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Abstract

In this work we introduce, characterize, and provide algorithmic results
for (k, +)–distance-hereditary graphs, k ≥ 0. These graphs can be used
to model interconnection networks with desirable connectivity properties;
a network modeled as a (k, +)–distance-hereditary graph can be charac-
terized as follows: if some nodes have failed, as long as two nodes remain
connected, the distance between these nodes in the faulty graph is bounded
by the distance in the non-faulty graph plus an integer constant k. The class
of all these graphs is denoted by DH(k, +). By varying the parameter k,
classes DH(k,+) include all graphs and form a hierarchy that represents a
parametric extension of the well-known class of distance-hereditary graphs.
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1 Introduction

A fundamental problem in any parallel or distributed system is the efficient com-
munication of data between processors. Such efficiency depends on the routing
scheme defined over the system, that is the set of paths used to route data, one
path for each possible pair of processors. The efficiency of a routing scheme is
meanly measured in terms of its stretch factor and dilation. The stretch factor
(dilation) is the maximum ratio (difference) between the length of a path defined
by the scheme and the shortest path between the same pair of processors.

In this work we are interested in networks in which routing schemes coincide
with shortest paths and node failures may occur. Distances are always computed
by means of shortest paths in the subnetwork that is induced by the non-faulty
components. In this context, the decrease of the efficiency of the communication
only depends on the topology of the networks. To measure this efficiency degra-
dation, some parameters about the topology can be defined. In [8] the authors
defined the notion of stretch number, while in this paper we introduce the dilation
number of a graph G. It is defined as the smallest k such that G ∈ DH(k, +),
where a network modeled as a graph belonging to the class DH(k, +) can be
characterized as follows: if some nodes have failed, as long as two nodes remain
connected, the distance between these nodes in the faulty graph is bounded by the
distance in the non-faulty graph plus an integer constant k. Elements of DH(k, +)
are called (k, +)–distance-hereditary graphs. The name is motivated by the fact
that the well-known class of distance-hereditary graphs [18, 19] corresponds to the
class DH(0, +). So, by varying the parameter k, classes DH(k, +): (1) include all
graphs, (2) form a hierarchy that represents a parametric extension of distance-
hereditary graphs. Given the relevance of (k, +)–distance-hereditary graphs in
the area of communication networks, our purpose is to provide characterization
and algorithmic results about the introduced graphs.

Related works. In literature there are several papers devoted to fault-tolerant
network design, mainly starting from a given desired topology and introducing
fault-tolerance to it (e.g., see [4, 16, 20]).

Papers [8, 9] present several results about (k, ∗)–distance-hereditary graphs,
i.e., graphs whose induced distance is bounded by a multiplicative factor k.
In [14], a study about similar concepts is performed: they give characterizations
for graphs in which no delay occurs in the case that a single node fails. These
graphs are called self-repairing. In [10], authors introduce and characterize new
classes of graphs that guarantee constant stretch factors k even when a multiple
number of edges have failed. In a first step, they do not limit the number of edge
faults at all, allowing for unlimited edge faults. Secondly, they examine the more
realistic case where the number of edge faults is bounded by a value `. The corre-
sponding graphs are called k–self-spanners and (k, `)–self-spanners, respectively.
In both cases, the names are motivated by strong relationships to the concept
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of k–spanners [21]. Related works are also those concerning distance-hereditary
graphs [18, 19]: they have been investigated to design interconnection network
topologies [7, 12, 13], and several papers have been devoted to them (see [3] and
references therein).

Results. First, we formally introduce (k, +)–distance-hereditary graphs and
provide some preliminary results. An initial characterization is given in terms
of the dilation number. Then, we remark relationships between (k, ∗)–distance-
hereditary graphs and (k, +)–distance-hereditary graphs. Starting from these
observations, we introduce the notion of twin graph G∗ of an arbitrary graph
G. This graph has the remarkable property that G ∈ DH(k, +) if and only if
G∗ ∈ DH(k, +). Thanks to this notion, we are able to provide a characterization
of graphs G in DH(k, +) based on cycle-chord conditions of its twin graph G∗.
Since we also show that the recognition problem for the new graph classes is
Co-NP-complete (for k not fixed), then we investigate in more detail the smallest
class among the new ones, i.e., class DH(1, +). In this context, our main result
consists of listing all the forbidden induced subgraphs of every G ∈ DH(1, +). A
theoretical consequence of this characterization is that the recognition problem
of class DH(1, +) can be solved in polynomial time.

This paper is organized as follows. Notation and basic concepts used in this
work are given in Section 2, while Section 3 formally introduces (k, +)–distance-
hereditary graphs and provides some preliminary results. Sections 4 and 5 study
graphs in DH(k, +): the former introduces and uses the notion of twin graph to
characterize graphs in DH(k, +), and the latter states the Co-NP-completeness
result. Sections 6 and 7 study graphs in DH(1, +): the former characterizes
graphs in DH(1, +) by listing forbidden induced subgraphs, while the latter uses
this characterization to provide a polynomial time recognition. Finally, Section 8
concludes the paper by listing some open problems.

2 Notation and basic concepts

In this work we consider finite, simple, loopless, undirected and unweighted
graphs G = (V,E) with node set V and edge set E. We use standard termi-
nologies from [3, 17], some of which are briefly reviewed here.

|G| denotes the cardinality of V . A subgraph of G is a graph having all its
nodes and edges in G. Given a subset S of V , the induced subgraph 〈S〉 of G is
the maximal subgraph of G with node set S. G−S is the subgraph of G induced
by V \ S; when S = {x}, we write G− x instead of G− {x}.

If x is a node of G, by NG(x) we denote the neighbors of x in G, that is,
the set of nodes in G that are adjacent to x, and by NG[x] we denote the closed
neighborhood of x, that is NG(x) ∪ {x}. Moreover, NG(S) =

⋃
u∈S NG(u) and
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Figure 1: The chord distance of this cycle C6 is 2 because nodes d and e are
consecutive and every chord is incident to one of them. Moreover, there is no
other set with less then 3 nodes with the same properties.

NG[S] =
⋃

u∈S NG[u]. The degree of x is denoted by degG(x) and it is equal to
|NG(x)|. S ⊆ V is an independent set in G if (x, y) 6∈ E, for all x, y ∈ S.

Two nodes v and v′ of G are twins in G if they have the same neighborhood
in G; we distinguish between false twins when NG(v) = NG(v′) and true twins
when NG[v] = NG[v′]. If u ∈ V , operation γ(G, u) (see [3]) extends G by adding
a false twin of u; the resulting graph is G′ = (V ∪{u′}, E∪{(u′, v) | v ∈ NG(u)}).

A sequence of pairwise distinct nodes (x0, x1, . . . , xn) is a path in G if
(xi, xi+1) ∈ E for 0 ≤ i < n. The length of a path p = (x0, . . . , xn) is n,
whereas |p| denotes the number of its nodes. A path (x0, . . . , xn) is an induced
path if 〈{x0, . . . , xn}〉 has n edges. Two nodes x and y of G are connected if there
is a path from x to y in G. A graph G is connected if, for each pair of nodes x
and y of G, x and y are connected. A biconnected component of G is a subgraph
of G which remains connected even if we delete any of its nodes.

The length of a shortest path between two nodes x and y in G is called
distance and is denoted by dG(x, y); moreover, the length of a longest induced
path between the same nodes is denoted by DG(x, y). We use symbols PG(x, y)
and pG(x, y) to denote a longest and a shortest induced path between x and y,
respectively. Sometimes, when no ambiguity occurs, we use PG(x, y) and pG(x, y)
to denote the sets of nodes belonging to the corresponding paths.

A cycle Cn in G is a path (x0, . . . , xn−1) where also (x0, xn−1) ∈ E. Two nodes
xi and xj are consecutive in Cn if j ≡ (i+1) mod n or i ≡ (j +1) mod n. A chord
of a cycle is an edge joining two non-consecutive nodes in the cycle. Hn denotes
an hole, i.e., a cycle with n nodes and without chords. The chord distance of
a cycle Cn is denoted by cd(Cn), and it is defined as the minimum number of
consecutive nodes in Cn such that every chord of Cn is incident to some of such
nodes (see Fig. 1). We define cd(Hn) = 0.

If x and y are two nodes of G such that dG(x, y) ≥ 2, then {x, y} is a cycle-pair
if there exist a path pG(x, y) and a path PG(x, y) such that pG(x, y)∩PG(x, y) =
{x, y}. In other words, if {x, y} is a cycle-pair, then the set pG(x, y) ∪ PG(x, y)
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induces a cycle in G.

3 Basic definitions and preliminary results

In this section we formally define (k, +)–distance-hereditary graphs and provide
some preliminary results.

Definition 3.1 Let k be a real number. A graph G is a (k, +)–distance-
hereditary graph if, for each connected induced subgraph G′ of G:

dG′(x, y) ≤ dG(x, y) + k, for each x, y ∈ G′. (1)

The class of all the (k, +)–distance-hereditary graphs is denoted by DH(k, +).

Notice that the above definition holds for both connected and disconnected
graphs. Given a rational number k ≥ 1, the (k, ∗)–distance-hereditary
graphs [8, 9] have been defined in a similar way: it is sufficient to replace Eq. 1
by the following one:

dG′(x, y) ≤ dG(x, y) · k, for each x, y ∈ G′. (2)

DH(k, ∗) denotes the class of all (k, ∗)–distance-hereditary graphs. By setting
k = 0 in Eq. 1 or k = 1 in Eq. 2, we get the definition of distance-hereditary
graphs [18, 19].

Lemma 3.2 The class DH(k, +) is closed under taking induced subgraphs.

Proof. Let G be a graph in DH(k, +) and G′ be an induced subgraph of G.
According to Definition 3.1, we have to show that, for each connected induced
subgraph G′′ of G′, dG′′(x, y) ≤ dG′(x, y) + k, for each x, y ∈ G′′.

Let x and y be two nodes in G′′. Since G′′ is a connected induced subgraph
of G, then, by Definition 3.1, dG′′(x, y) ≤ dG(x, y) + k. Relationship dG(x, y) ≤
dG′(x, y) is straightforward. Combining these inequalities, we get

dG′′(x, y) ≤ dG(x, y) + k ≤ dG′(x, y) + k

2

Definition 3.3 Let G be a graph, and {x, y} be a pair of connected nodes in G.
Then:

1. the dilation number ∂G(x, y) of the pair {x, y} is given by ∂G(x, y) =
DG(x, y)− dG(x, y);

2. the dilation number ∂(G) of G is the maximum dilation number over all
possible pairs of connected nodes, that is, ∂(G) = max{x,y} ∂G(x, y);
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3. D(G) is the set containing all the pairs of nodes inducing the dilation num-
ber of G, that is, D(G) = {{x, y} | ∂G(x, y) = ∂(G)}.

In the context of (k, ∗)–distance-hereditary graphs, we introduced the corre-
sponding notion of stretch number. Shortly, if G is a graph and x and y two
connected nodes in G, then : (1) the stretch number sG(x, y) of {x, y} is given
by sG(x, y) = DG(x, y)/dG(x, y), and (2) the stretch number s(G) of G is given
by s(G) = max{x,y} sG(x, y).

The following two lemmas list some basic properties of (k, +)–distance-
hereditary graphs.

Lemma 3.4 The following facts hold:

1. DH(0, +) coincides with the class of distance-hereditary graphs;

2. DH(k, +) = DH(bkc , +), for each real number k ≥ 0;

3. DH(k1, +) ⊆ DH(k2, +), for each pair of integers k1 and k2, k1 ≤ k2;

4. If (x, y) ∈ E then ∂G(x, y) = 0. As a consequence:
- if ∂(G) = 0 then D(G) contains every pairs of connected nodes of G;
- if ∂(G) > 0 then dG(x, y) ≥ 2 for each pair {x, y} ∈ D(G);

5. if G contains n nodes, then ∂(G) ≤ max{0, n − 4}; moreover, for each
n ∈ N there exists a graph G′ such that ∂(G′) = n;

Proof. Facts 1, 2, 3, and 4 directly follow from Definition 3.1. The remainder
proves Fact 5.

If n ≤ 4, then G is a distance-hereditary graph and hence ∂(G) = 0. If n > 4
and G 6∈ DH(0, +), then:

a) dG(x, y) ≥ 2, for each {x, y} ∈ D(G) (see Fact 4);

b) DG(x, y) ≤ n− 2, for each pair {x, y} of connected nodes in G.

Then, if {x, y} ∈ D(G), the following holds:

∂(G) = DG(x, y) − dG(x, y) ≤ (n− 2)− 2 = n− 4

To complete the proof we show that ∂(Hn) = n− 4, for n ≥ 4. H4 is a distance-
hereditary graph, and hence ∂(H4) = 0. When n > 4, for each pair {x, y} of
nodes in Hn such that dHn(x, y) ≥ 2, we have DHn(x, y) = n− dHn(x, y). Then,
∂Hn(x, y) = DHn(x, y) − dHn(x, y) = n − 2 · dHn(x, y), which is maximum for
dHn(x, y) = 2. Hence ∂(Hn) = n− 4. 2

The dilation number can be used to provide a first characterization of (k, +)–
distance-hereditary graphs.
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Figure 2: The graph Gk, k ≥ 1, used by Lemma 3.6. It consists of two holes Hk+4

joined by an edge.

Theorem 3.5 Let G be a graph. G ∈ DH(k, +) if and only if ∂(G) ≤ k.

Proof. We first show that the following relationship holds:

∂(G) = min{t : G ∈ DH(t, +)} (3)

By Definition 3.3, ∂(G) = max{x,y}{DG(x, y)− dG(x, y)}, that is,

∂(G) ≥ DG(x, y)− dG(x, y)

for each pair of connected nodes x, y ∈ V . If G′ = (V ′, E ′) is a connected induced
subgraph of G, then ∂(G) ≥ dG′(x, y) − dG(x, y) for each x, y ∈ V ′. Hence
dG′(x, y) ≤ dG(x, y) + ∂(G) for each x, y ∈ V ′. By the generality of G′, it follows
that G ∈ DH(∂(G), +).

By contradiction, let us suppose that there exists an integer t < ∂(G) such
that G ∈ DH(t, +). Let {x, y} ∈ D(G), and G′ be the subgraph induced by
PG(x, y). In this case we have that dG′(x, y) = DG(x, y), and hence the relation
DG(x, y)− dG(x, y) = ∂(G) > t implies that

dG′(x, y) = DG(x, y) > t + dG(x, y).

Then G 6∈ DH(t, +), a contradiction. The theorem follows by Eq. 3 and Fact 3
of Lemma 3.4. 2

In [8], it is shown that G ∈ DH(k, ∗) if and only if s(G) ≤ k. We conclude this
section by providing a relationship between the classes DH(k, +) and DH(k, ∗),
useful in the remainder of the paper.

Lemma 3.6 For each k ≥ 1, DH(k, +) ⊂ DH(1 + k
2
, ∗).

Proof. Let G ∈ DH(k, +), k ≥ 1, and x, y ∈ G. We show that sG(x, y) ≤ 1 + k
2
.

By the generality of x and y, this implies G ∈ DH(1 + k
2
, ∗), and, in turn,

DH(k, +) ⊆ DH(1 + k
2
, ∗).
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Figure 3: A graph G and its twin graph G∗ (see Definition 4.1). Dashed lines
represent edges in E3. Nodes v1

1, v
1
2, . . . , v

1
5 and v2

1, v
2
2, . . . , v

2
5 induce the subgraphs

G1 and G2, respectively. Both G1 and G2 are isomorphic to G.

By Theorem 3.5, ∂(G) ≤ k. Hence, DG(x, y) ≤ dG(x, y) + k. If dG(x, y) = 1,
then sG(x, y) = 1 and relation sG(x, y) ≤ 1 + k

2
trivially holds. If dG(x, y) ≥ 2,

then:

sG(x, y) =
DG(x, y)

dG(x, y)
≤ dG(x, y) + k

dG(x, y)
= 1 +

k

dG(x, y)
≤ 1 +

k

2

To complete the proof we show that the graph Gk of Fig. 2 is such that Gk ∈
DH(1 + k

2
, ∗) and Gk 6∈ DH(k, +), for each k ≥ 1. In fact, ∂Gk

(u2, v2) = (k + 2) +
1 + (k + 2) − 5 = 2k, while s(Gk) = sGk

(u2, uk+4) = k+2
2

= 1 + k
2

(in [8], it is
shown that the stretch number of a graph H coincides with the stretch number
of one of the maximal biconnected components of H). 2

4 Characterization of graphs in DH(k, +)

In [8], it is shown that the (k, ∗)–distance-hereditary graphs enjoy a nice “locality
property”: the stretch number of G coincides with the stretch number of an
induced subgraph of G that forms a cycle. This property does not hold for
(k, +)–distance-hereditary graphs. For instance, consider again the graph Gk of
Fig. 2: the longest and the shortest induced path between every pair of nodes in
D(Gk) does not induce a cycle (indeed, the pairs induce the whole Gk).

In this section, we introduce the notion of twin graph. We show that the lo-
cality property recalled above holds for twin graphs of (k, +)–distance-hereditary
graphs. In this way, we are able to provide a characterization of (k, +)–distance-
hereditary graphs based on cycle-chord conditions (Theorem 4.6).

Definition 4.1 Let G = (V,E) be a graph. The twin graph of G is a graph
G∗ = (V ∗, E∗) such that V ∗ = V 1 ∪ V 2 and E∗ = E1 ∪ E2 ∪ E3, where:

- V 1 = {v1 | v ∈ V };
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- V 2 = {v2 | v ∈ V };
- E1 = {(u1, v1) | (u, v) ∈ E};
- E2 = {(u2, v2) | (u, v) ∈ E};
- E3 = {(u1, v2), (u2, v1), | (u, v) ∈ E}.

The subgraphs of G∗ given by (V 1, E1) and (V 2, E2) are denoted by G1 and G2,
respectively.

Then |V ∗| = 2 · |V | and |E∗| = 4 · |E|. The name “twin graph” is due to the fact
that, for each pair (v1, v2) of nodes in G∗ such that v1 ∈ V 1 and v2 ∈ V 2, v2 is
a false twin of v1 in G∗. Hence, the twin graph G∗ can be obtained from G by
applying operation γ(G, v) to each node v of G. Moreover, notice that both G1

and G2 are induced subgraphs of G∗ and isomorphic to G (see Fig. 3).

Definition 4.2 Let S be the subgraph of G∗ induced by the nodes vi1
1 , vi2

2 , . . . , vin
n ,

ij ∈ {1, 2} and 1 ≤ j ≤ n. The projection of S on G1, denoted by S1, is the
subgraph of G1 induced by the nodes v1

1, v
1
2, . . . , v

1
n.

Notice that, the projection of G2 on G1 corresponds to G1. The following lemma
deals with projections of generic induced subgraphs of G∗.

Lemma 4.3 Let S be an induced subgraph of G∗. If there are no false twins in
S, then S and its projection S1 are isomorphic.

Proof. Let S = (VS, ES), S1 = (VS1 , ES1), and assume that there are no false
twins in VS = {vi1

1 , vi2
2 , . . . , vin

n }. We show that S and S1 are isomorphic, that is:

(1) |VS1| = |VS|, and (2) (v
ij
j , vik

k ) ∈ ES if and only if (v1
j , v

1
k) ∈ ES1 .

1. By construction of VS1 , it follows that |VS1| ≤ |VS|. According to Defini-
tion 4.1, |VS1| contains less elements than |VS| if and only if two different
nodes in VS have the same corresponding node in VS1 , i.e, there exist two
distinct nodes v

ij
j and vik

k in VS, ij 6= ik, such that v1
j ≡ v1

k. If such two

nodes exist, by Definition 4.1, v
ij
j and vik

k are false twins in G∗. As a con-

sequence, since S is induced in G∗ then v
ij
j and vik

k are false twins in S, a
contradiction. Hence, |VS1| = |VS|.

2. The property that (v
ij
j , vik

k ) ∈ ES if and only if (v1
j , v

1
k) ∈ ES1 directly

follows from definition of G∗.

2

Lemma 4.4 For k ≥ 0, G ∈ DH(k, +) if and only if G∗ ∈ DH(k, +).
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Proof. =⇒: Assuming G∗ 6∈ DH(k, +), there exist two nodes u, v ∈ V ∗ such
that DG∗(u, v) − dG∗(u, v) > k. Let PG∗(u, v) = (u ≡ vi0

0 , vi1
1 , . . . , vin

n ≡ v),
ij ∈ {1, 2} and 0 ≤ j ≤ n, and pG∗(u, v) = (u ≡ u`0

0 , u`1
1 , . . . , u`m

m ≡ v), `j ∈ {1, 2}
and 0 ≤ j ≤ m, be a longest and a shortest induced path connecting u and v,
respectively. According to the fact that there are false twins in an induced path
if and only if the path has three nodes, we analyze two different cases:

1. m = 2:
In this case, pG∗(u, v) has three nodes. Moreover, n > 2 otherwise G∗ ∈
DH(0, +), a contradiction for the hypothesis G∗ 6∈ DH(k, +). The subgraph
S induced by PG∗(u, v) ∪ pG∗(u, v) is a cycle with at least 5 nodes and
chord distance at most 1. It can be easily observed that such a cycle does
not contains false twins. Then, by Lemma 4.3, the projection S1 of S is
isomorphic to S.

By observing that ∂(S) > k, it follows that ∂(S1) > k. Hence, by
Lemma 3.2, G1 6∈ DH(k, +). Finally, since G1 is isomorphic to G, then
G 6∈ DH(k, +).

2. m > 2:
In this case, neither the subgraph induced by PG∗(u, v) nor the subgraph
induced by pG∗(u, v) has false twins. Let P 1(v1

0, v
1
n) and p1(u1

0, u
1
m) be the

projections of PG∗(u, v) and pG∗(u, v) on G1, respectively. By Lemma 4.3,
P 1(v1

0, v
1
n) and p1(u1

0, u
1
m) are isomorphic to PG∗(u, v) and pG∗(u, v), respec-

tively.

Since DG1(v1
0, v

1
n)−dG1(u1

0, u
1
m) ≥ |P 1(v1

0, v
1
n)|− |p1(u1

0, u
1
m)| = |PG∗(u, v)|−

|pG∗(u, v)| > k, then G1 6∈ DH(k, +). Finally, since G1 is isomorphic to G,
then G 6∈ DH(k, +).

⇐=: Assume G∗ ∈ DH(k, +). Since G is an induced subgraph of G∗, then, by
Lemma 3.2, G ∈ DH(k, +). 2

Lemma 4.5 Let G be a graph such that ∂(G) > 0. Then, D(G∗) contains a
cycle-pair of G∗.

Proof. Let {x, y} ∈ D(G). Let PG(x, y) = (x ≡ v0, v1, . . . , vn ≡ y) and pG(x, y) =
(x ≡ u0, u1, . . . , um ≡ y) be a longest and a shortest induced path connecting x
and y, respectively. Now, two cases may arise:

1. PG(x, y) ∩ pG(x, y) = {x, y}:
In this case, PG∗(x, y) = (x ≡ v1

0, v
1
1, . . . , v

1
n ≡ y) and pG∗(x, y) = (x ≡

u1
0, u

1
1, . . . , u

1
m ≡ y) form the requested cycle-pair in G∗ (remember that, By

Lemma 4.4, ∂(G) = ∂(G∗)).
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2. PG(x, y) ∩ pG(x, y) 6= {x, y}:
In this case, select p′G∗(v

1
0, v

1
n) = (x ≡ v1

0, v
2
1, v

2
2 . . . , v2

n−1, v
1
n ≡ y) and

p′′G∗(u
1
0, u

1
m) = (x ≡ u1

0, u
1
1, . . . , u

1
m ≡ y). To show that {x, y} ∈ D(G∗),

it is sufficient to observe that: p′G∗(v
1
0, v

1
n) and p′′G∗(u

1
0, u

1
m) are induced in

G∗, |PG(x, y)| = |p′G∗(v1
0, v

1
n)|, and |pG(x, y)| = |p′′G∗(u1

0, u
1
m)| (by construc-

tion of G∗); {x, y} ∈ D(G) (by hypothesis); ∂(G) = ∂(G∗) (by Lemma 4.4).

2

The following theorem provides a cycle-chord characterization for graphs in
DH(k, +), k ≥ 0.

Theorem 4.6 Let G be a graph and k ≥ 0 be an integer. Then, G ∈ DH(k, +)
if and only if cd(Cn) ≥ n−k

2
− 1 for each cycle Cn, n > k + 4, of G∗.

Proof. =⇒: Assume G ∈ DH(k, +), k ≥ 0. By contradiction, suppose there
exists a cycle Cn, n > k + 4, in G∗ such that cd(Cn) < n−k

2
− 1. Let

Cn = (x, v1, v2, . . . , vq, y, up, up−1, . . . u1), p + q + 2 = n, and {v1, v2, . . . , vq}
the set of nodes giving the chord distance of Cn (hence, cd(Cn) = q). Since
(x, v1, v2, . . . , vq, y) is a path in G∗, then dG∗(x, y) ≤ q + 1; moreover, since
(x, u1, u2, . . . up, y) is an induced path in G∗, then DG∗(x, y) ≥ p + 1. It follows
that:

DG∗(x, y)− dG∗(x, y) ≥ (p + 1)− (q + 1)

= p− q

= (n− q − 2)− q

= n− 2q − 2

> n− 2(
n− k

2
− 1)− 2

= k

Hence, DG∗(x, y) − dG∗(x, y) > k, that is ∂(G∗) > k. This is a contradiction,
because, by Lemma 4.4, G ∈ DH(k, +) implies G∗ ∈ DH(k, +).

⇐=: Assume cd(Cn) ≥ n−k
2
− 1 for each cycle Cn, n > k + 4, of G∗. By con-

tradiction, suppose G 6∈ DH(k, +). In this case, by Lemma 4.4, G∗ 6∈ DH(k, +),
and hence ∂(G∗) > 0. Now, by Lemma 4.5 and Fact 4 of Lemma 3.4 there exists
a cycle-pair {x, y} ∈ D(G∗) inducing a cycle Cn with n nodes and such that
dG∗(x, y) ≥ 2. Since G∗ 6∈ DH(k, +), then DG∗(x, y) > k + dG∗(x, y). Moreover,

n = DG∗(x, y) + dG∗(x, y)

> k + dG∗(x, y) + dG∗(x, y)

= k + 2 · dG∗(x, y)

11



implies that dG∗(x, y) < n−k
2

. Finally, since cd(Cn) = dG∗(x, y)− 1, then

cd(Cn) <
n− k

2
− 1,

a contradiction. 2

5 Recognition problem for DH(k, +)

In this section we study the recognition problem for the class DH(k, +) when k
is not fixed. We start by defining the following decision problem:

Definition 5.1 Dilation Number Problem:
Instance: A graph G = (V,E), an integer q ≥ 0.
Question: ∂(G) > q?

The NP-completeness of this problem can be shown by providing a polynomial
transformation from the NP-complete problem Induced Path (cf. [15], GT23),
that can be formally defined as follows:

Instance: A graph G = (V, E), a positive integer k ≤ |V |.
Question: Is there a subset P ⊆ V with |P | ≥ k such that the subgraph induced
by P is an induced path on |P | nodes ?

In the following result, we use the version of Induced Path in which 1 < k ≤
|V |. Obviously, this problem is still NP-complete.

Theorem 5.2 Dilation Number is NP-complete.

Proof. It is easy to see that the Dilation Number problem belongs to NP, as given
a pair of paths joining two nodes in V it is possible to check in polynomial time
whether the difference of their lengths is greater than q.

Given a graph G = (V, E) and a positive integer k representing an instance of
Induced Path, in polynomial time we construct a graph G′ and define an integer
q such that there exists the required induced path in G if and only if ∂(G′) is
greater than q.

The reduction graph G′ = (V ′, E ′) is obtained as follows: for each node
v ∈ V , add a pendant node v to v. These new nodes form the independent set
W = {v | v ∈ V }. Then, connect all the nodes in V ∪W to a new node u (see
Fig. 4). Formally:

- V ′ = V ∪W ∪ {u};
- V, W and {u} are pairwise disjoint sets with |W | = |V |;
- E ′ = E ∪ {(v, v) | v ∈ V } ∪ {(u, v), (u, v) | v ∈ V }.

12



. . . . . .

u

v

WV

v

Figure 4: The graph G′ built using the instance G = (V,E) of the Induced Path
problem. W is an independent set containing a node v for each node v ∈ V .

Concerning the rational number q, it is given by q = k − 2.
Now we prove that the instance of Induced Path has a positive answer if and

only if ∂(G′) > q.
=⇒: Assume that the instance of Induced Path has a positive answer. This

implies that an induced path p = (v1, v2, . . . , vn) exists in 〈V 〉 such that |p| ≥ k.
Then the path p = (v1, v1, . . . , vn, vn) is also an induced path in G′ and |p| ≥ k+2.

By definition of G′, nodes v1 and vn are not adjacent, and since they are both
adjacent to u, then dG′(v1, vn) = 2. Hence, the following relation holds:

∂(G′) ≥ DG′(v1, vn)− dG′(v1, vn)

≥ (k + 1)− 2

= k − 1

> q

This implies that the instance of Stretch Number has a positive answer.
⇐=: Let us assume that Dilation Number has a positive answer, that is

∂(G′) > q. By definition of dilation number there exist two nodes x, y ∈ G′ such
that ∂G′(x, y) > q. Nodes x and y cannot be adjacent otherwise ∂G′(x, y) = 0
(a contradiction for ∂(G′) > q ≥ 0). For the same reason, neither x nor y can
coincide with u, being u adjacent to each other node in G′. Then, dG′(x, y) =
2. This implies that the relation DG′(x, y) − dG′(x, y) > q can be rewritten as
DG′(x, y) > q + 2. Then,

DG′(x, y) > q + 2 = (k − 2) + 2 = k

Let p = (x, v1, . . . , vn, y) be an induced path between x and y whose length is
equal to DG′(x, y). If p contains u, then PG′(x, y) = (x, u, y), contradicting the

13



relation DG′(x, y) > q + 2 > 2. Hence, x, y and vi, 1 ≤ i ≤ n, are elements of
V ∪W . Moreover, since p does not contain u and since the elements of W are
pendant nodes in 〈V ∪W 〉, then vi 6∈ W , 1 ≤ i ≤ n.

Now, three different cases arise, according to the membership of x and y to
W . Notice that |p| > k + 1 because |p| = DG′(x, y) + 1 > k + 1.

1. Both x and y are in V . In this case p is an induced path in G, and since
|p| > k + 1, then p itself is a solution for the instance of the Induced Path
problem.

2. x ∈ V and y ∈ W . In this case p′ = (x, v1, . . . , vn) is an induced path in G,
and since |p| > k + 1, then |p′| > k and p′ is a solution for the instance of
the Induced Path problem.

3. Both x and y are in W . In this case p′′ = (v1, . . . , vn) is an induced path in
G, and since |p| > k + 1, then |p′′| ≥ k and p′′ is a solution for the instance
of the Induced Path problem.

This implies that the instance of Induced Path has a positive answer. 2

If we fix k = 0, then the recognition problem for the class DH(k, +) can be solved
in linear time [19]. If we consider k not fixed, then the recognition problem for
the class DH(k, +) is exactly the complementary problem of Dilation Number.
As a consequence, the following complexity result can be stated.

Corollary 5.3 If k is not fixed, the recognition problem for the class DH(k, +)
is Co-NP-complete.

6 Characterization of graphs in DH(1, +)

In this section we provide a characterization for the smallest class among the new
ones, i.e., class containing (1, +)–distance-hereditary graphs. Theorem 6.6 lists
all the forbidden induced subgraphs of every graph in DH(1, +).

Lemma 6.1 Let G be a graph containing, as induced subgraphs, a cycle Cn with
n ≥ 6 and cd(Cn) ≤ 1. Then, G contains one of the cycles of Fig. 5 as induced
subgraphs, that is:

1. Hn, for each n ≥ 6;

2. cycles C6 with cd(C6) = 1;

3. cycles C7 with cd(C7) = 1;

4. cycles C8 with cd(C8) = 1.
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Figure 5: Cycles used in Lemma 6.1. In each of the last three cycles, at least one
chord must exist. The dotted line represents a path; a dashed line represents an
edge that may or may not exist.

Proof. Let Cn be the cycle contained, as induced subgraphs, in G:

1. n ≥ 6 and cd(Cn) = 0:
In this case the statement is trivially true (since G contains Hn, n ≥ 6, as
induced subgraph);

2. 6 ≤ n ≤ 8 and cd(Cn) = 1:
Also in this case the statement is trivially true (since G contains one of the
cycles of Fig. 5 having chord distance 1, as induced subgraph);

3. n ≥ 9 and cd(Cn) = 1:
Let Cn = (u1, u2, . . . , un), and assume that all the chords of C are incident
to u1. Denote by l the smallest index j such that uj and u1 are connected
by a chord of C, i.e. l = min{j | (uj, u1) is a chord of C}. If l ≥ 6, then
the cycle (u1, u2, . . . , ul) is a hole with at least 6 nodes, and then the lemma
holds. If l < 6, then the cycle (u1, ul, ul+1, . . . , un) contains n′ ≥ n− 3 ≥ 6
nodes and has chord distance at most 1. Now, if the latter cycle is one of
the cycles of Fig. 5 we are done, otherwise we can recursively apply to this
cycle the arguments above.

The analysis of these three cases concludes the proof. 2

Lemma 6.2 Let G be a graph and let G∗ its twin graph. G ∈ DH(1, +) if and
only if the following graphs are not induced subgraphs of G∗:

1. Hn, for each n ≥ 6;

2. cycles C6 with cd(C6) = 1;

3. cycles C7 with cd(C7) = 1;

4. cycles C8 with cd(C8) = 1;

5. cycles C2i+4 with cd(C2i+4) = i, for each i ≥ 2.
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Proof. =⇒: Holes Hn, n ≥ 6, have dilation number at least 2. Cycles with 6,
7, or 8 nodes and chord distance 1 have dilation number equal to 2, 3, and 4,
respectively. Cycles C2i+4 with chord distance equal to i have dilation number at
least 2i+4−2 · (cd(C2i+4)+1) = 2. Then, they are forbidden induced subgraphs
for G and, by Lemma 4.4, also for G∗.

⇐=: Assuming G 6∈ DH(1, +), we show that G∗ contains one of the forbidden
subgraphs. If G 6∈ DH(1, +) then, by Theorem 4.6, G∗ contains a cycle Cn, n ≥ 6,
as induced subgraph such that 0 ≤ cd(Cn) < n−3

2
. In what follows we show that

either Cn contains one of the cycles in the statement of the lemma or Cn contains
a cycle Cn′ 6∈ DH(1, +) as induced subgraph, n′ < n. In the latter case we can
recursively apply to Cn′ this proof.

Letting q ≥ 0 and n ≥ max{6, 2q + 4}, consider the cycle Cn with chord
distance q. The analysis of Cn is performed by cases:

1. 0 ≤ q ≤ 1 and n ≥ max{6, 2q + 4} = 6:
In this case, by Lemma 6.1, Cn contains one of the cycles of Fig. 5 as
induced subgraph.

2. q ≥ 2 and n = max{6, 2q + 4} = 2q + 4:
In this case, Cn corresponds to the last cycle in statement of the lemma.

3. q ≥ 2 and n > max{6, 2q + 4} = 2q + 4:
In this case, assume that the cycle Cn is induced by the nodes of the
two node-disjoint paths PG∗(x, y) = (x, u1, u2, . . . , up, y) and pG∗(x, y) =
(x, v1, v2, . . . , vq, y), p + q + 2 = n, such that nodes v1, v2, . . . , vq give
the chord distance of Cn. In this cycle, we denote by rj the largest in-
dex j′ such that vj and uj′ are connected by a chord of Cn, i.e. rj =
max{j′ | (vj, uj′) is a chord of Cn}; we assume rj undefined when vj is not
incident to a chord of Cn. Informally, rj gives the rightmost chord incident
to vj. Notice that, since q ≥ 1, r1 is defined.

If r1 > 3 then the subgraph of Cn induced by the nodes v1, x, u1, . . . , ur1 is
a cycle with at least 6 nodes and chord distance at most 1. According to
Lemma 6.1, this subgraph contains one of the cycles of Fig. 5 as induced
subgraph.

Assume r1 ≤ 3 and let Cn′ be the subgraph of Cn induced by the nodes
v1, v2, . . . , vq, y, up, up−1, . . . , ur1 (informally, Cn′ is one of the two cycles
obtained by “cutting” Cn by means of chord (v1, ur1)). Cycle Cn′ has n′ ≥
n− 3 ≥ 6 nodes (because r1 ≤ 3) and chord distance at most q − 1.

According to Theorem 4.6, by proving cd(Cn′) < n′−3
2

we get Cn′ 6∈
DH(1, +). Since cd(Cn′) ≤ q − 1, cd(Cn′) < n′−3

2
holds when the following

inequality holds:
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u1

w2

w3

w4

w5

Figure 6: The clepsydra graph cl(k) (see Definition 6.3). The dashed edges may
or may not exist.

n′ − 3

2
> q − 1,

(n− 3)− 3

2
> q − 1,

n > 2q + 4. (4)

Since n > 2q + 4 holds by hypothesis, then cd(Cn′) < n′−3
2

. This means
that Cn′ 6∈ DH(1, +), and hence we can recursively apply to Cn′ this proof.

The analysis of the cases above concludes the proof. 2

The following definition introduces the notion of clepsydra graph (see Fig. 6),
useful to characterize graphs in DH(1, +).

Definition 6.3 Let C5 = (u1, u2, u3, u4, u5) be a cycle such that cd(C5) ≤ 1
and degC5(u5) = 2, Pk = (v1, v2, . . . , vk) be a path with k ≥ 1, and C ′

5 =
(w1, w2, w3, w4, w5) be a cycle such that cd(C ′

5) ≤ 1 and degC′5(w1) = 2. A clep-
sydra of order k is a graph cl(k) = (V,E) such that:

- V = {u1, u2, u3, u4, v1, v2, . . . , vk, w2, w3, w4, w5};
- if x, y ∈ V then (x, y) ∈ E if and only if one of the following condition

holds:

1. (x, y) ∈ {(u1, v1), (u4, v1), (vk, w2), (vk, w5)}
2. x and y are adjacent in C5, Pk, or C ′

5

Lemma 6.4 Let G ∈ DH(3
2
, ∗) containing a cycle Cn as induced subgraph such

that n ≥ 4 + 2i, i ≥ 1, and cd(Cn) ≤ i. Then, G contains a clepsydra as induced
subgraph.
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v0

v1

vq−1v2

vq

u1

u2

u3 up−2

up−1

up

vq+1

Figure 7: The cycle Cn considered in Lemma 6.4. Dashed edges represent
chords that may or may not exist. Nodes in cycles (u2, u1, v0, v1, v2) and
(vq−1, vq, vq+1, up, up−1), along with nodes in path (v3, v4, . . . , vq−2), induce a clep-
sydra cl(k), k ≥ 1 (k = 1 when q = 3), as subgraph of Cn.

Proof. Let Cn = (v0, v1, v2, . . . , vq, vq+1, up, up−1, . . . , u1) and let (v1, v2, . . . , vq)
be the nodes giving the chord distance of Cn (see Figure 7). Without loss of
generality, we assume that Cn is a cycle in G that satisfies the hypotheses and
has the minimum number of nodes.

We first show that a chord connecting two nodes in {v0, v1, . . . , vq+1} does not
exist in Cn. This is done by analyzing three cases:

• Consider a chord connecting two nodes in {v0, v1, . . . , vq}. Such a chord
can be denoted by (vj, vj+t+1), where j and t are integers such that j ≥
0, t ≥ 1, and j + t + 1 ≤ q. Chord (vj, vj+t+1) forms the cycle Cm =
(v0, v1, . . . , vj, vj+t+1, . . . vq+1, up, up−1, . . . , u1). It follows that Cm has m =
n− t nodes and chord distance cd(Cm) ≤ q − t. Since

m = n− t ≥ 4 + 2i− t ≥ 4 + 2q − t ≥ 4 + 2q − 2t = 4 + 2(q − t)

and q − t ≥ 1, then Cm is a cycle which fulfills the hypotheses as in the
statement but with less nodes than Cn. This contradicts the minimality of
Cn.

• Consider a chord connecting two nodes in {v1, v2 . . . , vq+1}. This case is
symmetric to the previous one.

• Chord (v0, vq+1) does not exist by definition of chord distance.

Then, every chord (x, y) of Cn is such that x ∈ {v1, v2, . . . , vq} (by definition of
chord distance) and y ∈ {u1, u2, . . . , up}.
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Now, we show some lower bounds for p, q and i. By hypotheses, it follows that
n = p + q + 2 ≥ 4 + 2i and q ≤ i, and hence:

p ≥ 2i + 2− q ≥ 2i + 2− i = i + 2.

Paths (v0, v1, . . . , vq+1) and (v0, u1, u2 . . . , up, vq+1) can be used to get a lower
bound for the stretch number sG(v0, vq+1) (the concept of stretch number is re-
called after Definition 3.3):

sG(v0, vq+1) ≥ p + 1

q + 1
. (5)

Moreover, since G ∈ DH(3
2
, ∗), the following upper bound holds:

sG(v0, vq+1) ≤ 3

2
. (6)

And, by using q ≤ i and p ≥ i + 2:

p + 1

q + 1
≥ i + 3

i + 1
= 1 +

2

i + 1
. (7)

Hence, by combining Eqs. 5, 6 and 7, we get:

• 1 + 2
i+1

≤ 3
2
. This inequality can be rewritten as i ≥ 3;

• by using p ≥ i + 2 and i ≥ 3 we get p ≥ 5;

• p+1
q+1

≤ 3
2
. This inequality can be rewritten as q ≥ 2p−1

3
. By using p ≥ 5 we

obtain the requested lower bound q ≥ 3.

Now we introduce some notation about chords. For 1 ≤ j ≤ q, we denote by vlj

and vrj
the nodes incident to the leftmost and rightmost chord of vj, respectively.

Formally,

lj = min{j′ | 1 ≤ j′ ≤ p and (vj, uj′) is a chord of Cn},

rj = max{j′ | 1 ≤ j′ ≤ p and (vj, uj′) is a chord of Cn}.
We assume lj and rj undefined when vj is not incident to a chord of Cn. By
definition of chord distance, l1, r1, lq, and rq are defined.

Now we provide a formula to compute lj and rj. Assuming lj defined for some
j such that 1 < j ≤ q, let Cn′ and Cn′′ be the subgraphs of Cn induced by
the nodes v0, v1, v2, . . . , vj, ulj , ulj−1, . . . , u1 and vj, vj+1, . . . , vq+1, up, up−1, . . . , ulj ,
respectively. Informally, Cn′ and Cn′′ are the cycles obtained by “cutting” Cn by
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means of chord (vj, ulj). Since cycle Cn′ has n′ = lj + j + 1 nodes, then cycle Cn′′

has

n′′ = n− n′ + 2

≥ 4 + 2i− (lj + j + 1) + 2

= 2i + 5− lj − j

nodes. Moreover, it can be observed that cd(Cn′) ≤ j−1 and cd(Cn′′) ≤ q−j+1.
We now assume n′ < 4+2(j−1), otherwise n′ ≥ 4+2(j−1) and cd(Cn′) ≤ j−1

imply that Cn′ represent a contradiction to the minimality of Cn. By symmetry,
we assume n′′ < 4 + 2(q − j + 1). Inequality n′ < 4 + 2(j − 1) can be rewritten
as lj + j + 1 < 4 + 2(j − 1), from which lj < j + 1 and hence lj ≤ j follows.
Similarly, from n′′ ≥ 2i + 5− lj − j and n′′ < 4 + 2(q − j + 1) we get:

2i + 5− lj − j < 4 + 2(q − j + 1),

lj > 2(i− q) + j − 1,

lj ≥ 2(i− q) + j.

Relations lj ≤ j and lj ≥ 2(i− q) + j imply the following equation:

lj = j, 1 < j ≤ q. (8)

Symmetrically,
rq−j = p− j, 1 ≤ j < q. (9)

Now we show that v2 is incident to a chord of Cn. In fact, if v2 is not in-
cident to a chord, let k = min{j > 2 | lj is defined}. Since lq is defined,
then 3 ≤ k ≤ q. Now, let Cn′′′ be the subgraphs of Cn induced by the nodes
v0, v1, . . . , vk, ulk , ulk−1, . . . , u1. Since lk = k and k ≥ 3, then cycle Cn′′′ has
n′′′ = 2k + 1 ≥ 7 nodes and chord distance equal to 1 (in Cn′′′ , only v1 may be
incident to chords). Since s(Cn′′′) > 3

2
, this contradicts Cn ∈ DH(3

2
, ∗).

As a consequence, l2 must be defined and, according to Eq. 8, l2 = 2. Chord
(v2, u2) contributes to form the cycle C ′

5 = (u2, u1, v0, v1, v2) having chord distance
at most 1 (see Figure 7).

Symmetrically, the same arguments can be used to show that rq−1 is defined
and, according to Eq. 9, rq−1 = p − 1. Hence, chord (vq−1, urq−1) contributes
to form the cycle C ′′

5 = (vq−1, vq, vq+1, up, up−1) having chord distance at most 1
(possibly, with chords incident to vq).

Now, cycles C ′
5 and C ′′

5 along with path (v2, v3, . . . , vq−1) form the requested
clepsydra. Notice that, since q ≥ 3, path (v2, v3, . . . , vq−1) may consists of a
single node (namely, v2). In this case cycles C ′

5 and C ′′
5 share v2 and they form a

clepsydra of order 1.
To conclude the proof we have to show that the constructed clepsydra is in-

deed an induced subgraph, that is, we have to show that nodes in C ′
5, C ′′

5 , and
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v2, v3, . . . , vq−1 do not induce additional edges except those forming the clepsydra.
Remember that, according to definition of chord distance, if such an additional
edge exists, then it is incident to a node in {v1, v2, . . . , vq}. For sake of conve-
nience, let us denote by X the set containing nodes in C ′

5, C ′′
5 , and v3, v4, . . . , vq−2.

Nodes v1, v2, . . . , vq are analyzed by cases:

• Nodes v3, v4, . . . , vq−2.

Assume that a node vk, 3 ≤ k ≤ q − 2 is incident to a chord of Cn. In
this case, by applying Eqs. 8 and 9 we get lk = k and rk = rq−(q−k) =
p− (q − k) = p− q + k. Since 3 ≤ k ≤ q − 2, then lk ≥ 3 and rk ≤ p− 2.
By analyzing indexes of nodes in cycles C ′

5 and C ′′
5 , it follows that chords

of vk cannot be incident to nodes in X \ {vk}.
• Node v2 (symmetrically, node vq−1).

We already know that v2 is incident to a chord; Eqs. 8 and 9 imply l2 = 2
and r2 = p− q + 2.

Now, if q = 3, then cycles C ′
4 and C ′′

5 share node v2. Since l2 = 2 and
r2 = p − 1, the leftmost and the rightmost chord of v2 contribute to form
the cycles C ′

5 and C ′′
5 , respectively, while the other chords of v2 (if any)

cannot be incident to nodes in X \ {v2}.
If q ≥ 4, then l2 = 2 and r2 = p − q + 2 < p − 1; the leftmost chord of
v2 contributes to form the cycle C ′

5, while the other chords of v2 (if any)
cannot be incident to nodes in X \ {v2}.

• Node v1 (symmetrically, node vq).

If v1 is incident to a chord of Cn, then, by Eq. 9, r1 = p − q + 1. Since
q ≥ 3, then r1 = p − q + 1 < p − 1. This implies that chords from v1 to
other nodes of X (if any) may be incident to u1 or to u2 only.

This concludes the proof. 2

In [8], the authors provided the following characterization for graphs in DH(3
2
, ∗):

Theorem 6.5 [8] Let G be a graph. G ∈ DH(3
2
, ∗) if and only if the following

graphs are not induced subgraphs of G:

1. Hn, for each n ≥ 6;

2. cycles C6 with cd(C6) = 1;

3. cycles C7 with cd(C7) = 1;

4. cycles C8 with cd(C8) = 1 or cd(C8) = 2.
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By Lemma 6.4, characterizations provided by Theorem 6.5 and Lemma 6.2 pro-
duce the following corollary. This result states that every graph in DH(3

2
, ∗) either

belongs to DH(1, +) or contains a clepsydra as induced subgraph.

Theorem 6.6 Let G be a graph. G ∈ DH(1, +) if and only if the following
graphs are not induced subgraphs of G:

1. Hn, for each n ≥ 6;

2. cycles C6 with cd(C6) = 1;

3. cycles C7 with cd(C7) = 1;

4. cycles C8 with cd(C8) = 1 or cd(C8) = 2;

5. clepsydrae.

Proof. =⇒: Holes Hn, n ≥ 6, have dilation number at least 2. Cycles with
6, 7, or 8 nodes and chord distance 1 have dilation number equal to 2, 3, and
4, respectively. Cycles with 8 nodes and chord distance 2 have dilation number
equal to 2. Finally, clepsydrae have dilation number equal to 2.

⇐=: By Theorem 6.5, G ∈ DH(3
2
, ∗). Moreover, since G does not contain

clepsydrae, Lemma 6.4 implies that G does not contain a cycle Cn, n ≥ 4 + 2i
and i ≥ 1, having chord distance cd(Cn) ≤ i. Trivially, G does not contain a
cycle C2i+4, i ≥ 2, having chord distance cd(C2i+4) = i. Since G is an induced
subgraph of G∗, Lemma 6.2 implies that G ∈ DH(1, +). 2

7 Recognition problem for DH(1, +)

Theorem 6.6 provides a basis to device a polynomial time algorithm for the
recognition of graphs in DH(1, +). By Lemma 3.6, we know that DH(1, +) ⊂
DH(3

2
, ∗); moreover, comparing the characterization of (3

2
, ∗)–distance-hereditary

graphs and (1, +)–distance-hereditary graphs provided by Theorems 6.5 and 6.6,
respectively, it follows that a graph G belongs to DH(1, +) if and only if it belongs
to DH(3

2
, ∗) and does not contain a clepsydra as induced subgraph. In [9], it is

shown that the recognition problem for graphs in DH(3
2
, ∗) can be solved in

polynomial time; as a consequence, for our purposes it is sufficient to devise a
polynomial time algorithm to check whether G contains a clepsydra cl(k), k ≥ 1,
as induced subgraph.

Checking whether G contains a clepsydra cl(k), k ≤ 2, can be performed by
analyzing every induced subgraph with 9 (case cl(1)) or 10 (case cl(2)) nodes.
Algorithm 7.1 checks whether G contains a clepsydra cl(k), k > 2.
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Algorithm 7.1 Looking for a clepsydra cl(k), k > 2, in a graph G.

Require: A graph G
Ensure: YES, iff a cl(k), k > 2, exists as induced subgraph of G
1: for all A ≡ C ′

5, B ≡ C ′′
5 distinct induced subgraphs of G do

2: if cd(A) ≤ 1, cd(B) ≤ 1, and 〈A ∪B〉 is not connected then
3: for all x ∈ A, y ∈ B such that degA(x) = degB(y) = 2 do
4: Gxy := G− {N [(A− x) ∪ (B − y)] \ {x, y}}
5: if x and y are connected in Gxy then
6: return YES
7: end if
8: end for
9: end if

10: end for
11: return NO

Algorithm 7.1 considers all the possible pairs of distinct cycles A and B with
5 nodes that are induced subgraphs of G. If A∪B induces a connected subgraph
S, then either S is not a clepsydra or S is a clepsydra cl(k) with k ≤ 2.

If cd(A) ≤ 1, cd(B) ≤ 1, and S is not connected (Line 2), then A and B
could belong to a clepsydra. To check this, the algorithm properly selects two
nodes x and y, each one in a different cycle (Line 3), and it tries to find a path
P connecting them. P is looked for in the subgraph Gxy obtained by removing
from G all the nodes in A ∪ B and their neighbors but x and y. Then, if x and
y remain connected in Gxy, this means that the searched path P exists.

Since it can be easily observed that Algorithm 7.1 works in polynomial time,
then we can state the following theorem:

Theorem 7.1 The recognition problem for the class DH(1, +) can be solved in
polynomial time.

Notice that the previous result has only a theoretical value, since the provided
algorithm is not efficient. In fact, it is enough to observe that the cycle at Line
1 is executed O(n10) times.

8 Conclusions and open problems

In this paper we have introduced, characterized, and provided algorithmic re-
sults for (k, +)–distance-hereditary graphs, a parametric extension of the class
of distance-hereditary graphs. These graphs can model communication networks
having desirable connectivity properties. In spite of the results provided in this
work, many interesting problems are left open:
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1. The recognition problem can be solved in linear time for DH(0, +) [2, 19], in
polynomial time for DH(1, +) (Theorem 7.1), and it is Co-NP-complete for
the generic case (Corollary 5.3). What is the computational complexity of
the recognition problem for k > 1, k fixed? If such a problem is hard, what
is the largest constant k such that the recognition problem for DH(k, +)
can be solved in polynomial time?

2. Can characterization of graphs in DH(1, +) provided by Theorem 6.6 be
extended to other classes DH(k, +), k > 1?

3. In [7], optimal compact routing schemes are defined for graphs in DH(0, +).
Is it possible to define compact routing schemes (or other kinds of routing
schemes) for networks based on graphs in DH(k, +), k > 0?

4. Several combinatorial problems are solvable in polynomial time for
DH(0, +). Can some of these results be extended to DH(k, +), k > 0?

During the revision process of this paper we were informed about two related
papers. Paper [1] independently studies and characterizes DH(1, +); its main
result is a statement which is equivalent to Theorem 6.6. Paper [22], starting
from the preliminary version of this work [5], extends results provided by Theo-
rems 6.6 and 7.1 to the case k = 2. Hence, paper [22] provides partial answers to
questions 1 and 2 above.

A more challenging problem is to study the (s, d)–distance-hereditary graphs,
i.e, graphs obtained by composing the notions of (s, ∗)–distance-hereditary and
(d, +)–distance-hereditary graphs. These graphs form the class DH(s, d), and can
be formally defined as follows: Let s ≥ 1 and d ≥ 0 be a rational and a natural
number, respectively. A graph G is a (s, d)–distance-hereditary graph if, for each
connected induced subgraph G′ of G:

dG′(x, y) ≤ s · dG(x, y) + d, for each x, y ∈ G′.

Acknowledgments We thank the anonymous referees for their careful reading
and many useful detailed comments which lead to a number of improvements to
the presentation of the paper.
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