 3M)δ4 + 4(M − 2)δ2 − M + 4

1 + (M − 1)δ4
, (2.18)

Vt = −δ
4

8
4[1 + (M − 1)δ4] log δ + (4 − 3M)δ4 + 4(M − 2)δ2 − M + 4

(Mδ4 − δ4 + 1)(δ2 − 1)
. (2.19)

The estimated speeds, Vf and Vt, are functions of the drop thickness and the viscosity ratio
only as plotted in figure 4. The two curves quantify how much Vf and Vt change with δ
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   ∞M

FIGURE 4. Ascent speed Vf , (2.18) and decent speed Vt (2.19), as a function of the drop
thickness δ and the viscosity ratio M.

while satisfying the exchange-flow condition. The two speeds are related through (2.15) as

AaVf + AdVt = 0, (2.20)

where
Aa = πδ2, Ad = π(1 − δ2), (2.21a,b)

are the dimensionless cross-sectional area of the ascending and the descending fluids,
respectively. Therefore, the two speeds and areas satisfy the following relation:

Vt

Vf
= −Aa

Ad
= − δ2

1 − δ2
. (2.22)

The ascent speed is maximal for M → ∞. In this limit, the viscosity of the descending
fluid greatly exceeds that of the ascending fluid. As a consequence, the fluid–fluid interface
resembles a free surface as evident when applying the limit M → ∞ to the interface
condition (2.13a,b) dud/dr|δ ≈ 0. We refer to this case as the free-surface limit, where
the asymptotic speeds are

Vf (δ,M → ∞) = δ4(1 − log δ)+ 1 − 4δ2

8δ2
, (2.23)

Vt (δ,M → ∞) = δ4(3 − 4 log δ)+ 1 − 4δ2

8(δ2 − 1)
. (2.24)

The other asymptotic limit is M → 0. In this case, the drop is so viscous that it can
be approximated as a rigid body. We refer to this limit as the rigid-core limit, which is
characterized by

Vf (δ,M → 0) = −δ
2(1 − δ2 + log δ + δ2 log δ)

2(δ2 + 1)
, (2.25)

Vt (δ,M → 0) = δ4(1 + log δ − δ2 − δ2 log δ)
2(δ4 − 1)

. (2.26)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

59
6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 2
07

.2
41

.2
31

.8
3,

 o
n 

12
 D

ec
 2

02
0 

at
 2

3:
04

:5
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.596
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
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3. Energy analysis

3.1. Energy balance
Here, we formulate the energy balance for the Taylor drop formed from a lock-exchange
configuration as conceptualized in figure 2. Our analysis applies once the Taylor drop has
formed and elongated sufficiently such that the lubrication approximation derived in § 2
holds. We do not consider transient behaviour immediately after the release of the lock.

We start from the energy balance formulated by Dussan (1975) for a closed system filled
with two immiscible fluids that occupy the volume V̂ = V̂a ∪ V̂d and are separated by the
fluid–fluid interface Σ̂ given by

d
dt̂

[
Ê + P̂ +

∮
Σ̂

σ dŜ
]

=
∮
∂Σ̂

σ t · Û d�̂+
∫
∂V̂

û · (
τ̂ · n

)
dŜ − Φ̂, (3.1)

where Ê , P̂ ,
∮
Σ̂
σ dŜ and Φ̂ are the kinetic, the potential, the surface energy and the total

viscous dissipation of the system, respectively, while Û , τ̂ and t are the velocity of the
contact line, the shear stress tensor and the unit vector normal to ∂Σ̂ on Σ̂ . The first
integral on the right-hand side of (3.1) accounts for the work done by the contact line ∂Σ̂ .
The second integral is the work of the traction on the pipe wall ∂V̂ , which is zero in our
case since the motion is not forced from the boundary (Joseph, Nguyen & Beavers 1984).
The last term is the viscous dissipation produced in the whole fluid domain.

If we non-dimensionalize (3.1) based on the characteristic scales defined in (2.5a–f ), we
obtain

d
dt

[
1
Ri
E + P + (1 − R) ε

Bo

∮
Σ

dS
]

= (1 − R) ε
Bo

∮
∂Σ

t · U d�− (1 − R)Φ, (3.2)

where Ri is the Richardson number of the Taylor drop defined as

Ri = gL
U2
. (3.3)

The Richardson number represents the ratio between potential energy, ρagL, and kinetic
energy, ρaU2. As described in § 2.2, we are interested in elongated drops, ε � 1, and,
therefore, we can eliminate the surface energy and the work of the contact line terms from
(3.2). With this, we obtain a simplified energy balance

d
dt

[
1
Ri
E + P

]
= −(1 − R)Φ, (3.4)

where energy of the system is approximated by the sum of the kinetic and potential energy
and is dissipated only through viscous dissipation. This simplification holds in systems
with negligible surface tension, Bo � ε.

Based on the scaling chosen in this paper, see (2.5a–f ), we can rewrite Ri as

Ri = 1
(1 − R)εAr

, (3.5)

and further simplify the energy balance in the limit of Ri → ∞ as

d
dt
P = −(1 − R)Φ. (3.6)
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Taylor drop in a closed vertical pipe 902 A19-11

In this case, the dynamics of the system is controlled by the interplay between the time
rate of potential energy and viscous dissipation.

3.1.1. Kinetic energy
The kinetic energy of the system is defined as

Ê =
∫
V̂d

1
2ρdû2

d dV̂ +
∫
V̂a

1
2ρaû2

a dV̂. (3.7)

We only consider the kinetic energy in the drop region L where the analytical velocity
profiles (2.14) apply. We neglect the kinetic energy in the region above and below the
Taylor drop because the aspect ratio of the pipe is very small, R/L � 1. This simplification
is equivalent to assuming that the regions of pure fluids above and below the drop act
as infinite reservoirs. Using (2.14) in (3.7) and integrating over the region L of constant
thickness δ, we obtain the dimensionless kinetic energy

E = π(hf − ht)

[
1

1 − R
∫ 1

δ

ru2
d dr + R

1 − R
∫ δ

0
ru2

a dr
]
, (3.8)

where we express the height of the ascending front and the descending tail as

hf = Vf t and ht = Vtt. (3.9a,b)

Finally, we obtain

E = π
(Vf − Vt)t

96

[(
1

R − 1
− δ6 − 3δ4 − 3δ2

)
P2 + 12(log δ)2

(
δ6 + δ4

R − 1

)

−6δ2P log δ
(
δ4 − 2δ2 − 1

R − 1

)]
. (3.10)

3.1.2. Potential energy
The potential energy of the system at the time t̂ is defined as

P̂ =
∫
V̂d

ρdgẑd dV̂ +
∫
V̂a

ρagẑa dV̂. (3.11)

Since we assume constant thickness δ̂, (3.11) becomes

P̂ = ρdg

[
Âd

∫ ĥf

ĥt

ẑd dẑ + Â
∫ L

ĥf

ẑd dẑ

]
+ ρag

[
Âa

∫ ĥf

ĥt

ẑa dẑ + Â
∫ ĥt

−L
ẑd dẑ

]
, (3.12)

and we obtain

P̂ = 1
2 gÂdĥ2

t (ρd − ρa)− 1
2 gÂaĥ2

f (ρd − ρa)+ 1
2(ρd − ρa)gÂL2, (3.13)

where Â = πR2, Âa = πδ̂2 and Âd = π(R2 − δ̂2) are the pipe cross-section and the
cross-sectional areas occupied by the ascending and the descending fluids, respectively.
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902 A19-12 D. Picchi, J. Suckale and I. Battiato

Using (3.9a,b) and recasting the equation in terms of dimensionless variables, yields

P = 1
2

(
AdV2

t − AaV2
f

)
t2 + π

2
L2

∗, (3.14)

where the dimensionless areas Aa and Ad are defined in (2.21a,b) and L∗ = L/ΔρgU2R2

is a constant.
Before the removal of the lock at time t = 0, the velocity field is zero everywhere and

the potential energy is maximal, see figure 2. Between the time instants t and t + dt, the
light fluid invades a region dVf that was previously occupied by the heavy fluid. Although
the potential energy of the ascending fluid increases due to the increased height of the
column, the replacement of the heavy fluid by the light fluid results in a loss of P . At
the descending tail, instead, the heavy fluid occupies a region dVt that was previously
occupied by the lighter fluid, resulting in a gain of P . These two competing mechanisms
are evident when examining the time derivative of the potential energy (keeping δ fixed)(

∂P
∂t

)
δ

= (AdV2
t︸︷︷︸

gain

−AaV2
f︸ ︷︷ ︸

loss

)t. (3.15)

The rate at which P increases scales with AdV2
t while the rate of energy loss scales with

AaV2
f .

3.1.3. Viscous dissipation
We only consider the viscous dissipation in the region L. Viscous dissipation is defined

as

Φ̂ =
∫
V̂d

μd

(
∂ ûd

∂ r̂

)2

dV̂ +
∫
V̂a

μa

(
∂ ûa

∂ r̂

)2

dV̂, (3.16)

or, in term of dimensionless variables,

Φ = (hf − ht)

[∫ 1

δ

2πr
(

dud

dr

)2

dr + 1
M

∫ δ

0
2πr

(
dua

dr

)2

dr

]
. (3.17)

After using the velocity profiles from (2.14) and our estimates for front and tail heights
(3.9a,b), we obtain

Φ = 2π(Vf − Vt)

[
P
16
(δ2 − 1)2 + δ2

8
(δ2 − 1 − 2δ2 log δ)

]
t. (3.18)

We can further simplify (3.18) using (2.18), (2.19) and (2.22) yielding

Φ = AaVf (Vf − Vt)t. (3.19)

3.2. Time evolution of the drop thickness
We now use the energy balance (3.4) to track the evolution of the drop thickness over
time δ(t). We start by observing that the kinetic and potential energy, (3.10) and (3.14),
and the viscous dissipation (3.18), depend only on the drop thickness δ, the time t and
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Taylor drop in a closed vertical pipe 902 A19-13

a finite number of material parameters including the viscosity and density ratios and the
Richardson number. Therefore, we can recast the energy balance as follows:[

1
Ri
∂E
∂δ

+ ∂P
∂δ

]
dδ
dt

+ 1
Ri
∂E
∂t

+ ∂P
∂t

= −(1 − R)Φ. (3.20)

Since all the derivatives of the kinetic and potential energy (∂/∂δ and ∂/∂t) can be
computed analytically, (3.20) is an ordinary differential equation for δ(t) in the form

f (δ, t)
dδ
dt

+ g(δ, t) = −(1 − R)Φ(δ, t), (3.21)

where

f (δ, t) = 1
Ri
∂E
∂δ

+ ∂P
∂δ
, (3.22)

g(δ, t) = 1
Ri
∂E
∂t

+ ∂P
∂t
. (3.23)

The analytical expression for g(δ, t) and the computational procedure for f (δ, t) are
detailed in appendix A. Equation (3.21) can then be solved for any initial condition in
the domain δ ∈ [0, 1] for t ∈ [t0,∞].

When Ri → ∞ we can simplify (3.21) to

∂P
∂δ

dδ
dt

+ ∂P
∂t

= −(1 − R)Φ. (3.24)

The full analytical expressions are reported in appendix B. For sake of physical
interpretation, we focus on three end-member cases when solving (3.24) while
distinguishing between the non-dissipative (Φ = 0) and the dissipative regimes
(Φ /= 0):

(i) two isoviscous fluids, M = 1,

dδ
dt

= − δ(δ2 − 1)(2δ2 − ψ)(δ4 − 4δ4 + 4 log δ + 3)
t[(24δ4 − 40δ2 + 12) log δ14δ8 − 62δ6 + 97δ4 − 62δ2 + 13]

; (3.25)

(ii) the rigid-core limit, M → 0,

dδ
dt

= − δ(δ4 − 1)(2δ2 − ψ)[(δ2 + 1) log δ − δ2 + 1]
t[(δ2 + 1)2(6δ4 − 10δ2 + 3) log δ − 4δ8 + 3δ6 + 12δ4 − 15δ2 + 4]

;
(3.26)

(iii) the free-surface limit, M → ∞,

dδ
dt

= − δ(δ2 − 1)(2δ2 − ψ)(4δ4 log δ − 3δ4 + 4δ2 − 1)
t[(24δ8 − 40δ6 + 12δ4) log δ − 10δ8 + 26δ6 − 19δ4 + 2δ2 + 1]

, (3.27)

where

ψ = 1 when Φ = 0, (3.28a)

ψ = R when Φ /= 0. (3.28b)

Note that (3.25), (3.26) and (3.27) have been obtained taking the asymptotic limits of
(B 2) for M → 1, M → 0 and M → ∞, respectively. In the absence of dissipation, we can
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902 A19-14 D. Picchi, J. Suckale and I. Battiato

compute the steady-state solutions of (3.25), (3.26) and (3.27) in the range δ ∈ [0, 1] by
computing the roots of dδ/dt = 0. We obtain three steady-state solutions

δ∞ =
√

2
2
, δ∞ = 0 and δ∞ = 1. (3.29)

Equivalently, in the dissipative regime, the three steady-state solutions are

δ∞ =
√

2R
2

, δ∞ = 0 or δ∞ = 1. (3.30)

4. Discussion

4.1. Transient evolution and ascent speed of the Taylor drop
We obtain the transient evolution of the Taylor drop by solving the ordinary differential
equation (3.21) in time for an arbitrary initial condition. We initialize the problem with
a drop of thickness δ ∈ [0, 1] and compute the time evolution in the interval [t0,∞].
The computations are performed using the stiff solver ode15s of Matlab. The ordinary
differential equation (3.21) is singular at t = 0, because the model only applies once
a Taylor drop has formed. We hence start our computation at t0 = 10 to guarantee
the uniqueness of the solution for arbitrary initial drop thickness, viscosity ratio and
Richardson number. We focus on Richardson numbers in the range Ri ∈ [1,∞] and
present the time evolution of δ(t) for (i) the rigid-core limit, (ii) isoviscous fluids and
(iii) the free-surface limit.

In the non-dissipative regime, the drop thickness converges to the stable solution δ∞ =√
2/2 for an intermediate range of initial conditions, highlighted in yellow in figure 5.

Otherwise, the drop collapses to one of the two single-phase limits, δ → 0 and δ → 1,
leading to a flow configuration that does not entail a Taylor drop and is hence beyond the
scope of this study.

The transient dynamics is controlled by M and Ri. When Ri → ∞, a stable Taylor
drop forms for initial thicknesses between 0.4 < δ < 0.76. The width of the stable
region increases for M ≤ 1 and widens up to 0 < δ < 0.76 in the free-surface limit. The
free-surface limit is hence the most robust configuration and strongly favours the formation
of a stable Taylor drop.

At steady state, both the ascending and the descending fluids occupy half of the
cross-sectional area, Aa/Ad = 1, and the energy balance (3.24) reduces to

∂P
∂t
(δ∞) = 0, for t → ∞, (4.1)

revealing that the potential energy is constant with time. If we manipulate (4.1) using
(2.22) and (3.15) we obtain

− AaVf
(
Vf + Vt

) = 0, for t → ∞, (4.2)

and see that the ascent speed is equal to the descent speed, Vf = −Vt. This means that the
loss in potential energy at the ascending front is balanced by the gain in potential energy at
the descending tail in the non-dissipative regime, see (3.15) with Aa = Ad and Vf = −Vt.
The speeds Vf and Vt depend on the viscosity ratio and can be computed by evaluating
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FIGURE 5. Transient evolution of the Taylor drop thickness as a function of time computed by
solving the energy balance in the non-dissipative regime in the interval t = [t0, 105] with t0 = 10.
The plot shows the viscous limit Ri → ∞ (solid line) and the cases with Ri = 1 and R = 0.8
(dashed lines).

(2.18) and (2.19) at δ∞ = √
2/2 as

Vf = (6 + 2M) log 2 − M − 4
48 + 16M

, (4.3)

Vt = −(6 + 2M) log 2 − M − 4
48 + 16M

. (4.4)

In the dissipative regime, the transient behaviour is qualitatively similar (see figure 6),
but the steady-state solution is determined by the interplay of three mechanisms: the loss
in potential energy at the ascending front; the gain in potential energy at the descending
tail; and viscous dissipation. The energy balance (3.24) is

∂P
∂t
(δ∞) = −(1 − R)Φ(δ∞) for t → ∞, (4.5)

indicating that the potential energy decreases with time due to dissipation. Substituting
(3.15) and (3.19) into (4.5) and using (2.22), we find that the steady-state solution is δ∞ =√

2R/2. Since R < 1, the viscous dissipation causes the drop to shrink and flow faster
than in the non-dissipative regime, see figure 7(a). In fact, the ascending fluid occupies
less than half of the cross-section, Aa(δ∞)/A = R/2, and, therefore, Vf > |Vt|, as evident
from (2.22)

Vt

Vf
= −Aa

Ad
= − R

2 − R , with δ∞ =
√

2R
2

, (4.6)

where Vf (M,R) and Vt(M,R) are calculated from (2.18) and (2.19). Note that the ascent
speed is approximately one order of magnitude higher in the free-surface limit than in the
rigid-core limit for almost the entire range of density ratios as shown in figure 7(b).

Our findings extend the classical results of Benjamin (1968) for horizontal gravity
currents to the vertical configuration. Benjamin (1968) showed that an inviscid bubble
propagating in a horizontal tube has a dimensionless thickness of 1/2. The thickness
reduces when dissipation is accounted for, as demonstrated by Shin, Dalziel & Linden
(2004). In this work, we observe the same qualitative trend for a liquid elongated drop
formed in vertical pipe.
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FIGURE 6. Transient evolution of the drop thickness as a function of time computed by solving
the energy balance with viscous dissipation in the interval t = [t0, 105] with t0 = 10. The plot
shows the viscous limit Ri → ∞ and the effect of the density ratio R. Solid lines have R = 0.85
and dashed lines have R = 0.75.
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FIGURE 7. (a) Drop thickness and ratio of descent to ascent speed as a function of the density
ratio for the dissipative regime. (b) Ascent speed Vf as a function of the density and viscosity
ratios for the dissipative regime.

4.2. Validation against lock-exchange experiments
We validate our model against the experiments by Stevenson & Blake (1998) that
measured the ascent speed of a Taylor drop formed from a lock-exchange configuration
for different combinations of high-viscosity fluids. The experiments cover viscosity ratios
of M = 30−O(105) at high Bond number, Bo � 1. Here, we only consider experiments
where a stable drop has formed to ensure that our model is applicable. For these
experiments, the drops are elongated enough such that ε � 1 and the Archimedes number
is sufficiently small, Ar = O(10−5)–O(10−1). We list all the details of the experiments
used for the validation in table 3.

Figure 8(a) shows that the measured ascent speed (solid circles) saturates around a
constant value when the viscosity ratio is sufficiently large. Our model captures this
trend well. When neglecting dissipation, our model slightly underestimates Vf , but it
agrees well with the experiments in the dissipative regime. All the curves in figure 8(a)
indicate that the drop’s speed reaches a plateau when approaching the rigid-core and the
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Reference Type M R Ar Vf δ∞

Stevenson & Blake (1998) lock-exchange 29.36 0.88 2.91 × 10−4 0.061 0.62
lock-exchange 68.46 0.95 3.87 × 10−5 0.065 0.61
lock-exchange 1371.43 0.90 2.86 × 10−5 0.067 0.61
lock-exchange 1700.00 0.80 5.80 × 10−2 0.061 0.62
lock-exchange 1.85 × 104 0.80 2.07 × 10−5 0.065 0.60
lock-exchange 3.06 × 104 0.70 1.95 × 10−3 0.062 0.62
lock-exchange 3.46 × 104 0.70 1.52 × 10−3 0.065 0.61

Stevenson & Blake (1998) long drop 1.46 × 105 0.70 8.66 × 10−5 0.066 0.53
long drop 4.12 × 104 0.70 1.08 × 10−3 0.052 0.64
long drop 44.95 0.88 3.91 × 10−4 0.062 0.64
long drop 2.11 0.91 1.24 × 10−1 0.030 0.60

Goldsmith & Mason (1962) long drop 0.91 0.82 10.89 0.007 0.75
long drop 0.12 0.80 13.35 0.003 0.74
long drop 0.02 0.80 13.35 0.003 0.73

TABLE 3. Dimensionless numbers, ascent speed and drop thickness of the experiments used for
validating the model. The data of Stevenson & Blake (1998) are obtained with miscible fluids,
Bo � 1, while the data of Goldsmith & Mason (1962) are for immiscible fluids with Bo ≈ 1.3.

free-surface limits. The transition between the two asymptotic behaviours occurs around
M = O(1)−O(10).

The model also approximately matches the measured drop thicknesses in the dissipative
regime as demonstrated in figure 8(b). Stevenson & Blake (1998) observed that the drops
evolve to a uniform thickness around δ∞ ≈ 0.6. Our energy analysis predicts δ∞ within
±15 % of the experimental value in the range of R ≈ 0.7–0.9, see figure 9. We consider
this agreement satisfactory, particularly considering that the model is purely predictive
and does not require any fitting parameters. For a more complete test of our model results,
more experiments at intermediate M would be valuable to better characterize the transition
between drop behaviour in the rigid-core and the free-surface limits.

4.3. Isolated Taylor drop
We refer to a Taylor drop as isolated when the tail is a closed interface and does not touch
the wall. In addition to lock-exchange experiments, Stevenson & Blake (1998) injected
a long drop at the bottom of the vertical pipe. They showed that the ascent speed of
an isolated Taylor drop is indistinguishable from a drop formed from the lock-exchange
configuration, see the solid circles in figure 8. Motivated by these observations, we
compare the predictions of the ascent speed Vf for a lock-exchange configuration with
experimental data of isolated Taylor drops. Among the experiments of isolated Taylor
drops available in the literature we use data from Stevenson & Blake (1998) and Goldsmith
& Mason (1962), see table 3. Although Kurimoto et al. (2013) and Hayashi et al. (2011)
measured the ascent speed of Taylor drops covering a wide range of Ar = O(10)–O(5000),
M = O(0.1)–O(10), Bo = O(1)–O(10) and R ≈ 0.8, our model does not apply to their
experiments, because the drops are not long enough to fulfil the requirement that ε � 1
and εAr � 1.
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FIGURE 8. (a) Ascent speed Vf as a function of the viscosity ratio M. (b) Taylor drop thickness
at the steady-state δ∞ as a function of the viscosity ratio M. The solid line is the energy balance
(3.21). The experimental data from Stevenson & Blake (1998) are lock-exchange experiments
(the empty circles) and long drops (solid circles). The data from Goldsmith & Mason (1962) are
elongated drops.

Figure 9 compares theoretical and experimental drop thicknesses, demonstrating that
our model agrees well with observations. The δ∞ measured by Goldsmith & Mason (1962)
is very close to

√
2/2 and it is within ±15 % error if we account for viscous dissipation.

More interestingly, we can see in figure 8 that the isolated drop data confirms the existence
of the two plateaus at M → 0 and M → ∞.

The insight that our model also describes isolated Taylor drops suggests that we can
apply it to slug flow, defined as an intermittent flow pattern that consists of a train of
isolated Taylor bubbles or drops. It is common practice in the literature (Wallis 1969;
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FIGURE 9. Comparison between the computed drop thickness at steady state δ∞ and
experimental measurements of drop thickness in the dissipative regime. The experimental data
from Stevenson & Blake (1998) are lock-exchange experiments (the empty circles) and isolated
drops (solid circles). The data from Goldsmith & Mason (1962) are long drops. Dashed lines
represent ±15 % of the exact agreement between theoretical and experimental values.

Fabre & Line 1992; Brauner & Ullmann 2004; Picchi et al. 2015) to model slug flow using
the correlation by Nicklin, Wilkes & Davidson (1962). This correlation requires a model
for the ascent speed, referred as drift velocity in Nicklin et al. (1962) and identical to the
dimensional ascent speed at steady state in our model. To the best of our knowledge, the
drift velocity of isolated Taylor drops has only been characterized experimentally (e.g.
Wallis 1969; Fabre & Line 1992), but it has not yet been formulated from first principles.

To fill this gap, we propose to estimate the drift velocity in the non-dissipative regime
using (4.3)

V̂f =
(

ΔρgR2

μd

)
(6 + 2M) log 2 − M − 4

48 + 16M
. (4.7)

This formula converges to the scaling obtained for the ascent speed of Taylor bubbles in
the laminar regime by Wallis (1969) and Brauner & Ullmann (2004),

V̂f (M → ∞) = 0.02414
ΔρgR2

μd
. (4.8)

In the dissipative regime, the drift velocity in slug flow can be estimated by evaluating
(2.18) at δ∞ = √

2R/2.
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FIGURE 10. (a) Interfacial speed uin as a function of the viscosity ratio M for the steady state
configuration δ∞ = √

2/2 (non-dissipative regime). (b) Velocity profiles of the steady state
configuration for different viscosity ratio M in the non-dissipative regime.

4.4. Backflow and velocity profiles
The rise of a Taylor drop may lead to backflow in one of two fluids. If the speed at
the fluid–fluid interface, uin = ua(δ) = ud(δ), is less than zero, backflow occurs in the
ascending fluid. Despite the ascent speed of the ascending fluid being positive, the local
velocity assumes a negative value near the interface, highlighting that a portion of the light
fluid is dragged downward. The backflow occurs inside the drop as long as M > 0.26 (see
figure 10a). When M < 0.26, the ascending fluid drags a portion of the heavy fluid upward
and backflow occurs in the descending fluid. The switching point is at M = 0.26, which
corresponds to the case of a static interface uin = 0 (see figure 10a).

Figure 10(b) shows the steady-state velocity profiles, (2.14a) and (2.14b), for the entire
range of viscosity ratios in the non-dissipative regime. It highlights that the velocity
profiles converge to the limiting cases of M → ∞ relatively quickly. In this limit, the
velocity profile of the descending fluid resembles that of a free-surface flow. Instead,
for M → 0, the ascending fluid is so viscous that the velocity profile is almost flat. In
the dissipative regime, the drop shrinks and the velocity profile changes as depicted in
figure 11(b). Since δ∞ <

√
2/2, the maximal speed at the pipe centre is higher compared

with the non-dissipative regime. Also, the magnitude of the interfacial speed increases
with the density difference between the fluids, extending the backflow in the descending
fluids to higher M compared with the dissipative regime, see figure 11(a).

Our results agree well with the measurements of Goldsmith & Mason (1962). Figure 12
shows the comparison between the velocity profiles in the axial direction of an isolated
Taylor drop measured by Goldsmith & Mason (1962) for two specific viscosity ratios. The
solid curves represent the model predictions in the non-dissipative regime. The model
reproduces not only the measured velocity profile, but it also confirms the switching
between the two backflow scenarios. For M = 0.91, backflow occurs in the ascending
fluid (see figure 12a), but has shifted into the descending fluid for M = 0.12 (figure 12b).
These results are consistent with the theoretical switching point at M = 0.26 and validate
the velocity profiles predicted by the model, obtained without any fitting parameter.
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FIGURE 11. (a) Interfacial speed uin as a function of the viscosity ratio M and the density ratio
R at steady state δ∞ = √

2R/2 for the dissipative regime. (b) Velocity profiles at steady state
for different viscosity ratio M in the dissipative regime for R = 0.7.
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FIGURE 12. Comparison of measured and modelled velocity profiles for the experiments of
Goldsmith & Mason (1962) for M = 0.91 (a) and M = 0.12 (b).

Our predicted behaviour in the free-surface limit also agrees well with the numerical
simulations of Suckale et al. (2018).

4.5. Implications for persistently active volcanoes
In upward and downward inclined flows, multiple configurations may exist for fixed
operational conditions (Barnea & Taitel 1992; Ullmann et al. 2003b; Thibault, Munoz &
Liné 2015; Picchi & Poesio 2016; Goldstein, Ullmann & Brauner 2017; Picchi et al. 2017,
2018a; Picchi, Ullmann & Brauner 2018b). For given fluids flow rates, there exist multiple
steady-state solutions that differ in the volume fractions, velocity profiles and the pressure
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drop, but share the same flux. Recent experiments suggest that different configurations
may also coexist in the pipe (Ullmann et al. 2003a). Understanding the existence and
stability of multiple flow solutions is of particular interest in the volcanological context,
because persistently active volcanoes display a wide range of eruptive regimes which are
thought to represent different flow configurations in the conduit (e.g. Vergniolle & Mangan
2000).

Suckale et al. (2018) showed that vertical core-annular flow admits two steady-state
configurations with the same flux, a solution with fast flow in a thin core and a solution
with relatively slow flow in a thick core. Both solutions appear to be realized in the
core-annular flow experiments by Beckett et al. (2011), which involved two large tanks
connected by an open pipe. However, only the thick-core solution appears to be physically
realized in the lock-exchange set-up of Stevenson & Blake (1998). The experimental set-up
of Stevenson & Blake (1998) is a closed pipe and the observed flow regime is a Taylor drop
instead of core-annular flow.

Here, we show that the presence of a propagating interface (i.e. the Taylor drop) breaks
the symmetry between the two solutions derived in Suckale et al. (2018). We find that, for
the experiments by Stevenson & Blake (1998), the energy balance favours a Taylor drop
with a constant thickness of

√
2R/2, particularly at high viscosity contrast M � 1 (see

figure 6c). At smaller viscosity contrast, M ≈ 1, there is a much wider range of initial
configurations that do not lead to the formation of a stable Taylor drop (see figure 6b).
Applied to the volcanic context, this finding suggests that exchange flow in the lava
conduit is most prone to instability in the vicinity of the uppermost portion of the conduit,
where the viscosity of the two magmatic fluids becomes comparable as the ascending
magma loses its volatiles through degassing. Interestingly, mildly eruptive behaviour such
as normal eruptions at Stromboli volcano, Italy, tend to originate at relatively shallow
depths (e.g. Harris & Ripepe 2007).

5. Conclusions

In this paper, we study the ascent dynamics of a Taylor drop formed from a
lock-exchange configuration in a closed vertical pipe. We derive an analytical formulation
of the ascent speed in the viscous regime that is consistent with laboratory experiments
by combining a lubrication model with the energy balance for the entire system. We show
that Taylor drops reach a thickness of

√
2/2 in steady-state when neglecting dissipation

and assume a slightly lower value,
√

2R/2, when dissipation is accounted for. The ascent
speed is proportional to the dimensional group ΔρgR2/μd and depends on the viscosity
ratio in the non-dissipative regime and on both the viscosity ratio and the density ratio in
the dissipative regime.

Our study also clarifies that, once the Taylor drop reaches the terminal speed, the system
finds an energetic equilibrium. In the non-dissipative regime, the speed at the front equals
the speed of the tail and each fluid occupies half of the cross-section of the pipe. In this
regime, the ascent dynamics is controlled by the balance of two mechanisms: the loss in
the potential energy due to the interpenetration of the lighter fluid into the heavy fluid and
the gain in potential energy due to the displacement of the lighter fluid by the heavy fluid.
In the dissipative regime, dissipation is a third mechanism that needs to be considered. It
causes the drop to shrink and flow faster compared with the non-dissipative regime.

The viscosity ratio controls where backflow occurs. When the viscosity ratio exceeds a
threshold value, it occurs inside the drop. Otherwise, backflow switches to the surrounding
fluid. Our results have implications for the determination of the drift velocity of a
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Taylor drop in slug flows and our understanding of conduit flow in persistently degassing
volcanoes.
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Appendix A. Expressions for g(δ, t) and f (δ, t)

Here, we report the analytical expressions of the derivatives in g(δ, t) as follows:

∂E
∂t

= π
(Vf − Vt)

96

[(
1

R − 1
− δ6 − 3δ4 − 3δ2

)
P2 + 12(log δ)2

(
δ6 + δ4

R − 1

)

−6δ2P log δ
(
δ4 − 2δ2 − 1

R − 1

)]
, (A 1)

∂P
∂t

= π
[
δ2V2

t − (1 − δ2)V2
f

]
t. (A 2)

We obtain the term g(δ, t) by combining (A 1) and (A 2) with (2.18) and (2.19) as follows:

g(δ, t) = 1
Ri
∂E
∂t

+ ∂P
∂t
. (A 3)

We compute f (δ, t) analytically using the chain rule for derivatives of composite functions
on E = E(δ, t,Vf (δ),Vt(δ)) and P = P(δ, t,Vf (δ),Vt(δ)). Since the analytical expression
is quite cumbersome, we do not detail it in the paper but it is available as a Maple file in
the supplementary material available at https://doi.org/10.1017/jfm.2020.596.

Appendix B. Energy balance: high Ri limit

In the limit of Ri → ∞, the energy balance (3.24) can be recast as

dδ
dt

= −
(1 − R)Φ + ∂P

∂t
∂P
∂δ

, (B 1)

where ∂P/∂t is given by (A 2) and Φ is given by (3.18). The term ∂P/∂δ has
to be calculated using the chain rule for derivatives of composite functions on
P = P(δ, t,Vf (δ),Vt(δ)). We performed the computation using the software Maple (the
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Maple file is available in the supplementary material of this manuscript). With this, (B 1)
becomes

dδ
dt

= a1

ta2
, (B 2)

where

a1 = δ(δ2 − 1)(ψ − 2δ2)[(M − 1)δ4 + 1]
[(
(M − 1)δ4 + 1

)
log δ

+
(

1 − 3M
4

)
δ4 + (M − 2)δ2 − M

4
+ 1

]
, (B 3)

a2 = [
(M − 1)δ4 + 1

]2 (
6δ4 − 10δ2 + 3

)
log δ

− 1
4
(δ2 − 1)

[(
10M2 − 26M + 16

)
δ10 + (−16M2 + 44M − 28

)
δ8

+ (
3M2 + 19M − 36

)
δ6 + (

M2 − 61M + 108
)
δ4

+ (27M − 76) δ2 − 3M + 16
]

(B 4)

and

ψ = 1 when Φ = 0, (B 5)

ψ = R when Φ /= 0. (B 6)
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