The Primary Structure of Rabbit Liver Mitochondrial Serine Hydroxymethyltransferase*

(Received for publication, October 26, 1988)

Filippo Martini‡, Bruno Maras‡, Paola Tanci‡, Sebastiana Angelaccio‡, Stefano Pascarella‡, Donatella Barra‡, Francesco Bossa‡, and Verne Schirch§¶

From the ‡Dipartimento di Scienze Biochimiche and Centro di Biologia Molecolare del Consiglio Nazionale delle Richerche, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy and the \$Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298

The complete amino acid sequence of mitochondrial serine hydroxymethyltransferase from rabbit liver was determined. The sequence was obtained from analysis of peptides isolated from chymotryptic, cyanogen bromide, and limited acid cleavages of the protein. The enzyme consists of four identical subunits, each of 475 residues, i.e. 8 residues shorter than the subunit of the corresponding cytosolic isoenzyme. The sequences of the two rabbit proteins are easily aligned, provided a gap of 5 residues near the amino terminus and a gap of 3 residues near the carboxyl terminus are included in the mitochondrial sequence. The overall degree of identity between the two isoenzymes is 61.9%, whereas the structural identity of each eukaryotic isoenzyme with the corresponding Escherichia coli enzyme is about 40%. The rabbit isoenzymes are about 70 residues longer than the E. coli enzyme, with one-half of these residues accounted for by insertions in both isoenzymes near their carboxyl terminus. Predictions of secondary structure and calculations of hydropathy profiles are also presented, suggesting an even more extensive degree of identity in the threedimensional folding of the three proteins, in accord with the known similarity of their catalytic properties. Evidence was obtained for the existence of additional molecular forms of the mitochondrial protein, differing in the absence of some amino acid residues at the amino terminus of the polypeptide chain.

Serine hydroxymethyltransferase is a pyridoxal phosphatecontaining enzyme that catalyzes the conversion of serine and tetrahydrofolate to glycine and 5,10-methylenetetrahydrofolate. It is a key enzyme in the biosynthesis of purines, lipids, hormones, and several other cell components. The enzyme is present in prokaryotic organisms, plants, and eukaryotic cells. Eukaryotic cells have been shown to contain both cytosolic and mitochondrial forms of the enzyme (1).

To whom correspondence and reprint requests should be addressed. Both the cytosolic and mitochondrial isoenzymes from rabbit liver have been purified to homogeneity and compared with respect to reaction and substrate specificity (2–8). A study of cysteine-containing peptides from tryptic digests shows clearly that these two isoenzymes have different primary structures (5–7). Both isoenzymes catalyze the cleavage of many different 3-hydroxyamino acids, and several reactions characteristic of other pyridoxal phosphate-containing enzymes, *i.e.* decarboxylation, transamination, and racemization (8–10). Each isoenzyme is a tetramer of identical subunits, and both have isoelectric points near 7.2 (2).

Recently, the complete amino acid sequence of the cytosolic isoenzyme was determined (4). The primary structure of the corresponding *Escherichia coli* enzyme was deduced from the sequence of the *glyA* gene (11). Studies comparing the two eukaryotic isoenzymes and the *E. coli* enzyme suggest that all three enzymes have the same mechanism of action (8, 12).

The purpose of this paper is to present the complete primary structure of the mitochondrial isoenzyme from rabbit liver and to compare this sequence with those of the corresponding cytosolic and bacterial proteins, as a basis for establishing structure-function relationships in this system.

EXPERIMENTAL PROCEDURES AND RESULTS^{1,2}

DISCUSSION

The complete amino acid sequence of rabbit liver mitochondrial serine hydroxymethyltransferase is reported in Fig. 1. The enzyme subunit has 475 amino acid residues, yielding a molecular weight of 52,647, which is in good agreement with the previously reported value determined from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (3). Moreover, there is good agreement between the amino acid composition determined from acid hydrolysis of the protein and that deduced from sequence data (Table I).

The sequence was deduced following the isolation and the identification of an almost complete set of chymotryptic peptides which were first tentatively aligned with the sequence of the cytosolic enzyme on the basis of homology considerations and subsequently definitively ordered with the help of

^{*} This work was supported in part by grants from Ministero Pubblica Istruzione and Consiglio Nazionale delle Ricerche (Grant 87.00056.04 (to F. B.)) and by Grant GM 28143 from the National Institutes of Health (to V. S.). Part of this work will be submitted in partial fulfillment of the requirements of the degree of Ph.D. at the Università La Sapienza, Roma (by S. P.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

¹ Portions of this paper (including "Experimental Procedures," "Results," Tables II-XX, and Figs. 3-5) are presented in miniprint at the end of this paper. Miniprint is easily read with the aid of a standard magnifying glass. Full size photocopies are included in the microfilm edition of the Journal that is available from Waverly Press.

² The abbreviations used are: CmCys, S-carboxymethylcysteine; Hse, homoserine; Hsl, homoserine lactone; hplc, high performance liquid chromatography.

FIG. 1. Complete amino acid sequence of mitochondrial serine hydroxymethyltransferase from rabbit liver. —, extent of the various fragments used to reconstruct the sequence; – –, sequence inferred from amino acid compositions. C, chymotryptic peptides; B, cyanogen bromide peptides; P, limited acid hydrolysis peptides.

overlapping peptides produced from cyanogen bromide and partial acid cleavages.

Peptide purification was performed by gel filtration followed by high performance liquid chromatography on macroporous reverse phase columns. Most of the small and medium size peptides were analyzed by dansyl-Edman degradation, while for the larger peptides a gas-phase automated Sequencer was used. The latter type of analysis, by allowing quantitative evaluation of the progress of Edman degradation, was also essential for collecting sequence information from fragments, such as those generated after partial acid cleavage, which were not obtained in pure form. For identification of the carboxylterminal peptide, a selective procedure was applied (13).

Sequence analysis of both the entire protein and aminoterminal peptides showed that the enzyme preparation is heterogeneous, containing forms with both an amino-terminal Lys and Ala. The sequencing results suggest that the longest enzyme form contains an amino-terminal Lys and accounts for about 60% of the protein. Another 30% of the protein is missing the amino-terminal Lys, and 10% is missing the amino-terminal Lys-Ala (Figs. 1 and 2). Such microheterogeneity, not found in the cytosolic isoenzyme, which has the amino-terminal alanine acetylated, has also been observed in the case of another pyridoxal-P-dependent mitochondrial enzyme, ornithine aminotransferase from rat liver (14). This phenomenon may be an indirect demonstration that mitochondrial serine hydroxymethyltransferase is a protein coded by the nuclear genome that, simultaneously to or after translocation into the mitochondrion, undergoes a post-translational proteolytic process to remove a leader peptide (15). However, it may also be due to proteolytic processing during purification.

The amino acid sequence of rabbit liver mitochondrial serine hydroxymethyltransferase is compared in Fig. 2 with both that of the corresponding cytosolic isoenzyme and that of the protein coded by the glyA gene of E. coli (4, 11). In order to optimize the alignment, it was necessary to insert a number of gaps into the sequences. These gaps account in part for the larger size of the mammalian proteins (483 and 475 residues for the cytosolic and mitochondrial isoenzymes, respectively) compared to the bacterial protein (417 residues). The extra residues of the cytosolic enzyme with respect to the

TABLE I

Amino acid composition of mitochondrial serine hydroxymethyltransferase from rabbit liver

Acid hydrolyses were performed on unmodified serine hydroxymethyltransferase for 24, 48, and 82 h. The values of threonine and serine were obtained by extrapolation to zero time of hydrolysis. Values of valine and isoleucine were from 82-h hydrolysates.

Amino acid	Amino acid analysis	Sequence	
	residues/	subunit	
Aspartic acid	42.6	42^a	
Threonine	25.4	26	
Serine	25.6	26	
Glutamic acid	49.3	48^{b}	
Proline	25.8	25	
Glycine	36.2	36	
Alanine	49.3	50	
Half-cystine	6.5°	7	
Valine	28.3	28	
Methionine	8.2	9	
Isoleucine	17.8	18	
Leucine	51.8	52	
Tyrosine	13.3	15	
Phenylalanine	18.9	19	
Histidine	9.9	11	
Lysine	21.8	21	
Arginine	38.4	39	
Tryptophan	ND^d	3	

^a 29 aspartic acid and 13 asparagine residues.

^b 28 glutamic acid and 20 glutamine residues.

^c Determined as cysteic acid after performic acid oxidation.

^d ND, not determined.

mitochondrial one appear to be mainly clustered at the aminoand carboxyl-terminal extremities of the chain, where the two eukaryotic proteins also show major structural differences with the *E. coli* enzyme. Fig. 2 shows the positions which are occupied by either the same residues in the three proteins (a total of 169 positions, *i.e.* 34.3% identity) or only in the two eukaryotic isoenzymes (299 residues, 61.9% identity). Also, the residues which are found selectively conserved between the bacterial and either the cytosolic or the mitochondrial enzyme are marked. It is interesting to note that more residues are selectively conserved in the bacterial and cytosolic proteins than in the bacterial and mitochondrial pair (37 and 25 residues, respectively).

The distribution of conserved and substituted regions is clearly not uniform throughout the three molecules. For example, the 10-residue long sequence encompassing the lysyl residue which binds pyridoxal-P (Lys-256) represents a more extended tract of structure identical for the three serine hydroxymethyltransferases. On the other hand, the aminoand carboxyl-terminal extremities are the protein regions which exhibit a lower degree of identity. For both the mitochondrial and cytosolic isoenzymes, about 70% of their increased length, with respect to the E. coli enzyme, is the result of large insertions at their amino and carboxyl terminus. One insertion begins at residue 20 and the other at residue 412 (Fig. 2). Even though both the rabbit isoenzymes have larger inserts at these locations, there is little homology between these inserts in the two isoenzymes. For both isoenzymes, these two large inserts are hydrophilic, suggesting they are on

FIG. 2. Comparison of the amino acid sequence of E. coli serine hydroxymethyltransferase with those of the corresponding cytosolic and mitochondrial isoenzymes from rabbit liver. Gaps (----) in the sequences have been introduced to maximize the homology. Boxes indicate positions at which residues are identical. Residues selectively conserved between the bacterial and either the cytosolic or the mitochondrial enzyme are marked with * or \cdot , respectively. Numbering refers to the cytosolic isoenzyme.

the surface of the protein. For the cytosolic isoenzyme, we have previously shown that digestion with trypsin results in 35 residues being lost from the amino-terminal portion of the protein with a concomitant 2-fold increase in $k_{\rm cat}$ (16). The peptide being lost includes essentially all of the insert at the amino terminus. Although similar experiments with the mitochondrial and *E. coli* enzymes do not show this loss of amino-terminal residues and increase in activity when incubated with trypsin, the results with the cytosolic enzyme suggest that this portion of the molecule is exposed to solvent and does not play a significant role in the catalytic function of the enzyme.

If the two large inserts in the cytosolic and mitochondrial isoenzymes have a function, it is not for increased catalytic efficiency, since the *E. coli* enzyme has the largest k_{cat}/K_m value for the three enzymes (12). Other possible functions for the two inserted regions could be either to generate an allosteric site or to generate a site which interacts with some other cellular component. However, presently no allosteric effectors have been found for either the cytosolic or mitochondrial isoenzymes. Also, no evidence is currently available that either isoenzyme interacts with other proteins or membranes in the cell. The mitochondrial enzyme is transported from the cytosol to the matrix of the mitochondria, and it is possible that its inserted regions play some role in this process.

The overall degree of identity between the cytosolic and mitochondrial isoenzymes (61.9%) is significantly higher than that found for another pair of pyridoxal-P isoenzymes, *i.e.* the cytosolic and mitochondrial aspartate aminotransferases from pig heart, where the degree of identity is 47.3% (17). Moreover, comparison of the cytosolic and mitochondrial serine hydroxymethyltransferase isoenzymes with the corresponding E. coli enzyme shows a degree of identity of 41.8% and 40.1%, respectively. Similar values are found when comparing the two eukaryotic aspartate aminotransferase isoenzymes with the corresponding prokaryotic enzyme (39.1% for the cytosolic enzyme and 40.4% for the mitochondrial enzyme). We have also demonstrated the residues which are conserved in all three forms of both serine hydroxymethyltransferase and aspartate aminotransferase. If one excludes the insertions in the eukaryotic forms of these enzymes, the extent of identity among the three serine hydroxymethyltransferases is 41.5%, while for the three aspartate aminotransferases the identity is only 30.3%. The greater retention of residues in serine hydroxymethyltransferase suggests more extensive requirements for conservation of catalytically and/or conformationally relevant residues.

Similarity of the three-dimensional folding of the three proteins is suggested by the conservation of glycyl and prolyl residues. Out of the 44 glycyl and 23 prolyl residues present in the cytosolic enzyme, 23 and 11, respectively, occupy the same position in the mitochondrial and *E. coli* proteins. Prediction of secondary structure shows (Fig. 4) that the three enzymes are 44.7% identical by this criterion. Furthermore, the calculated hydrophilicity profile of the inserted segments (Fig. 5) is compatible with their location on the surface of the protein molecule, suggesting that the inserted segments should cause no large deviation from a catalytically competent

three-dimensional folding. Thus, the common origin of the three enzymes is supported not only by the primary structures, but also by the predicted secondary structures.

General relationships based on primary structures of various eukaryotic isoenzymes and their prokaryotic counterparts have been recently reviewed by McAlister-Henn (19). The case of the serine hydroxymethyltransferase system is similar to that of citrate synthase (20), where the mitochondrial isoenzyme is also much more closely related to the cytoplasmic isoenzyme than to the *E. coli* enzyme.

REFERENCES

- 1. Schirch, L. (1982) Adv. Enzymol. Relat. Areas Mol. Biol. 53, 83-112
- 2. Schirch, L. (1975) J. Biol. Chem. 250, 1939-1945
- Schirch, L., and Peterson, D. (1980) J. Biol. Chem. 255, 7801– 7806
- Martini, F., Angelaccio, S., Pascarella, S., Barra, D., Bossa, F., and Schirch, V. (1987) J. Biol. Chem. 262, 5499-5509
- Schirch, L., Slagel, S., Barra, D., Martini, F., and Bossa, F. (1980) J. Biol. Chem. 255, 2986–2989
- Gavilanes, F., Peterson, D., and Schirch, L. (1982) J. Biol. Chem. 257, 11431–11436
- Gavilanes, F., Peterson, D., Bullis, B., and Schirch, L. (1983) J. Biol. Chem. 258, 13155-13159
- 8. Shostak, K., and Schirch, V. (1988) Biochemistry 27, 8007-8014
- Palekar, A. G., Tate, S. S., and Meister, A. (1973) J. Biol. Chem. 248, 1158-1167
 Chem. Diff. 101 (2004) J. Diff. 101 (2004) 2020 (2004)
- Schirch, L., and Jenkins, W. T. (1964) J. Biol. Chem. 238, 3801– 3807
- Plamann, M., Stauffer, L., Urbanowski, M., and Stauffer, G. (1983) Nucleic Acids Res. 11, 2065-2075
- Schirch, V., Hopkins, S., Villar, E., and Angelaccio, S. (1985) J. Bacteriol. 163, 1-7
- Barra, D., Martini, F., Angelaccio, S., Pascarella, S., Bossa, F., and Schirch, L. (1987) in *Proteins, Structure and Function* (L'Italien, J. J., ed) pp. 765-770, Plenum Publishing Corp., New York
- Simmaco, M., Edwards, W. D., Barra, D., Bossa, F., and John, R. A. (1988) J. Protein Chem. 7, 287-288
- 15. Schatz, G. (1987) Eur. J. Biochem. 165, 1-6
- Schirch, V., Schirch, D., Martini, F., and Bossa, F. (1986) Eur. J. Biochem. 161, 45-49
- Doonan, S., Martini, F., Angelaccio, S., Pascarella, S., Barra, D., and Bossa, F. (1986) J. Mol. Evol. 23, 328-335
- Kondo, K., Wakabayashi, S., Yagi, T., and Kagamiyama, H. (1984) Biochem. Biophys. Res. Commun. 122, 62-67
- 19. McAlister-Henn, L. (1988) Trends Biochem. Sci. 13, 178-181
- Rosenkrantz, M., Alam, T., Kim, K. S., Clark, B. J., Srere, P. A., and Guarente, L. P. (1986) Mol. Cell Biol. 6, 4509–4515
- Barra, D., Schininà, M. E., Simmaco, M., Bannister, J. V., Bannister, W. H., Rotilio, G., and Bossa, F. (1984) J. Biol. Chem. 259, 12595-12601
- Bossa, F., Barra, D., Martini, F., Schirch, L. V., and Fasella, P. (1976) Eur. J. Biochem. 70, 397-401
- 23. Landon, M. (1977) Methods Enzymol. 47, 145-149
- 24. Giglio, J. R. (1977) Anal. Biochem. 82, 262-264
- Simmaco, M., Barra, D., and Bossa, F. (1985) J. Chromatogr. 349, 99-103
- Hargrave, P. A., and Wold, F. (1973) Int. J. Peptide Protein Res. 5, 85–89
- Garnier, J., Osguthorpe, D. J., and Robson, B. (1978) J. Mol. Biol. 120, 97-120
- 28. Kyte, J., and Doolittle, R. F. (1982) J. Mol. Biol. 157, 105-132
- 29. Pascarella, S., and Bossa, F. (1987) CABIOS 3, 325-331
- Margolies, M. N., Brauer, A. W., Kwong, R. F., and Matsueda, G. R. (1987) in *Proteins, Structure and Function* (L'Italien, J. J., ed) pp. 333-341, Plenum Publishing Corp., New York

SUPPLEMENTAL MATERIAL TO: THE PRIMARY STRUCTURE OF RABBIT LIVER MITOCHONDRIAL SERINE HYDROXYMETHYLTRANSFERASE

FILIPPO MARTINI, BRUNO NARAS, PAOLA TANCI, SEBASTIANA ANGELACCIO. STEFANO PASCARELLA, DONATELLA BARRA, FRANCESCO BOSSA AND VERNE SCHIRCH

EXPERIMENTAL PROCEDURES

<u>Materials</u>. Mitochondrial serine nydroxymethyltransferase was isolated from rabbit liver according to the method of Schirch and Peterson (3). Trypsin (code TRTPCX), chymotrypsin (code CDI), carboxypeptidase B (COBPKS) were from Morthington Biochemical Co.; carboxypeptidase Y from Boehringer GmbH; <u>Staphylococcus aureus</u> VB protease from Miles. Iodo (2-14 Colocetae was from Radiochemical Centre, Amersham, and guanidine-HCI (from Carlo Erba) was recrystallized from methanol. Cyanogen bronide, glycinamide and 1-ethyl-3-(3-dimethylaminopropyllcarbodismide were from Fluks. The liquid chromatography solvents, hplc grade, were from Carlo Erba.

<u>S-carboxymethylation of the protein</u>. Alkylation with iodo $(2-^{14}C)$ acetate, was performed as previously described (21).

<u>Crymatic and chemical cleavages</u>. A sample (50 mg) of enzyme reduced with sodium borohydride (22) and then 5-carboxymethylated was suspended in 5 ml of 0.1 M ammonium bicarbonate and incubated at 37° C for 2.0 h after addition of 1 mg of chymotrypsin. The cleavage reaction was stopped by addition of glacial acetic acid to 105 final concentration. A second sample of 60 mg of 5-carboxymethylated protein was dissolved in 2 ml of 702 (v/v) formic acid and incubated with 100 mg of CNBr for 20 h at room temperature in the dark. A last sample (140 mg) of alkylated protein was incubated with 5 ml of 701 formic acid plus 8 M urea for 72 h at 37° C in order to cleave the Asp-Pro bonds (23). Digestion of the largest peptide fractions was performed with trypsin, chymotrypsin or <u>5. aureus</u> protease at an E/S ratio 1/30 for 3 h at 37° C in 0.1 M ammonium bicarbonie. To better solubilize the substrates to be digested, urea or acetonitrile were added to a final concentration of 1-2 M or 10-20% (v/v), respectively.

Substates to be digested, die an account of account of account ation of 1-2 di (v/v) respectively. Peptide purification . The chymotryptic peptides, dissolved in 10% (v/v) acetic acid, were first fractionated by gel-filtration on a Sephadex 6-25 superfine column (2.3 x 120 cm) in 10% acetic acid. The various fractions collected after Sephadex 6-25 chromatography were further purified using a Beckman model 332 high performatography were further purified using a Beckman model 332 high performatography were further purified using a Beckman model 332 high performatography were further purified using a Beckman model 332 high performance liquid chromatography system (hplc), on mecroporous reverse-phase columns (Aquapore RP-300, 4.6 or 7.0 x 250 mm, 10 um, Brownlee Labs) eluted with gradients from 0% to 70% acetonitrile in 0.2% (v/v) trifluoroacetic acid, at a flow rate of 1.0 or 3.0 ml/mm, Elution of the peptides was monitored on a Beckman 165 Spectrophotometer at 220 and 280 or 325 nm. The products of the secondary fragmentation procedures were purified by hole under similar conditions. Peptides obtained after CNBr or limited acid hydrolysis were first fractionated on a column (2.5 x 140 cm) of Sephadex 6-50 superfine (hymotrypsin or with <u>5.</u> aureus procease either directly or after further purification by hplc as described above. The digestion mixtures were generally purified by a two-step procedure, utilizing pre-fractionation by gel-filtration (Sephadex 6-25 superfine, 2.3 x 120 cm; 103 acetic acid) and final purification by reverse-phase hplc. In particular, the purification of the largest peptides from the limited acid hydrolysis was performed on an Altex column, (Ultrapore RPSC; 4.6 x 75 mm) at 1.0 ml/min flow rate. Analytical technidues . Amino acid analyses and sequence

<u>Analytical</u> techniques . Amino acid analyses and sequence determinations by manual dansyl-Edman procedure were performed as described in (15). Dansyl-Trp was identified after 5 h-hydrolysis at 10°C with 4 N methanesulfonic acid containing 0.23 J-(2-aminoethyl) indole, other conditions Deing identical to those described in (24). The amidation states of Giu and Asp were assigned by direct identification by hplc of the phenylthiohydantoin (PTH) derivatives released during dansyl-Edman sequence analysis. The same procedure was used for the 1dentification of the PTH-derivative of carboxymethyl-cysteine (25). In some cases, the position of carboxymethylcysteine inte sequence was confirmed by measuring the radioactivity of an aliquot of the ethyl acetate extracts after each cycle of degradation. The largest peptides were sequencer equipped with an Applied Biosystems model 120A PTH analyzer for the on-line detection of PTH-amino acids.

Isolation of the C-terminal peptide . A modified version [13] of the original procedure reported by Hargrave and Wold (26) was followed. An aliquot (25 mg) of carboxymethylated enzyme was dissolved in 2.5 ml of 8 M uree solution containing 1 M glycinamide and 0.1 M 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The reaction mixture was adjusted to and maintained at pH 4.75 for 3 h at room temperature. The protein was then extensively dialyzed against 1 mM acetic acid and lyophilized. The modified protein was suspended in 2.0 ml of 0.1 M amonium bicarbonate and first digested for 4 h at 37° with 2.5 mg of trypsin and then with 0.4 mg of carboxypeptidase B overnight. After repeated lyophilized ion, the trypsin-carboxypeptidase B digest was chromatographed on a column (2 x 25 cm) of QAE-Sephadex A-25 could be ylophilization and subjected to a final purification step by hplc under conditions described in the Peptide purification step in the section. step by section.

<u>Peptide</u> nomenclature. The peptides were numbered retrospectively according to their location in the sequence, starting from the N-terminus. Chymotryptic peptides were designated with a C, CNBT peptides with a B and limited acid cleavage peptides were designated starting from digestions of B or P peptides were designated to a source the second letter indicating the proteolytic enzyme used (T = trypsin, C = chymotrypsin, S = <u>S, aureus</u> protease) and numbered according to their position in the sequence, starting from the N-terminus.

<u>Structure predictions</u>. Secondary structures of the three proteins were predicted according to the method of Garnier et al. (27). The decision constants were set at -75 for alpha-helix, -87.5 for beta-sheet and the others to zero. The hydropathic profiles were calculated according to Kyte and Doolittle (28). The plots utilize a span setting of 7. In both cases calculations were performed by means of simple programs written in Applesoft Basic on an Apple ILE (29).

RESULTS

N-terminal sequence of the protein. The results obtained after automated Edmain degradation of a sample from a typical preparation of the protein are reported in Table 11. These data, and those from the analysis of pertinent peptides, are in accord with the presence in the protein preparations of various molecular species with the following N-terminal structures: Lys-Ala-Ala-Gin-Thr-Gin-Thr-Giy-Giu..... (503) Ala-Ala-Gin-Thr-Gin-Thr-Giy-Giu..... (305) Ala-Gin-Thr-Gin-Thr-Giy-Giu..... (105) Approximate proportions of the various species are indicated in brackets.

<u>C-terminal sequence of the protein</u>. Final hplc purification of the peptide fraction obtained after using the modified procedure of Kargrave and Wold (13) allowed the isolation of two basic peptides (Fig. 3). Analysis of one of these (peak 1) revealed the sequence: Leu-Phe-Arg-Pro-Arg. This is identical to the sequence of the polybeptide chain from position 186 to 190, suggesting that this peptide is not from the C-terminus. Automated Edman degradation of the second basic peptide (peak 2) gave the following structure: Ala-Phe-Pro-Met-Pro-City-Phe-Pro-Xax-His-GLY, FTH-Glycine, released at the 11th cycle of Edman degradation, originated from the glycinamide molety added in the course of the above described procedure, thus assignment to the E-terminus of the protein.

<u>Chymotryptic peptides</u>. Analytical data of the almost complete set of the chymotryptic peptides are summarized in Tables III-V.

<u>Cyanogen bromide peptides</u>. Analytical data on CNBr peptides are reported in Tables VI-VIII. Amino acid composition and sequence information on fragments obtained after digestion of some CNBr peptides with various proteolytic enzymes are reported in Tables 1X-XII.

Peptide B1 was sequenced by automated Edman degradation up to residue 7 (Table VIII). An aliquot was digested with trypsin and fragments TI and T2, corresponding to residues 2-12 and 13-27 respectively, were purified and analyzed (Tables IX and X). Sequence information on peptide B1 is summarized in Table VII.

Peptide 82 was sequenced by automated Edman degradation up to residue 58 (Table VIII). An aliquot was digested with trypsin and the fragments were purified and analyzed. For the sake of clarity, only analytical data on fragments 11, T2, and T3, corresponding to residues 54-74, 75-82, 94-131, are reported in Tables [X-X]. Sequence information on peptide 82 is summarized in Table VII.

Peptide 83 was sequenced by automated Edman degradation up to residue 151 (Table VIII). Peptide 83b was completely sequenced (same Table) thus allowing the complete reconstruction of peptide 83.

Peptides B4 and B5 were completely sequenced by automated Edman degradation (Table VII and VIII).

Peptide **86** was sequenced by automated Edman degradation up to residue 263 (Table YIII). An aliquot was digested with trypsin and fragments TI, T2, and T3, corresponding to residues 265-268, 269-273 and 286-311, were isolated and analyzed (Tables IX and X). Sequence information on peptide 86 is summarized in Table VII.

Peptide 87 was sequenced by manual dansyl-Edman degradation up to residue 331.

Peptide 88 was sequenced by automated Edman degradation up to residue 374 (Table VIII). An aliquot was digested with <u>S. aureus</u> protease and fragments SI. S2, S3, S4, S5, S6, and S7, corresponding to residues 339-366, 373-398, 399-409, 410-421, 422-428, 429-448, 449-455, respectively, were isolated and analyzed (Tables IX and XII). Another aliquot of 88 was digested with trypsin. The amino acid composition of peptide TI {position 441-452}, which was sequenced by manual dansyl-Edman degradation, is reported in Table IX. Sequence information on peptide 88 is summarized in Table VII.

Peptide B9 was completely sequenced by manual dansyl-Edman degradation.

degradation. Peptides resulting from limited acid hydrolysis. The experimental procedure described above was not to specific as to cleave only the Asp-Pro peptide bonds. In fact, we have observed good cleavage at the CmCys-Pro bend in position 383-384. Moreover, cleavages to a minor extent were observed at Asp-Val (150-151 and 243-244), Asp-Asn (349-350), Asp-Leu (356-357) and Asp-Gly (363-364) bonds. It must be noted that only the peptides required to get overlapping sequence data and/or to integrate the structural information obtained from the protein fragmentation pattern reported above, were analyzed. Due to the complexity of the mixture and to the large size of the peptides. In some cases it was not possible to obtain pure fractions. For this reason in Table XIII only the amino acid compositions of peptides. From sequence analysis, peptide 73 appeared to be contaminated by P7 and peptide P6 by P2. However, sequence data were obtained ing pure foreover, in the course of the automated Edman degradation of peptide P3, after the 9th cycle, the filter was treated with o-pathalaldehyde in offer to block primary amines, thus interrupting the sequencing of all the peptide molecules except P3, which has proline as N-terminus in that postion (30). Analytical data for limited acid cleavage peptides are reported in Tables XIII-XVIII. Analytical data for fragments obtained after digestion of some P peptides with various proteolytic enzymes are reported in Tables XIX and XX.

Peptide P1. Only a short version of peptide P1 from the N-terminus (3-24) was purified and sequenced up to residue 17 (Table XV).

Peptide P2 was sequenced by automated Edman degradation up to residue 46 (Table XV). An aliquot was digested with \underline{S}_{+} aureus protease and peptides S1, S2 and S3, corresponding to residues $58-69_{*}$, 70-81 and 86-96, were isolated and analyzed (Tables XIX and XX). Sequence information on peptide P2 is summarized in Tables XIV.

Peptide P3 was sequenced by automated Edman degradation up to residue 147 (Table XVI).

Peptide P4 was sequenced by automated Edman degradation up to residue 267 (Table XV). An aliquot was digested with chymotrypsin and the analytical data of fragment C1 (position 264-271) are reported in Tables XIV and XX. Sequence information on peptide P4 is summarized in Table XIV.

Peptide P5 was sequenced by automated Edman degradation up to residue 321 (Table XYII). An aliquot was digested with trypsin to isolate peptide II (position 331-339), which was necessary to provide the overlap between peptides B7 and 88. Analytical data on this peptide are reported in Tables XIX and XX. Sequence information on peptide P5 is summarized in Table XIV.

Peptide P6 was completely sequenced by automated Edman degradation (Table XV).

Peptide P7 was sequenced by automated Edman degradation up to residue 431 (Table XVIII). An aliquot was digested with <u>5. aureus</u> protease and the fragment 51, corresponding to residues 429-446, was isolated and analyzed (Table XIX and XX). Sequence information on peptide P7 is summarized in Table XIV.

Peptide P8 was sequenced by automated Edman degradation up to residue 474 (Table XV).

TABLE	III	

Amino Acid Composition of Chymotryptic Peptides The composition from sequence analysis of each peptide is indicated by the numbers in parentheses

Peptide Residue nos.	£) 15-28	C 2 29-31	СЗ 32-42	C 4 45-50	C 5 51-56	С 6 57-63	C 7 64-67	C 8 68-76	C 9 77-89	€ 10 90-95	C 11 96-105
CmCys Asp Thr	2.0(2)		0.9(1) 1.2(1)	1.0(1)	0.8(1)	1.0(1)	1.9(2)		1.0(1)	0.8(1)	1.9(2)
Ser Glu Pro	1.9(2) 3.1(3) 1.1(1)	1.0(1)	2.9(3)	1.0(1) 1.1(1)	1.2(1)	0.8(1) 1.2(1)		0.9(1) 1.1(1) 1.0(1)	3.0(3)	1.1(1)	2.1(2)
Gly Ala Val	1.2(1)		1.3(1)	1.1(1)	1.9(2)	1.0(1) 1.1(1)		2.1(2)	2.0(2) 1.1(1) 1.6(2)	1.1(1)	2.0(2)
Met Ile Leu Tyr	0.9(1) 1.1(1)	1,9(2)	0.9(1)	1.0(1)	1.0(1)	2.1(2)	0.9(1)	1.8(2)	0.9(1) 1.8(2) 0.9(1)	1.0(1)	1.0(1)
His Lys Arg Tro	+ (1)		1.0(1) 2.7(3)		1.0(1)		1.0(1)	1.0(1) 1.2(1)		2.0(2)	+ (1)
Viold V	68.3	15.6	2 1	14 2	3 5	18.1	59 9	37	10.1	12.0	25.0
N-termina residue	il Thr	G1x	Gln	Ile	CinCys	Glu	Asn	Ser	Tyr	CmCys	Gtu
Peptide Residue nos.	C 12 106-112	C 13 113-119	C 14 120-122	C 15 126-133	C 16 134-145	C 17 144-148	C 18 3 149-157	C 19 158-161	C 20 162-166	C 21 167-180	C 22 183-187
CmCys Asp Thr	1.0(1)	1.1(1)		1.1(1)	2.2(2) 1.0(1)	0.8(1)	1.1(1) } 1.0(1)			2.0(2) 1.0(1)	0.7(1)
Ser Glu Pro	1.1(1)	1.8(2) 1.0(1)		1.1(1) 1.1(1)	1.1(1)	1.1(1	1.5(2)	1.0(1)	1.0(1) 1.0(1) 0.8(1)	3.3(3) 1.1(1)	1.1(1)
Ala Val	1.9(2)	100)	2.0(2)		5.0(57		1.0(1) 1.4(2)		1 6/11		0.9(1)
Met Ile Lev		1.0(1)		0.9(1) 1.2(1)	2.8(3)	0.7(1	,	1.0(1)	1.0(1)	0.8(1) 3.0(3)	1.0(1)
Tyr Phe Hic	0.6(1)		0.8(1)	0.9(1)	2.0(2)	1.0(1) }	2.2(2)	0.7(1)	0.8(1)	1.0(1)
Lys Arg Tro				0.9(1)	2		, 1.1(1) 1.0(1)			1.0(1) 1.0(1)	
Yield %	20.3	20.1	6.4	33.1	53.3	2.9	3.5	1.5	5.0	13.6	8.2
N-termin residue	ai Gly	Ser	Ala	Leu	Gly	Thr	Ser	Ser	Glu	Lys	Thr
Peptide Residue nos.	C 23 188-199	C 24 200-205	C 25 5 206-21	5 C 18 219-	26 (229 23	C 27 D-239	C 28 240-253	C 28a 248-253	C 29 254-260	C 30 261-263	C 31 281-288
CmCys Asp The	0.8(1)	1.1(1	0.8()) 1.0()	1) 1) 1.0)(1)		1.0(1) 4.3(5)	2.5(3)			1.9(2) 1.1(1)
Ser Glu	0.8(1)		2.1(0.8	3(1) 1	.1(1)			0.8(1)		1.1(1)
Pro Glv	0.7(1)			1.1	1	.9(2)			2.1(2)		
Ala Val	2.3(2)	1.0(1) 1.7() 1.7()	2) 1.8 2)	3(2) 2 1	.1(2) .8(2)	1.0(1) 1.3(2)		1.0(1)		
Met 13e	3.4(2)	1.1(1)	0.8	3(1) 3(1) 0	.9(1)				0.9(1)	1.0(1)
Leu ⊺yr Phe	D.7(1) 1.3(T)	0.9(1 0.6(1))	3.	1 1	.1(1)	0.9(1)	1.0(1)	1.0(1)	1.1(1) 1.0(1)	2.0(2)
His Lys Arg Trn	2.2(2)	1.1(1	0.8(0.9() 1.7(1) 0.4 1) 2)	s(1) 1	.1(1)	1.6(2)	0.9(1)	2.1(2)		1.0(1)
Yield I	32.0	13.3	2.	0 10	0.0	15.1	3.3	3.4	20.5	4.8	60.D
N-termin residue	al Arg	Ala	A1	a i	.eu	Val	Lys	Thr	Arg	Ile	Thr

<u>Structure predictions</u>. Prediction of the secondary structure and the hydropathy profiles for <u>E. coli</u> and rabbit liver serine hydroxymethyltransferases are shown in Figs. 4 and 5, respectively. The three sequences were aligned according to Fig. 2. The predicted secondary structure identity among the three proteins is 36.9. The structural identity between either the mitochondrial or the cytosolic and the bacterial enzymes is 49.4% or 47.9%, respectively. In all secondary structure identity is 53.1%, in all cases, the predicted secondary structure identity. Is higher than the corresponding sequence identity. The predicted content in alpha-helix and extended conformation for the mitochondrial enzyme is 41.9% and 39.2%, respectively.

			TABLE []				
utomated Edr	nan Degrad	ation of	Native Se	rine Hydr	oxymethy1	transfera	56
(10		ald (nmal	,		
no.		r	10-00.11	era (pino)	'		
	Lys	Ala	Gln	Thr	Gly	Glu	
1	60	30	5	NQ	18	8	
2	17	87	13	NQ	14	12	
3	9	75	28	6	14	12	
4	10	30	46	NQ	17	12	
5	9	22	25	13	22	13	
6	9	20	36	6	17	16	
7	10	18	21	11	21	17	
8	10	17	18	7	34	17	
0	9	18	10	5	24	29	

N-terminal sequence of the protein: Lys-Ala-Ala-Gln-Thr-Gln-Thr-Gly-Glu...

TABLE III (continued)

Peptide	C 32	C 33	C 34	C 35	C 36	C 37	C 38	C 39 342-354	C 40 355-362	C 41 363-371
nos.	203 233	000 010								
			a a(1)							
cmCys			0.9(1)			1 0(1)	1.0(1)	2 0/2)	1.0(1)	0.0(1)
ASP Thu		1.0(1)	1.0(1)			1.0(1)	1.0(1)	0.0(2)	1.0(1)	0.3(17
inr For	0.0(1)		1.0(1)		0.9(1)			1.6(2)		
589 01.0	0.9(1)		1.0(1)	1.0(1)	1 1(1)		1.1(1)			1.1(1)
Pro	1 6(2)		0.9(1)	,	1				0.9(1)	
1.	1 8(2)		0.5(1)				1.0(1)	2.0(2)	1 2(1)	1.1(1)
41a	1 1 (1)	4 7(5)	1.1(1)			2.2(2)	1.7(2)			2.0(2)
(A)	0.8(1)	2.0(2)			0.9(1)			2.0(2)	0.9(1)	1.0(1)
Het			0.9(1)			0.8(1)				
11e		1.0(1)								
Leu	1.0(1)	1.1(1)			2.0(2)		2.0(2)	2.7(3)	1.9(2)	1.0(1)
Tyr				0.9(1)			0.6(1)			
Phe	0.7(1)			0.7(1)						
His	0.7(1)	1.0(1)						0.9(1)		
Lys			0.9(1)			1.0(1)			0.9(1)	
Arg				0.7(1)		1.1(1)	1.1(1)		1,1(1)	2.0(2)
irp										
γield %	52.0	4.6	25.6	6.8	20.9	30.3	40.3	18.0	35.0	19.8
N-termina	1									
residue	Ala	Asn	Lys	Phe	Şer	Lys	Ala	Ser	¥a1	Asp
								c 40		6 61
Peptide	C 42	(4 J	U 44	L 45	C 46	6.4/	L 48	L 49	ι 50	C 51
Peptide Residue	C 42 372-379	C 43 380-395	1044 396-402	403-407	C 46 408-427	428-432	433-439	440-442	443-453	464-475
Peptide Residue nos.	C 42 372-379	380-395	0 44 396-402	403-407	C 46 408-427	428-432	433-439	440-442	443-453	464-475
Peptide Residue nos.	C 42 372-379	380-395	0 44 396-402	403-407	C 46 408-427	428-432	433-439	440-442	443-453	464-475
Peptide Residue nos. CmCys	C 42 372-379	1.1(1)	U 44 396-402	403-407	5 0(5)	428-432	433-439	440-442	443-453	464-475
Peptide Residue nos. CmCys Asp Thr	C 42 372-379	1.1(1) 2.2(2) 1.9(2)	U 44 396-402	403-407	5.0(5)	428-432	1.1(1) 0.8(1)	440-442	1.0(1)	464-475
Peptide Residue nos. CmCys Asp Thr Ser	C 42 372-379	1.1(1) 2.2(2) 1.9(2) 1.0(1)	C 44 395-402	1.0(1) 0.8(1)	5.0(5)	428-432	1.1(1) 0.8(1)	1.0(1)	1.0(1) 1.0(1) 0.9(1)	464-475
Peptide Residue nos. CmCys Asp Thr Ser Glu	C 42 372-379 1.0(1) 0.9(1) 1.0(1) 1.0(1)	1.1(1) 2.2(2) 1.9(2) 1.0(1)	C 44 395-402	1.0(1) 0.8(1) 1.0(1)	5.0(5)	1.2(1)	1.1(1) 0.8(1)	440-442	1.0(1) 1.0(1) 0.9(1) 2.1(2)	464-475 1.0(1)
Peptide Residue nos. CmCys Asp Thr Ser Glu Prg	1.0(1) 0.9(1) 1.0(1) 1.0(1)	1.1(1) 2.2(2) 1.9(2) 1.0(1) 2.1(2)	1.1(1)	1.0(1) 0.8(1) 1.0(1)	5.0(5) 2.6(2)	1.2(1)	1.1(1) 0.8(1) 1.0(1)	1.0(1)	1.0(1) 1.0(1) 1.0(1) 0.9(1) 2.1(2) 1.0(1)	464-475 1.0(1) 2.7(3)
Peptide Residue nos. CmCys Asp Thr Ser Glu Pro Glu Gly	C 42 372-379 1.0(1) 0.9(1) 1.0(1) 1.0(1)	1.1(1) 2.2(2) 1.9(2) 1.0(1) 2.1(2) 3.2(3)	1.1(1) 1.1(1)	1.0(1) 0.8(1) 1.0(1)	c 46 408-427 5.0(5) 2.6(2) 2.2(2)	1.2(1)	1.1(1) 0.8(1) 1.0(1)	1.0(1)	1.0(1) 1.0(1) 1.0(1) 0.9(1) 2.1(2) 1.0(1)	464-475 1.0(1) 2.7(3) 1.1(1)
Peptide Residue nos. CmCys Asp Thr Ser Glu Pro Glu Ala	C 42 372-379 1.0(1) 0.9(1) 1.0(1) 1.0(1) 1.1(1)	1.1(1) 2.2(2) 1.9(2) 1.0(1) 2.1(2) 3.2(3) 1.0(1)	1.1(1) 1.1(1) 1.1(1) 2.0(2)	1.0(1) 0.8(1) 1.0(1)	2.2(2)	1.2(1)	1.1(1) 0.8(1) 1.0(1)	1.0(1)	1.0(1) 1.0(1) 1.0(1) 0.9(1) 2.1(2) 1.0(1)	464-475 1.0(1) 2.7(3) 1.1(1) 2.0(2)
Peptide Residue nos. CmCys Asp Thr Ser Glu Pro Gly Ala Val	C 42 372-379 1.0(1) 0.9(1) 1.0(1) 1.0(1) 1.1(1) 0.8(1)	1.1(1) 2.2(2) 1.9(2) 1.0(1) 2.1(2) 3.2(3) 1.0(1)	1.1(1) 1.1(1) 1.1(1) 2.0(2)	1.0(1) 0.8(1) 1.0(1)	2.6(2) 2.2(2) 2.6(3)	0.9(1)	1.1(1) 0.8(1) 1.0(1) 1.1(1)	1.0(1)	1.0(1) 1.0(1) 1.0(1) 0.9(1) 2.1(2) 1.0(1)	464-475 1.0(1) 2.7(3) 1.1(1) 2.0(2)
Peptide Residue nos. CmCys Asp Thr Ser Glu Pro Gly Ala Wal	C 42 372-379 1.0(1) 0.9(1) 1.0(1) 1.0(1) 1.1(1) 0.8(1)	1.1(1) 2.2(2) 1.9(2) 1.0(1) 2.1(2) 3.2(3) 1.0(1)	1.1(1) 1.1(1) 1.1(1) 2.0(2)	1.0(1) 0.8(1) 1.0(1)	2.6(2) 2.6(3)	1.2(1) 0.9(1)	1.1(1) 0.8(1) 1.0(1) 1.1(1)	1.0(1)	1.0(1) 1.0(1) 0.9(1) 2.1(2) 1.0(1)	464-475 1.0(1) 2.7(3) 1.1(1) 2.0(2) 0.9(1)
Peptide Residue nos. CmCys Asp Thr Ser Glu Pro Gly Ala Val Wet 1%	C 42 372-379 1.0(1) 0.9(1) 1.0(1) 1.0(1) 1.1(1) 0.8(1) 0.7(1)	1.1(1) 2.2(2) 1.9(2) 1.0(1) 2.1(2) 3.2(3) 1.0(1) 0.9(1)	1.1(1) 1.1(1) 1.1(1) 2.0(2)	1.0(1) 0.8(1) 1.0(1)	C 46 408-427 5.0(5) 2.6(2) 2.2(2) 2.6(3) 1.4(2)	0.9(1)	1.1(1) 0.8(1) 1.0(1) 1.1(1)	1.0(1)	1.0(1) 1.0(1) 0.9(1) 2.1(2) 1.0(1)	1.0(1) 2.7(3) 1.1(1) 2.0(2) 0.9(1)
Peptide Residue nos. CmCys Asp Thr Ser Glu Pro Gly Ala Val Het Ile Leu	1.0(1) 0.9(1) 1.0(1) 1.0(1) 1.0(1) 1.1(1) 0.8(1) 0.7(1) 1.1(1)	1.1(1) 2.2(2) 1.9(2) 1.9(2) 1.0(1) 2.1(2) 3.2(3) 1.0(1) 0.9(1) 1.1(1)	1.1(1) 1.1(1) 1.1(1) 2.0(2) 1.9(2)	1.0(1) 0.8(1) 1.0(1)	2.6(2) 2.2(2) 2.6(3) 1.4(2) 1.0(1)	1.2(1) 0.9(1)	1.1(1) 0.8(1) 1.0(1) 1.1(1)	1.0(1)	<pre>1.0(1) 1.0(1) 0.9(1) 2.1(2) 1.0(1) 2.7(3)</pre>	1.0(1) 2.7(3) 1.1(1) 2.0(2) 0.9(1)
Peptide Residue nos. CmCys Asp Thr Ser Glu Pro Gly Ala Val Val Het Leu Tyr	C 42 372-379 1.0(1) 0.9(1) 1.0(1) 1.0(1) 1.1(1) 0.8(1) 0.7(1) 1.1(1)	0.9(1) 0.9(1) 0.9(1) 0.9(1) 1.1(1)	1.1(1) 1.1(1) 1.1(1) 2.0(2)	1.0(1) 0.8(1) 1.0(1)	C 46 408-427 5.0(5) 2.6(2) 2.2(2) 2.6(3) 1.4(2) 1.0(1)	1.2(1) 0.9(1)	1.1(1) 0.8(1) 1.0(1) 1.1(1)	1.0(1)	443-453 1.0(1) 1.0(1) 0.9(1) 2.1(2) 1.0(1) 2.7(3)	1.0(1) 2.7(3) 1.1(1) 2.0(2) 0.9(1)
Peptide Residue nos. CmCys Asp Thr Ser Glu Pro Gly Ala Gly Ala Leu Leu Tyr Phe	C 42 372-379 1.0(1) 0.9(1) 1.0(1) 1.0(1) 1.1(1) 0.8(1) 0.7(1) 1.1(1)	0.43 380-395 1.1(1) 2.2(2) 1.9(2) 1.0(1) 2.1(2) 3.2(3) 1.0(1) 0.9(1) 1.1(1)	1.1(1) 1.1(1) 1.1(1) 2.0(2) 1.9(2)	1.0(1) 0.8(1) 0.8(1)	C 46 408-427 5.0(5) 2.6(2) 2.2(2) 2.6(3) 1.4(2) 1.0(1) 2.0(2)	1.2(1) 0.9(1)	1.1(1) 0.8(1) 1.0(1) 1.1(1) 0.8(1) 0.8(1)	1.0(1) 1.1(1)	1.0(1) 1.0(1) 0.9(1) 2.1(2) 1.0(1) 2.7(3)	1.0(1) 2.7(3) 1.1(1) 2.0(2) 0.9(1) 2.0(2)
Peptide Residue nos. CmCys Asp Thr Ser Glu Pro Gly Ala Val Met Leu Tyr Tyr Phe His	C 42 372-379 1.0(1) 0.9(1) 1.0(1) 1.0(1) 1.1(1) 0.8(1) 0.7(1) 1.1(1)	1.1(1) 2.2(2) 1.9(2) 1.0(1) 2.1(2) 3.2(3) 1.0(1) 0.9(1) 1.1(1)	1.1(1) 1.1(1) 1.1(1) 2.0(2)	0.8(1) 0.8(1)	5.0(5) 2.6(2) 2.2(2) 2.6(3) 1.4(2) 1.0(1) 2.0(2)	1.2(1) 0.9(1)	1.1(1) 0.8(1) 1.0(1) 1.0(1) 1.0(1) 0.8(1)	1.0(1)	1.0(1) 1.0(1) 0.9(1) 2.1(2) 1.0(1) 2.7(3)	1.0(1) 2.7(3) 1.1(1) 2.0(2) 0.9(1) 2.0(2) 0.9(1)
Peptide Residue nos. CmCys Asp Thr Ser Glu Pro Gly Ala Val Met Leu Tyr Phe His Lys	C 42 372-379 1.0(1) 0.9(1) 1.0(1) 1.0(1) 1.1(1) 0.8(1) 0.7(1) 1.1(1)	1.1(1) 2.2(2) 1.9(2) 1.9(2) 1.9(1) 2.1(2) 3.2(3) 1.0(1) 0.9(1) 1.1(1)	1.1(1) 1.1(1) 1.1(1) 2.0(2) 1.9(2)	1.0(1) 0.8(1) 0.8(1)	5.0(5) 2.6(2) 2.2(2) 2.6(3) 1.4(2) 1.0(1) 2.0(2)	1.2(1) 0.9(1) 2.1(2)	1.1(1) 0.8(1) 1.0(1) 1.0(1) 1.0(1) 0.8(1) 1.0(1) 1.0(1)	1.0(1) 1.1(1) 1.0(1)	(1.0(1) 1.0(1) 1.0(1) 0.9(1) 2.1(2) 1.0(1) 2.7(3)	1.0(1) 2.7(3) 1.1(1) 2.0(2) 0.9(1) 2.0(2)
Peptide Residue nos. CmCys Asp Thr Ser Glu Pro Gly Ala Val Met Leu Lys His Lys Arg	C 42 372-379 1.0(1) 0.9(1) 1.0(1) 1.0(1) 1.1(1) 0.8(1) 0.7(1) 1.1(1)	1.1(1) 2.2(2) 1.9(2) 1.0(1) 2.1(2) 3.2(3) 1.0(1) 0.9(1) 1.1(1) 1.0(1)	1.1(1) 1.3(1) 1.1(1) 2.0(2) 1.9(2)	1.0(1) 0.8(1) 1.0(1)	5.0(5) 2.6(2) 2.2(2) 2.6(3) 1.4(2) 1.0(1) 2.0(2) 3.0(3)	1.2(1) 0.9(1) 2.1(2) 1.0(1)	1.1(1) 0.8(1) 1.0(1) 1.1(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1)	1.0(1) 1.1(1) 1.0(1)	1.0(1) 1.0(1) 0.9(1) 2.1(2) 1.0(1) 2.7(3) 1.1(1)	1.0(1) 2.7(3) 1.1(1) 2.0(2) 0.9(1) 2.0(2) 0.9(1) 1.0(1)
Peptide Residue nos. CmCys Asp Thr Ser Glu Pro Glu Pro Gly Ala Val Leu Tyr Phe His Lys Arg Trp	C 42 372-379 1.0(1) 0.9(1) 1.0(1) 1.0(1) 1.1(1) 0.8(1) 0.7(1) 1.1(1)	1.1(1) 2.2(2) 1.0(1) 2.1(2) 3.2(3) 1.0(1) 0.9(1) 1.1(1) 1.0(1) 1.0(1)	1.1(1) 1.1(1) 1.1(1) 2.0(2) 1.9(2)	1.0(1) 0.8(1) 1.0(1)	<pre>c 46 408-427 5.0(5) 2.6(2) 2.2(2) 2.6(3) 1.4(2) 1.0(1) 2.0(2) 3.0(3)</pre>	1.2(1) 0.9(1) 2.1(2) 1.0(1)	1.1(1) 0.8(1) 1.0(1) 1.1(1) 1.0(1) 0.8(1) 1.0(1) 1.0(1)	1.0(1) 1.0(1) 1.0(1)	<pre>1.0(1) 1.0(1) 1.0(1) 0.9(1) 2.1(2) 1.0(1) 2.7(3) 1.1(1) 1.1(1)</pre>	1.0(1) 2.7(3) 1.1(1) 2.0(2) 0.9(1) 2.0(2) 0.9(1) 1.0(1)
Peptide Residue nos. CmCys Asp Thr Ser Glu Ser Gly Ala Het Leu Lys His Lys Arg Trp Yield %	C 42 372-379 1.0(1) 0.9(1) 1.0(1) 1.0(1) 1.1(1) 0.8(1) 0.7(1) 1.1(1) 8.2	1.1(1) 2.2(2) 1.0(1) 2.1(2) 3.2(3) 1.0(1) 0.9(1) 1.1(1) 1.0(1) 1.0(1) 5.8	1.1(1) 1.1(1) 1.1(1) 2.0(2) 1.9(2) 1.1(1) 10.7	1.0(1) 0.8(1) 1.0(1) 0.8(1) 1.0(1) 28.1	C 46 408-427 5.0(5) 2.6(2) 2.2(2) 2.6(3) 1.4(2) 1.0(1) 2.0(2) 3.0(3) 6.2	1.2(1) 0.9(1) 2.1(2) 1.0(1) 5.8	1.1(1) 0.8(1) 1.0(1) 1.0(1) 1.0(1) 0.8(1) 1.6(1) 1.6(1)	1.0(1) 1.1(1) 1.0(1) 1.1(1) 1.0(1)	<pre>1.0(1) 1.0(1) 1.0(1) 0.9(1) 2.1(2) 1.0(1) 2.7(3) 1.1(1) 22.4</pre>	1.0(1) 2.7(3) 1.1(1) 2.0(2) 0.9(1) 2.0(2) 0.9(1) 1.0(1) 13.8
Peptide Residue DoS. CmCys Asp Thr Ser Glu Ser Gly Ala Val Met Leu Tyr Phe His Lys Rrg Trp Yield % R-termina	C 42 372-379 1.0(1) 0.9(1) 1.0(1) 1.0(1) 1.0(1) 1.1(1) 0.8(1) 0.7(1) 1.1(1) 8.2	1.1(1) 2.2(2) 1.9(2) 1.9(2) 1.0(1) 2.1(2) 3.2(3) 1.0(1) 0.9(1) 1.1(1) 1.0(1) 1.0(1) 5.8	1.1(1) 1.1(1) 1.1(1) 1.9(2) 1.1(1) 10.7	1.0(1) 0.8(1) 1.0(1) 0.8(1) 1.0(1) 1.0(1) 28.1	c 46 408-427 5.0(5) 2.6(2) 2.6(3) 1.4(2) 1.0(1) 2.0(2) 3.0(3) 6.2	1.2(1) 0.9(1) 2.1(2) 1.0(1) 5.8	1.1(1) 0.8(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 0.8(1) 1.6(1) 1.6(1)	1.0(1) 1.1(1) 1.0(1) 1.0(1)	443-453 1.0(1) 1.0(1) 0.9(1) 2.1(2) 1.0(1) 2.7(3) 1.1(1) 1.1(1) 22.4	1.0(1) 2.7(3) 1.1(1) 2.0(2) 0.9(1) 1.0(1) 13.8

Presence of tryptophan was indicated by absorbance at 280 nm.

Mitochondrial Serine Hydroxymethyltransferase

TABLE IV Summary of Sequence Studies on Chymotryptic Peptides С) (15-28) 'GQESLSDTDPEMH C Z (29-31) Z(L.L) C 3 (32-42) Q R E K D R D C R G L C 4 (45-50) : A S E N F C 5 (51-56) C S R A A L C6 (57-63) EALGSCL C 7 (64-67) NNKY C 8 (68-76) S £ G Y P G K R Y C 9 (77-89) Y G G A E V V D E I E L L C 10 (90-95) C Q R R A L C 11 (96-105) E A F D L D P A O W C 12 (106-112) G V N Y Q P Y C 13 (113-119) S G S P A N L C 14 (120-122) A A Y C 15 (126-133) L Q P H D R I M C 16 (134-145) G L D L P D G G H L T H C 17 (144-148) T H G Y M C 18 (149-157) S D V K R V S A T C 19 (158-161) S([,F,F) C 20 (162-166) E 5 M P Y C 21 (167-180) KLNPQTGLIDYEQL C 22 (183-187) TARLF C 23 (188-199) R P R L I I A G T S A Y C 24 (200-205) A R L I B Y C 25 (206-218) A R M R E V C D E V K A H C 26 (219-229) L L A D M A H I S G L C 27 (230-239) V A A K V I P S P F C 28 (240-253) K H A D Y Y T T T T H K T L C 28 (248-253) T T H K T L C 29 (254-260) R G A R S G L C 30 (25)-253) I(F.Y) C 31 (281-288) TFEDRINF C 32 (289-299) A V F P S L Q G G P H C 33 (300-310) N H A I A A V A V A L C 34 (311-317) K Q A C T P M C 35 (318-321) FREY C 36 (322-326) SIQVL C 37 (327-332) KNARAM C 38 (333-341) A D A L L E R G Y C 39 (342-354) S L V S G G T 8 8 H L V L C 40 (355-362) V D L R P K G L C 41 (363-371) D G A R A E R V L C 42 (372-379) E L V S I T A N C 43 (380-395) K & T C P G D R S A I T P G G L C 44 (396-402) R L G A P A L C 45 (403-407) T 5 R Q F

					TABLE V							
		A	utomated Er	man Degrada	tion of Ch	ymotrypt	ic Per	ptides				
Cycle	<u>ci (i</u>	nacl)	<u>C 3 (0.</u>	inmol)	<u>C 9 (G</u> .	5 nmgl)		<u>c 10 (</u> 1	neol)	<u>C 16 (</u> 0	.5 <u>ngo</u>]}	
No.	PTH-aa	Yield	PTH-aa	Yield	РТН-аа	Yield		ртн-аа	rield	РТн-аа	Yield	
		((omo) }		(iono)		(pmol)			(pmo1)		(pm())	
1	Ibr	231	616	129	Tyr	133		CmCvs	399	Gly	41	
2	612	203	áro.	46	61.4	125		Gln	513	Leu	58	
3	Gin	186	Glu	92	Gly	133		Arg	463	Ase	64	
4	Glu	193	Lys	26	Ala	170		Arg	435	Leu	46	
5	Ser	125	Asp	51	610	84		Ala.	447	Pro	64	
6	Leu	170	Arg	24	Val	117		Leu	215	Asp	43	
7	Ser	116	G1n	42	Val	129				Gly	35	
8	Asp	106	CnCys	NQ ^a	Asp	63				Gly	44	
9	The	99	Arg	17	Glu	65				H15	19	
10	Asp	96	Gly	35	11e	84				Leu	11	
11	Pro	129	Leu	14	Glu	19				The	10	
12	նես	98			Leu	43				H15	6	
13	net	106			Leu	47						
-	140	22										
Repetitive	Asp 8-A	(sp 10)	(Arg 6-A	rg 91	(G1u 5-	Glu 9)		(G]n 2-	Ala 5)	(Asp 3-	Asp 6}	
yield 🥆	95.2	2	89.1		93.8	\$		95.5	5	87.	6	
5051210m	15-2	8	32-4	2	22-8	19		90-9	95	134-	145	
Cycle	C 18 (0.5 <u>nmol)</u>	C 20	(0.5 nmol)	<u>C</u> 2	5 (0.5	nmol}	<u>c</u>	28a(0.	5 nmol)	C 42 (1_mol)
No.	DTU- N	N Viold	0.7.4	ab Viold	PT		i a 1 d			Viold	RTH- NR	Viold
	r i m-a	(pmol)		(pmol)		(p	nol)		- 111- 0.0	(pmol)	PTH-Ba	(pmol)
1	Ser	54	Glu	76	4	la	28		Ihr	189	Glu	211
2	Asp	35	Ser	71	Å	rq	23		Thr	100	Leu	322
3	Val	56	Met	56	۲	let	25		His	51	Val	178
4	Lvs	39	Pto	47	A	ro	25		Lvs	39	Ser	283
5	Aro	44	Tvr	40	G	เป็น	25		Thr	59	1)e	203
6	Val	40			V	al	20		Leu	41	Thr	26
2	Ser	25			Cm	Cvs	18				Ala	194
8	Ala	21			A	SD	10				Asn	67
9	Ibr	11			G	ilu.	12					
10					v	al	12					
11					1	vs	4					
12					,	la	2					
13					н	is	NQ a					
Repetitive vield %	(Val 3 89	-Val 6) .3	(G1u 9	1-Met 3) 3-2	(Va	1 6-Val 88.0	10)		(Thr 2- 83.	(Thr 5)	(Leu 2 85	-11e 5)
Position	149	-157	16	2-166		206-218			248-	253	372	- 379

^aNQ: observed but not quantitated.

TABLE VI

Amino_Acid Composition of CNBr Peptides

The composition from	sequence analysis of	each peptide is	indicated by th	e numbers in parentheses

Peptide Residue nos.	B 1 1-27	8 2 28-133	83 134-164	8 3a 134-148	8 3b 149-164	8 4 165-208	8 5 209-223	8 6 224-317	87 318-332	B 8 333-469	89 470-475
C#Cys		2.6(4)					0.5(1)	0.6(1)		0.7(1)	
Asp	2.0(2)	10.0(10)	3.0(3)	2.0(2)	1.0(1)	3.0(3)	1.6(2)	5.4(5)	1.2(1)	14.8(16)	
Thr	3.1(4)	0.7(1)	1.7(2)	0.9(1)	0.7(1)	2.5(3)		6.4(9)		6.8(7)	
Ser	2.6(3)	5.7(6)	3.7(4)		3.2(4)	1.1(1)		3.8(4)	0.8(1)	5.8(7)	
Glu	6.0(6)	17.3(16)	1.6(1)		1.4(1)	3.8(3)	1,9(2)	5.8(5)	2.6(2)	12.4(12)	1.1(1)
Pro	0.8(1)	4.4(5)	1.2(1)	0.9(1)		3.0(3)		7,2(7)		6.5(6)	1.8(2)
Gly	3,1(3)	8.2(8)	3.8(4)	3.6(4)		2.2(2)		7.0(7)		11.1(11)	1.0(1)
Ala	2.5(3)	12.0(12)	1,2(1)		0.8(1)	5.4(6)	2.1(2)	11.4(12)	2.0(2)	11.7(12)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Va)		3.4(4)	2.0(2)		1.7(2)		2.0(2)	7.6(9)	1.0(1)	9,3(10)	
lle		3,3(3)	1.0(1)		0.8(1)	2.9(4)		4.8(6)		3.6(4)	
Leu	1.0(1)	13.5(14)	3.1(3)	3.1(3)		6.3(7)	2.1(2)	5.4(5)	2,1(2)	16.4(18)	
Tyr		4.8(6)	0.6(1)	0.7(1)		3.1(4)		1.2(2)	0.6(1)	1.0(1)	
Phe		2.1(2)	1,4(2)		1.5(2)	1.1(1)		3.8(5)	0.7(1)	5,8(7)	0.8(1)
Kis		1.1(1)	1.8(2)	1.7(2)			0.5(1)	5.2(5)		0,6(1)	0.9(1)
Lys	0.7(1)	3.5(3)	1.2(1)		0.8(1)	1.0(1)	0.9(1)	4.8(6)	0.8(1)	6.2(7)	
Arg	0.9(1)	7.9(8)	1,1(1)		0.9(1)	5.2(5)	1.0(1)	5.2(5)	1.8(2)	14,5(16)	
Trp	+ (1)	+ (2)									
Hse/Hs1	+ (1)	+ (1)	+ (2)	+ (1)	+ (1)	+ (1)	+ (1)	+ (1)	+ (1)	+ (1)	
Yield % N-terminal	12.5	35.8	2.1	10.6	2.9	66.0	48.0	34.0	10.0	45.0	18.7
residue	ND	Trp	Gly	Gly	Ser	Pro	Arg	Ala	Phe	Ala	Pro

C 46 (408-427) RZBBFRRVVBFIBZGVBIGL

C 47 (428-432) E V K R K C 48 (433-439) T A K L Q D F C 49 (440-442) K S F

C 50 (443-453) LLK DPETSZRL C 51 (464-475) ARAFPMPGFPEH

Presence of tryptophan was indicated by absorbance at 280 nm.

TABLE VII

Summary of Sequence Studies on CNBr Peptides

81 (1-27)	К А А Q T Q T G E A S R G W T G Q E S L S D T D P E M
B 2 (28-133)	W E L L Q R E K D R Q C R G L E L I A S E N F C S R A A L E
	ALGSCLNNKYSEGYPGKRYYGGAEVVDE
	LLCQRRALEAFDLDPAQWGVNVQPYSGSPA
	NLAAYTALLQPHDRIM
B 3 (134-164)	<u> </u>
B 3a (134-148)	у и и и и и и и и и и и и и и и и и и и
B 3b (149-164)	S D V K R V S A T S I F F E S M
8 4 (165-208)	P Y K L N P Q T G L I D Y E Q L A L T A R L F R P R L I I A G
B 5 (209-223)	R E V C D E V K A H L L A D M
B 6 (224-317)	A H I S G L V A A K V I P S P F K H A D V V T T T T H K T L R G A R S G L I F Y R K G V R T V D P K T G Z Z I P Y T F Z B R → → → → → → → → → → → → → → → → → → →
	13 <u> </u>
B 7 (318-332)	F R E Y S L Q V L K N A R A M
B 8 (333-469)	A D A L L E R G Y S L V S G G J D N H L V L V D L R P K G L U → → → → → → → → → → → → → → → → → → →
	GARAERVLELVSITANKNTCPGORSAITPGG

	S 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

89 (470-475)	R R R V Z Z F A R A F P M P G F P E H

The residues above the arrow were identified by dansyl-Edman degradation (+) or by automated Edman degradation on a gas-phase sequencer (+). Subfragments obtained after digestion with trypsin (T) and <u>S. aureus</u> V 8 protease (S) are indicated by solid lines.

_

					8		D				0					
					Aut	OWACED F4	man pegr	adation of	Lyanoger	or can de	Pependes					
Cycle	8 1 11	nm011	B 2 (1)	10013	8 3 (1 0TH 4	(long	8 35 (1	.5 nmo1)	84(1	nnoll	85(1.	5 nno1)	86(1 nmol)	88(1	nnol
HU.	1 10.99	(cmol)	F1H-40	inmoll		(apol)	r (n • 68	(mol)	P 40 - 88	fonall	PIH-35	(omol)	N;H-99	(real)	PTH-aa	field
		(prior)		i prod - i r				(pilot)		(prest)		(paper)		(pilot)		(pare)
1	Lys	143	Trp	163	Gly	102	Ser	698	Pro	216	arg	408	Ala	266	A14	125
2	Ala	194	Glu	143	Leu	136	Asp	397	Tyr	287	619	618	Nis	110	Asp	96
3	Ala	381	Leu	195	Asp	72	Vəl	434	Lyrs	228	¥a)	560	1) 6	154	Ala	134
÷	Gin	147	Leu	192	Leu	81	Lys	398	Leu	223	CeCys	594	Ser	127	Leu	156
2	ine	31	Gin	115	940	98	Arg	363	Asn	116	Asp	435	Gly	118	Leu	142
2	1000	114	arg	57	ASD	35	y a I	348	Pro	194	614	500	1.eu	142	610	108
	1 de	66	610	110	619	59	Ser	192	u in	197	Val	388	Yai	98	Arg	29
ě.			Lys Aco	43	diy Hir	1.2	714	116	Clu	1 1 2	Lys	335	A19	106	617	91
10			Aro	59	Len	32	Ser	372	l eu	160	ALC:	212	ALG.	132	1 yv	- 17
11			610	107	Ibr	41	Ite	138	11e	100	H IS	274	Lys Hal	60	265	29
12			CIICus	NO ^a	His	NO ⁴	Phe	121	Aso	87	1 eu	763	114	0.5	14.0	12
13			Arg	41	61v	41	Phe	138	Typ	148	31a	35)	Pro	103	Sec	26
14			Glý	85	fyr	- íi	Glu	85	Glu	69	Aso	140	Ser	96	61.	- 41
15			Leu	92	Net	7	Ser	63	Gin	111	Hse	87	Fro	82	617	46
16			Glu	31	Ser	9	Hse	37	Leu	104			Phe	50	The	72
17			Leu	106	Asp	12			Ala	140			Lys.	43	Asp	29
18			11e	57	Yal	4			Leu	98			Ris	55	Asn	19
19			Ala	63					Thr	69			Ala	43	His	12
20			Ser	32					Ala	105			Asp	26	Leu	19
21			616	28					Arg	63			403	26	441	12
22			Asn	29					Leu	70			¥al	38	leu	29
20			Phe	<u></u>					Phe	55			The	22	A B J	12
25			CHUYS	16					Arg	40			The state	26	Asp	17
46			Ser	10					Pro	53			Thr	27	Leu	24
27			A14	20					Arg	51			Inr	26	Arg	NQ.
28			A1a	35					Leu	64			815	10	Pro	22
29			L Rei	32					1 le	74			Ly6	14	C.95	14
30			Glu	-					414	89			100	22	649	22
31			Ala	15					61v	48			Are.	10	610	22
32									The	30			(1) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i	10		14
33									Ser	26			61y	19	U.V.	19
34									A) A	55			610		Ave	22
35									Tyr	46			Sec	;	61.6	20
36									Ala	58			61v	12	614	10
37									Arg	31			Leu	15	årn.	NO 1
38									Leu	34			tle	7	Yal	12
39									Ile	28			Phe	10	Leu	17
40									Asp	24			Tyr	5	Glu	7
41									Tyr	33					Leu	19
42									Ala	41					¥ a l	10
43 44									Arg Hse	23 8						
epetiti	ve	93.3	90	.8	86	.1	92	.9	94.6		94,1	9	9Z.		89.5	
ield	(A1	e 2-Ala 3)	(Glu 7-	Glu 16]	(Gly 7	-G1y 131	[Val 3-	Val 6)	{leu 4-l	eu 10)	(G1u 2-	51ø 61	(A1a 8-A	la 191	(Leu 4-L	eu 11)
osition		1-27	28-	133	134	-164	149-	164	165-2	80	209-	223	224-3	317	333-4	69

	B	I		B 2				8 6		_
Peptide residue nos.	T 1 2-12	T 2 13-27	⊺ 1 54-74	⊺ 2 76-92	T 3 94-131	20	⊺ 1 65-268	T 2 269-273	T 3 286-3	11
CmCys Asp	1.5(0)	2.0(2)	0.5(1) 1.9(2)	0.7(1) 1.0(1)	4.6(5)			1.1(1)	2.0(2)
Inr Ser Glu	1.5(2) 1.1(1) 3.0(3)	2.0(2) 2.0(2) 3.7(3)	1.8(2) 2.1(2)	3.5(4)	1.7(2)			0.8(1)	0.8(1.1(1) 1)
Pro Gly Ala	1.1(1) 2.8(3)	0.8(1) 1.8(2)	1.0(1) 3.1(3) 3.0(3)	2.0(2)	3.5(4) 2.1(2) 6.2(7)	,	1.0(1)	1.2(1)	2.1(2.2(6.2(2) 2) 6)
Val Ile		1.0(1)	2 0/31	0.8(1) 0.7(1)	2.0(2)		0.8(1)	1.0(1)	2.5(3) 2) 2)
leu ⊺yr Phe		1.0(17	1.7(2)	1.4(2)	1.2(2)				1.7(2)
His Lys Arg	1.1(1)		1.9(2)	0.9(1)	0.8(1)		0.9(1) 1.0(1)	1.0(1)	1.6(0.9(2)
Trp Hse/Hs1		+ (1) + (1)			+ (1)					
Yield % N-terminal	19.5	38.0	24.6	10.0 Tur	26.0		10.0	11.0 Thr	9. 11	5
restude	Ald	Giy	Ala	1 yr			cy's			e
Peptide	TI	\$ 1	S 2		3	s 4	S	5	S 6	S 7
residue nos.	441-452	339-356	373-3	98 399	-409	410-421	422-	428 42	9-448	449-455
CmCys	2.0123	0.010	0.7(1)		2 (14)		111 1	0103	1.0(1)
ASP Thr	0.9(1)	0.8(1)	2.7(.3) 0.	7(1)	3.0(4/		(1) 2	.9(1)	0.8(1)
Ser	1.7(2)	2.0(2)	1.9(2) 0.	9(1)	1 1/11		0	.8(1)	1.0(1)
Glu Pro	1.0(1)		2.0(2) 1.	0(1)	1.1(1)	0.9	1 1	.1(2)	1.1(1)
G1y		2.9(3)	3.8(4)			2.2	2(Z)		
Ala V-1		2 8/21	2.00	2) 2.	.0(2)	1 6/2)	1.0	1	.0(1)	0.7(1)
vai Lle		2.0(3)	1.30	2)		1.0(1)	0.8	k(1) 0		
Leu	2.0(2)	3.0(3)	3.00	3) 0.	8(1)		0.9	(1) 3	.0(3)	0.8(1)
Tyr	0.0(1)	0.7(1)			0(1)	2 0(2)		,	0(2)	
Phe His	0.9(7)	0.8(1)		0.	.8(1)	2.0(2)		'	.8(2)	
Lys	0.9(1)		0.7(1) 1.	8(2)			4	.5(5)	
Arg	1.0(1)	0.8(1)	1.6(2)		2.1(2)		0	.9(1)	0.8(1)
Yield % N-terminal	16.5	11.3	3.	.7	15.0	10.0	11	.2	4.5	7.2
residue	Ser	Arg	Le	žu	Ala	Asx	G	ily	Val	Thr

Presence of tryptophan was indicated by absorbance at 280 nm.

Cycle	<u>8 1-T 1</u> (1 nmol)		B 1-T 2		(B 2-	$\frac{B 2 - T 1}{(0.5 nmol)}$		T 2	86	-T 3
No.	011		DTU-22	Viold	10.5	Viold	(U.5	Viold	0.01	Viold
	F1N-40	(pmol)	FINTAG	(pmol)	r in=aa	(pmol)	r (n-aa	(pmol)	r 1 - a a	(pmol)
1	Ala	262	Gly	135	Ala	43	Tyr	64	Ile	65
2	Ala	187	Trp	57	Ala	35	Tyr	60	Asn	41
3	Gln	178	Thr	91	Leu	31	Gly	56	Phe	41
4	Thr	160	Gly	100	նյո	29	Gly	59	Ala	37
5	Gln	127	Gln	74	Ala	36	Ala	45	Val	36
6	Thr	148	Glu	90	Leu	26	Glu	39	Phe	48
7	Gly	86	Ser	21	Gly	24	Val	42	Pro	41
8	Glu	72	٤eu	46	Ser	24	Va]	46	Ser	42
9	Ala	72	Ser	28	CmCys	NQ	Asp	40	Leu	41
10	Ser	60	Asp	35	Leu	22	Glu	25	Leu	48
11	Arg	12	Thr	32	Asn	18	Lìe	43	Gln	26
12	•		Asp	42	Asn	20	Glu	24	Gly	38
13			Pro	77	Lys	12	Leu	37	Gly	38
14			Glu	46	Tyr	17	Leu	39	Pro	21
15			Hse	25	Ser	13	CrnCys	NQ	His	NQ®
16					Glu	11	Gln	21	Asn	22
17					Gly	9	Arg	NQ [®]	His	NQ
18					Tyr	5			Ala	14
19					Pro	4			Ile	7
20					Gly	4			Ala	12
21					Lys	2			Ala	12
22									Val	7
23									Ala	7
Repetit	ive 87	.3	9	2.0	94	4.3	8	9.5	9	3.7
∕ield %	(Ala 2	2-Ala 9)	(Glu	6-Glu 14) (Leu :	3-Leu 6)	(G)u	6-Glu 10) (Ala	4-Ala 1
Positio	n 2	-12	1	3-27	54	4-74	7	5-92	28	6-311

TABLE X Automated Edman Degradation of Fragments Obtained after Digestion of Cyanogen Bromide Peptides (8 1, 8 2 and 8 6)

^aNQ: observed but not quantitated.

TABLE IX

Amino Acid Composition of Fragments Obtained after Digestion of Cyanogen Bromide Peptides The composition from sequence analysis of each peptide is indicated by the number in parentheses

							TABLE X	11						
	Automate	d Edmar	Degrad	ition of	Fragmen	ts Get	nned of	ter dige	stion of	f Cyanug	en Brom	de fept	ide (B	÷)
Cycle	8_8- (1_nm	<u>5</u> 1 1010	(C.5	5_2 (mol)	8 8- 1 nt	-5_3 nc1)	(1 n)	-5.4 mol)	(0.5 ·	-S_5 nmc1)	9 8- (0.5 r	5 6 mal	(0.5	<u>\$</u> 7
No.	Pſ⊨-aa	Yield	FTK-∂ā	Yield (one):	РТК-аа	Yield	P"4-aa	field	PTH-aa	Yield	Р∶н-аа	field (real)	PTH-aa	rield
	år o	116	Leu	111	A1 a	434	450	208	GLv	50	Val	37	The	79
2	Gly	277	Val	81	Pro	250	650	236	Val	50	Lv<	23	Ser	36
à	Tyr	269	Ser	49	A1a	352	Phe	349	Asn	46	Arg	10	610	43
4	Ser	134	11e	68	Leu	244	Ara	290	(le	44	L V S	20	Arn	39
5	Leu	264	Thr	36	Ihr	180	Arg	324	61v	48	The	23	Leu	48
6	Va:	192	Ala	76	Ser	134	Važ	312	Leu	50	Ala	26	Ala	28
7	Ser	109	Asr	48	Arg	177	¥al	309	Glu	8	1.75	18	Aso	8
8	Gly	146	Lys	44	GIn	131	Asp	142			Leu	24		
9	61y	144	Asn	42	Phe	118	Phe	279			Gln	22		
10	Thr	95	Thr	32	Arg	130	:1e	258			Asp	18		
11	Asp	57	CmCys	9	610	27	Asp	105			Phe	15		
12	Asn	85	Pro	34			510	40			LYS	14		
13	His	NQ ^a	Gly	29							Ser	5		
14	Leu	90	Asp	14							Phe	8		
15	Val	63	Arg	7							I.eu	7		
16	Leu	89	Ser	11										
17	\$a1	58	Ala	19										
18	Asp	8	:le	16										
:9			Thr	11										
20			Pro	15										
21			Giy	15										
22			61y	17										
23			Leu	16										
24			Arg	NQ										
25			Leu	14										
26			Gly	6										
Repeti	tive B9	÷.1	88.	2	90.	.1	96	. 3	94	.6	94.	1	86	.7
yield	 (G1y 2 	-G1y 8)	(Ala 6-	Ala 17	(Ala I-	Ala 31	(Pre 3	-Phe 93	(Gly]	-Gly 51	Elys 2-	Lys 8)	(G1u 3-	Ala Si
Pasitio	on 339	- 356	373-	398	399-	409	410	-421	422-	428	429-	448	449	455
a NQ:	observed	but not	t quanti	tated.										

TABLE XIII

Amino Acid Composition of Limited Acid Cleavage Peptides The composition from sequence analysis of each peptide is indicated by

		the numbe	ers in pari	entheses			
Peptide	P 1	P 2	P 4	P 5	Ρ7	P 8	
Residue nos.	3-24	25-101	244-271	272-349	384-446	447-475	
CmCys		2.2(4)		0.6(1)			
Asp	2.0(2)	6.5(7)	1.0(1)	5.8(6)	7.4(8)	1.0(1)	
Thr	3.4(4)		4.4(6)	3.6(4)	2.4(3)	0.9(1)	
Ser	2.9(3)	4,2(4)	0.9(1)	3,7(4)	2.6(3)	0.6(1)	
Glu	5.1(5)	14.2(14)		7.5(8)	4.7(5)	5.1(5)	
Pro		2.1(2)		5.1(5)	3.2(3)	2,4(4)	
Gly	3.2(3)	6.0(6)	3.1(3)	6.0(6)	5.8(6)	1.3(1)	
Ala	2.0(2)	7.1(7)	1.0(1)	10.6(11)	4.0(4)	2,9(3)	
Val		1.9(2)	3.5(4)	4.5(5)	3.4(4)	0.9(1)	
Met		0.8(1)		1.6(2)		1.0(1)	
(1e		1.8(2)	0.8(1)	2.6(3)	2.7(3)		
Leu	1.0(1)	10.6(11)	2.0(2)	7.1(7)	7.2(7)	3,6(2)	
Tyr		2.8(4)	0.7(1)	2.8(3)			
Phe		1.7(2)	0.9(1)	3,6(4)	4.6(5)	2.5(3)	
His			0.9(1)	1.7(2)		1.0(1)	
Lys		3.1(3)	1.6(2)	3.2(3)	4.8(5)		
Arg	0.9(1)	6.4(7)	3.8(4)	3.6(4)	7.6(7)	4.6(5)	
Trp	+ []]	+ (1)					
Yield ⊆ N-terminal	20.0	9.3	12.7	5.4	29.3	13.2	
residue	Alə	Pro	Val	Pro	Pro	Pro	

Presence of tryptophan was indicated by absorbance at 280 nm.

P1 (3-24)	A Q T Q T G E A S R G W T G Q Z S L S B T D
P 2 (25-101	PEMNELLQREKDRQCRGLELJASZBFCS RAALEALGSCLNNKYSEGYPGKRYYGGA
	EVVDEIZLUCZRRALEAFBLD
P 3 (102-150) P A Q N G V N V Q P Y S G S P A N L A A Y T A L L Q P H P N N G L D L P D G G H L T H G Y H S D R ; M G L D L P D G G H L T H G Y H S D
P 4 (244-271	↓ V Y T T T H K T L P G A R S G L I F Y R K G V R T V D
P 5 (272-349	P K T G Q E I P Y T F E D R I N F A V F P S L Q G G P H N H A I A A V A V A L K Q A C T P M F R E Y S L Z V L K B A R A M A D A L L E R G Y S L V S G G T D T T T T T T T T T T T T T T T T
P6 (350-383	> NHLVLVDLRPKGLOGARAERVLELVSIT
P 7 (384-446	P G D R S A I T P G G L R L G A P A L T S R Q F R E D D F R R V V D F I D E G V N I G L E V K R K T A K L Q D F S T - S I - S
₽8 {447-475	

TABLE KIV

Summary of Sequence Studies on Asp-Pro Peptides

The residues above the arrow were identified by automated Edman degradation on a gas-phase sequencer (ω). Subfragments obtained after digestion with trypsin (T), chymotrypsin (C) or <u>S. aureus</u> V 8 protease (S) are indicated by solid lines.

					TABLE XV					
		Automate	ed Edman De	gradatio	n of Limite	d Acid C	eavage Pep	tides		
Cycle	P 1 (0.	5_nmol)	P 2 (1.	5 nmol)	P 4 (1.	5 nmol)	P_6 (0.	5_nmolì	P <u>8</u> (1	nmol)
No.	РТН-аа	Yield	PTH-aa	Yield	PTH-sa	Yield	PTH-aa	Yield	P1H-aa	Yield
		(pmol)		(pmo))		(pmol)		(pmol)		(pmol)
1	Ala	77	Pro	397	Val	444	Asr	74	Pro	252
2	Gln	36	Glu	270	Val	435	His	42	Glu	213
3	Thr	23	Met	272	Thr	202	Leu	79	Thr	48
4	Gln	28	Trp	120	Thr	146	Val	64	Ser	92
5	Thr	20	Glu	211	Thr	109	Leu	72	Gln	147
6	Gly	38	Leu	233	1nr	93	Val	76	Arg	56
7	Glu	34	Leu	251	His	33	Asp	74	leu	147
8	Ala	24	Gln	96	Lys	30	Leu	76	Ala	158
9	Ser	14	Arg	57	Thr	46	Arg	53	Asp	95
10	Ang	9	Glu	99	Leu	38	Pro	48	Leu	132
11	Gly	25	Lys	81	Arg	13	Lys	33	Arg	53
12	Trp	12	Asp	74	Gly	47	Gly	50	Arg	84
13	Thr	NQ	Arg	69	Ala	36	Leu	46	Arg	100
14	Gly	16	61n	85	Arg	14	Asp	41	Val	72
15	Gln	8	CmCys	40	Ser	16	Gly	43	Gin	86
16			Arg	59	Gly	36	Ala	44	Gln	106
17			Gly	59	Leu	19	Arg	32	Phe	62
18			Leu	95	:le	17	Ala	38	Ala	71
19			Glu	53	Phe	18	61u	27	àrg	39
20			Leu	87	Tyr	12	Arg	17	Aia	65
21			lle	49	Arg	10	Val	34	Phe	25
22			Ala	79	Lys	7	Leu	32	Pro	22
23					Gly	14	Glu	24	Het	15
24					Val	10	Leu	28	Pro	27
25							Val	29	Gly	14
26							Ser	17	Phe	16
27							[le	23	Pro	19
28							Thr	8	Glu	9
29							Ala	18		
30							Asn	16		
31							Lys	12		
32							Asn	14		
33							Thr	NQ ^a		
34							CnaCys	NQ ^d		
Repetitive	91.2		92.8		93.6		94.7		96.5	
yield %	(Gly 6-Gl	y 11)	(leu 6-le	i 18)	(Gly 12-Gl)	/ 16)	(Leu 3-leu	13)	(Leu 7-L	eu 10)
Position	3-24		25-10	1	244-27		350-383	3	447-4	75

 $^{\rm a}{\rm NQ}_{\rm :}$ observed but not quantitated.

Mitochondrial Serine Hydroxymethyltransferase

	Automated	Edman Degrad	ation of Pe	ptide P 3					
(2 nmo1)									
Cycle	PTH-aa	Yield (pmoles)	Cycle	PTH-aa	Yield (pmoles)				
1	Pro	759	24	Leu	57				
2	Ala	675	25	Leu	64				
3	Gln	488	26	Gln	30				
4	Trp	116	27	Pro	36				
5	Gly	316	28	His	17				
6	Val	248	29	Asp	35				
7	Asn	175	30	Arg	39				
8	Vəl	260	31	1)e	25				
9	Gln	165	32	Met	13				
10	Proª	176	33	Gly	29				
11	Tyr	91	34	Leu	4B				
12	Ser	50	35	Asp	37				
13	Gly	78	36	Leu	55				
14	Ser	51	37	Pro	27				
15	Pro	58	38	Asp	33				
16	Ala	102	39	Gly	33				
17	Asn	37	40	Gly	35				
18	Leu	61	41	His	NOD				
19	Ala	124	42	Leu	57				
20	Ala	111	43	Thr	10				
21	Tyr	36	44	His	NO				
22	Thr	22	45	Glv	31				
23	Ala	68	46	Tyr	12				

TABLE XV!

Amino Aci	a composit	Acid	Cleavage P	eptides	orgestion of	Limited
The compos	ition from	sequence a num	analysis of ber in pare	each pepti entheses	de is indica	ted by the
Peptide	P 2~5 1	P 2-5 2	P 2-5 3	P 4-C 1	P 5-T 1	P 7-5
Residue	58-69	70-81	86-96	264-271	331-339	429-446
105.						
CmCys	1.0(1)		0.7(1)			
Asp	2.5(2)			1.1(1)	1.0(1)	2.2(2)
Thr				1.3(1)		1.2(1)
Ser	2.0(2)					1.0(1
Glu	1.7(1)	1.9(1)	4.0(3)		1.1(1)	1.3(1)
Pro		1.0(1)				
G1y	1.0(1)	4.0(4)		1.3(1)		
Ala	0.9(1)	0.9(1)	1.0(1)		3.0(3)	0.9(1)
Val				2.0(2)		1.0(1)
Met					0.6(1)	
lle			0.9(1)			
Lev	1.8(2)		3.0(3)		1.8(2)	2.7(3)
Tyr	0.9(1)	2.9(3)				
Phe						2.1(2)
Lys	1.6(1)	1.6(1)		1.1(1)		5.0(5)
Arg		0.9(1)	2.0(2)	2.0(2)	0.9(1)	1.0(1
Yield = Notermical	18.2	24.3	18.6	16.0	32.4	25.6
residue	Ala	Gly	lle	Arg	Ala	Val

TABLE XIX

Repetitive yield: 94.4% (Ala 16-Ala 23) Position: 102-150

 $^{0}{}_{\rm A}$ fter the 9th cycle the filter was treated with o-phthalaldehyde (see text). $^{0}{}_{\rm MQ}$ observed but not quantitated

TABLE XVII

Automated Edman Degradation of Peptide P 5									
(1 nmol)									
Cycle	P⊺H-aa	Yield (pmoles)	Cycle	PTH-aa	Yield (pmoles)				
1	Pro	143	26	Gly	28				
2	Lys	142	27	Pro	10				
3	Thr	61	28	His	7				
4	G!y	121	29	Asn	11				
5	Gln	113	30	His	8				
6	Glu	103	31	Ala	15				
7	lle	149	32	Ile	12				
8	Pro	78	33	Ala	19				
9	Tyr	101	34	Ala	21				
10	Thr	92	35	Val	10				
11	Phe	71	36	Ala	21				
12	Glu	47	37	Val	11				
13	Asp	32	38	Ala	19				
14	Arg	28	39	Leu	11				
15	Ile	47	40	Lys	5				
16	Asn	36	41	Gin	5				
17	Phe	27	42	Ala	9				
18	Ala	54	43	CnnCys	3				
19	Val	35	44	Thr	NQ ^a				
20	Phe	31	45	Pro	5				
21	Pro	17	46	Met	5				
22	Ser	15	47	Phe	4				
23	Leu	31	48	Arg	NQa				
24	Gln	14	49	Glu	3				
25	61y	25	50	Tyr	3				
Repetitive	e yield: 272-349	92.8% (Gly 4	-Gly 25)						

^aNQ: observed but not quantitated

		TABL	111¥X 3.							
	Automat	ted Edman Degr	adation of	Peptide P_7						
(1 nmo1)										
Сусіе	P⊺H-aa	Yield (pmoles)	Cycle	PTH-aa	Yield (ymoles)					
1	Pro	163	25	Arg	22					
2	Gly	154	26	Glu	17					
3	Asp	159	27	Asp	23					
4	Arg	91	28	Asp	24					
5	Ser	80	29	Phe	28					
6	Ala	141	30	Arg	22					
7	11e	64	31	Arg	18					
8	Thr	26	32	¥al	18					
9	Pro	60	33	Val	18					
10	Gly	68	34	Asp	23					
11	61y	75	35	Phe	20					
12	Leu	78	36	Ile	16					
13	Arg	53	37	Asp	18					
14	Leu	65	38	Glu	14					
15	G1y	47	39	Gly	11					
16	Ala	53	40	Val	11					
17	Pro	44	41	Asn	8					
18	Ala	71	42	11e	11					
19	Leu	64	43	Gly	12					
20	The	9	44	Leu	17					
21	Ser	15	45	Glu	7					
22	Arg	24	46	Val	8					
23	Gin	20	47	Lys	5					
24	Phe	28	48	Arg	7					
Repetiti	Repetitive yield: 91.4% (Gly 2-Gly 10)									
Position	: 384-446									

Automated Edman Degradation of Fragments Obtained after Digestion of Limited Acid Cleavage Peptides 9 2-5 2 (1.5 nmol) (1.5 nmo)) (1.5 nmol) P 5-T 1 (2 nmol) ().5 nmol) Cycle no. PTH-aa Yield (pmol) 371 335 217 131 35 56 35 28 11 25 16 17 275 273 292 198 65 22 55 44 42 58 47 352 228 227 194 178 107 154 98 492 378 68 335 279 178 56 137 87 43 76 117 71 76 66 70 40 Ala Leu Gly Ser CmCys Leu Asn Asn Lys Tyr Ser Glu Arg Lys Gly Val Arg Thr Val Asp Ala Met Ala Ala Leu Leu Glu Arg 687 662 609 395 510 405 452 301 64 Val Lys Arg Lys Thr Ala Lys Leu Gln Asp Phe Lys Ser Phe Leu Lys Gly Tyr Pro Gly Lys Arg Tyr Tyr Gly Gly Ala 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 94.1 (Lys 2-Lys 4) Repetitive yield% 63.9 (Leu 2-Leu 7) 91.5 (Ala 3-Ala 5) 89.6 (Gly 1-Gly 4) 92.6 (Val 4-Val 7) 58-69 70-81 264-271 331 - 339 429-446 Position

TABLE XX

Fig. 3. Reverse-phase hplc of the basic peptides obtained from a trypsin-carboxypeptidase B digest of the protein reacted with glycinamide. The number above the peaks refers to the peptides for which analytical data are given in the text.

Fig. 4. Comparison of the predicted secondary structure of <u>E.coli</u> serine hydroxymethyltransferase with those of the corresponding cytosolic and mitochondrial isoenzymes from rabbit liver. Gaps were introduced according to the alignment of sequences adopted in Fig. 2. It : alpha-helix; A: extended conformation; A: turn; A: random coli.

Fig. 5. Comparison of the hydropathy profile of <u>E. coli</u> serine hydroxymethyltransferase with those of the corresponding cytosolic and mitochondrial isoenzymes from rabbit liver. Gaps (---) were introduced according to the alignment of sequences shown in Fig. 2. Consecutive hydropathy values are plotted at the mid-point of the seven residues segment as it advances from N- to C-terminus.