
Strong Normalization

from an unusual point of view ⋆

Luca Paolini

Università di Torino (ITALY), Dipartimento di Informatica

Elaine Pimentel

Universidade Federal de Minas Gerais (BRAZIL), Departamento de Matemática

Simona Ronchi Della Rocca

Università di Torino (ITALY), Dipartimento di Informatica

Abstract

A new complete characterization of β-strong normalization is given, both in the
classical and in the lazy λ-calculus, through the notion of potential valuability inside
two suitable parametric calculi.

Key words: strong normalization, call-by-value, parametric lambda calculus

1 Introduction

The notion of β-normal form and consequently of β-strong normalization is
central in λ-calculus. In fact, Böhm’s Theorem [4] says that two extensionally
different β-normal forms cannot be equated in any model. As far as we know,
there are three characterizations of β-strong normalization: operational, log-
ical and semantical. The operational characterization is due to Barendregt,
through the definition of a perpetual reduction strategy. Namely, a term is
strongly normalizing if and only if a perpetual reduction strategy, when ap-
plied to it, eventually stops, and he gave an example of an effective perpetual
strategy [3, (pag. 338)]. The logical characterization has been given through
intersection types: the core intersection types system assign types to all and

⋆ Paper partially supported by FAPEMIG and CNPq.

Preprint submitted to Elsevier 19 December 2007

only the strongly normalizing λ-terms. The system is due to Coppo and Dezani
[6], while the strong normalization proof has been done by Pottinger [17]. The
semantical characterization is due to Coppo, Dezani and Zacchi [5], who de-
signed a filter λ-model, such that the interpretation of λ-term in it is greater
than a given point if and only if the term itself is β-strongly normalizing.

The λ-calculus models a call-by-name evaluation. If we skitch to call-by-value
and consider the λβv-calculus defined by Plotkin [16] in order to model it, the
notion of normal form (and so the notion of strong normalization) becomes
meaningless. In fact, it has been proved [18] that in the λβv-calculus, there
are normal forms that can be consistently equated. An important notion in
this calculus is that of potential valuability: a term is potentially valuable if
and only if there is a substitution, replacing variables by values, such that
the resulting term reduces to a value. A witness of the semantic meaning of
such a class of terms is the fact that all non potentially valuable terms can be
consistently equated [18]. Different call-by-value λ-calculi can be defined, by
modifying in a suitable way the definition of values and consequently obtaining
different characterizations of potential valuability. So it is natural to ask if
there is some formal relation between the notions of strong normalization and
the one of potential valuability. Namely, we consider the notion of β-strong
normalization both in the classical λ-calculus and in the lazy λ-calculus (the λ-
calculus with a weak β-reduction[1]). The relevant question then is if the set of
β-strongly normalizing terms in such calculi, corresponds to that of potential
valuability in some call-by-value version of λ-calculus. A positive answer gives
a further characterization of the notion of strong normalization, both in the
standard and in the lazy cases. To be more precise, we are interested in the
following problems:

Problem 1: Is there a call-by-value λ-calculus, such that the set of its
potentially valuable terms coincides with the set of β-strongly normalizing
terms?

Problem 2: Is there a call-by-value λ-calculus, such that the set of its
potentially valuable terms coincides with the set of the weak β-strongly
normalizing terms?

In order to deal with theses two problems, we use as syntactical tool the para-
metric λ-calculus, defined in [15,18], which allows us to deal with some different
calculi sharing the same syntax, but whose reduction rules are restrictions of
the β-rule. These reduction rules can be fired only when the arguments belong
to a particular set of terms, called input values, satisfying some requirements.
Both the classical λ-calculus and the λβv-calculus are particular instantiations
of the parametric λ-calculus, with sets of input values Λ and Γ respectively
(see Section 2). We will denote by λ∆-calculus the calculus whose set of input
values is ∆.

2

In this paper, we prove that both problems listed above have a solution. In
fact, it is easy to see that they have trivial solutions (Section 3). But we seek
for the best solutions, meaning minimal and decidable ones. For the first one,
we prove that there is a minimal solution, in the sense that there is a set of
input values Φ such that the language defined by it satisfies Problem 1 and,
moreover, it is minimal between all sets of input values satisfying the same
problem. The set Φ is not recursive, but we prove that there is not a decidable
solution to this problem. For Problem 2, we prove that the set of input values
of the λβv-calculus is a solution. It is decidable but not minimal. We prove
that a minimal solution does not exist.

We use as technical tools for proving these results the intersection types and
the reducibility method, based on an unusual definition of saturated sets.
In particular, we will define an intersection type assignment system, char-
acterizing the β-strong normalization in the lazy λ-calculus, so supplying as
independent result a logical charactization of lazy β-strong normalization.

Some partial results of this paper have been already presented in preliminary
works. Problem 1 and its solution Φ have been presented in [13], and Problem
2 has been discussed in [12]. Issues of minimality and decidability are discussed
here for the first time. Moreover, the definition of saturated set given in the
present paper is new, and it provides very compact and uniform proofs for
both problems.

The paper is organized as follows. Section 2 contains an introduction to the
Parametric λ-calculus, Section 3 states the two problems we want to solve,
and proposes a solution for each one. In Section 4 two intersection type as-
signment systems are presented. Section 5 contains the proofs that, for both
the considered calculi, strong normalization implies typability (in a different
type assignment system). In Section 6 we complete the proofs, showing that
typability implies strong normalization. Section 7 contains a discussion about
the minimality and decidability of the given solution and the related proofs.

2 The Parametric λ-Calculus

A calculus is a language equipped with some reduction rules. We will consider
here calculi sharing the same language, the language of λ-calculus, while they
differ from each other in the use of the reduction rule. In order to treat them in
a uniform way we will use the notion of parametric calculus, the λ∆-calculus,
that gives rise to different calculi by different instantiations of the parameter
∆. The λ∆-calculus has been studied in [15,18]. We use the terminology of
[3,18].

3

Definition 1 (The language Λ)
Let Var be a countable set of variables. The set Λ of λ-terms is defined by the
following grammar:

M ::= x | MM | λx.M

λ-terms will be ranged over by Latin capital letters. Sets of λ-terms will be
denoted by Greek capital letters. FV (M) denotes the set of variables occurring
free in the term M , and a term M is said closed if FV (M) = ∅. If Θ denotes
a set of terms (Θ)0 is the set of closed terms belonging to Θ.

Sometimes, we will refer to λ-terms simply as terms. As usual, terms will be
considered modulo α-conversion, i.e., modulo names of bound variables. The
symbol ≡ will denote syntactical identity of terms, up to α-equivalence.

We will use the following abbreviations, in order to avoid an excessive num-
ber of parentheses, thereby λx1...xn.M will stand for (λx1(...(λxn.M)...)) and
MN1N2...Nn will stand for (...((MN1)N2)...Nn). Moreover |M | will be used in
order to denote the number of symbol of the term M .

The λ∆-calculus consists of the language Λ equipped with a set ∆ ⊆ Λ of input
values, satisfying some closure conditions. Informally, input values represent
already evaluated terms, that can be passed as arguments. The set ∆ of input
values and the reduction →∆, induced by it, are defined below.

Definition 2 Let ∆ ⊆ Λ.

(i) The ∆-reduction (→∆) is the contextual closure of the following rule:

(λx.M)N → M [N/x] if and only if N ∈ ∆.

(λx.M)N is a ∆-redex (or simply redex).
(ii) →+

∆, →∗

∆ and =∆ are respectively the transitive closure of →∆, the reflex-
ive and transitive closure of →∆ and the symmetric, reflexive and transitive
closure of →∆.

(iii) A set ∆ ⊆ Λ is a set of input values, when the following conditions are
satisfied:
• Var ⊆ ∆ (Var-closure);
• P,Q ∈ ∆ implies P [Q/x] ∈ ∆, for each x ∈ Var (substitution closure);
• M ∈ ∆ and M →∆ N imply N ∈ ∆ (reduction closure).

The closure conditions on the set of input values assure us that λ∆-calculus
has the confluence property for every ∆ , i.e., the following theorem holds.

Theorem 3 (Confluence) [15,18] Let M →∗

∆ N1 and M →∗

∆ N2.
There is Q such that both N1 →

∗

∆ Q and N2 →
∗

∆ Q.

4

Two particular instantiations of ∆ give rise to the call-by-name and the call-
by-value λ-calculus. The call-by-name λ-calculus (i.e., the standard λ-calculus
equipped with the β-reduction) coincides with the λΛ-calculus. The standard
call-by-value λ-calculus (defined by Plotkin in [16]) coincides with the λΓ-
calculus, where Γ = Var ∪ {λx.M | M ∈ Λ}.

Definition 4 Let ∆ be a set of input values.

(i) A term of the λ∆-calculus is in ∆-normal form if and only if it does not
contain occurrences of ∆-redexes.

(ii) A term M is strongly ∆-normalizing if every reduction sequence starting
from M eventually stops.

Let ∆-NF and ∆-SN denote respectively the set of ∆-normal forms and of
∆-strongly normalizing terms. The set ∆-NF can be defined in the following
recursive way:

∆-NF = Var ∪ {xM1...Mn | Mk ∈ ∆-NF (1 ≤ k ≤ n)}

∪ {λ~x.M | M ∈ ∆-NF}

∪ {(λx.P)QM1...Mn | P,Q,Mk ∈ ∆-NF, Q 6∈ ∆ (1 ≤ k ≤ n)}.

Note that for the λΛ-calculus, being Λ its set of input values, the last case
cannot happen, i.e., there are no normal forms of the shape (λx.P)QM1...Mn,
hence Λ-NF⊆ ∆-NF, for all ∆. But it can happen for the λΓ-calculus: indeed
λuv.(λx.x)(uv) is a Γ-normal form.

In the λΓ-calculus, the notion of normal form is meaningless. In fact, there
are different Γ-normal forms that can be consistently equated [11,18]. The key
notion in a call-by-value setting is the one of (potential) valuability, given by
the next definition (see [14,18]).

Definition 5

(i) A term M is ∆-valuable if and only if there is N ∈ ∆ such that M →∗

∆ N .
(ii) A term M is potentially ∆-valuable if and only if there is a substitution s,

replacing variables by terms belonging to ∆, such that s(M) is ∆-valuable.

Let ∆-PV be the set of ∆-potentially valuable terms.

It is immediate to verify that a closed term is in ∆-PV if and only if it is ∆-
valuable. Note that the notion of ∆-normal form and that one of potentially
∆-valuable are orthogonal. As an example, consider the λΓ-calculus, and the
term M ≡ (λz.D)(yI)D, where I ≡ λx.x and D ≡ (λz.zz). M is in Γ-
normal form, but it is neither an input value nor potentially Γ-valuable. In
fact, consider M [Q/y], for some Q ∈ (Γ)0. If QI reduces to an element in Γ

5

then M [Q/y] ≡ (λz.D)(QI)D reduces to DD, which is not an input value.
Otherwise M [Q/y] →∗

Γ (λz.D)Q′D, for every Q′ such that QI →∗

Γ Q′, which
is not an input value. Thus (λz.D)(QI)D is not Γ-valuable. We call ∆-liar-
normal forms terms which are in ∆-normal form but are not potentially ∆-
valuable.

In the λΛ-calculus, the notion of solvability plays an important role since,
in some sense, solvable terms represent meaningful computations [3]. In [14]
the Γ-solvable and potentially Γ-valuable terms has been characterized. This
notion has been extended to the parametric λ∆-calculus in [18].

2.1 Lazy reduction

The evaluation of a λ-term is said lazy if no reduction is made under the
scope of a λ-abstraction. It is possible to define directly the lazy reduction
(sometimes called weak), as shown in the next definition.

Definition 6 Let ∆ be a set of input values. The ∆ℓ-reduction is the applica-
tive closure of the ∆-rule. We will denote by →∆ℓ the ∆ℓ-reduction, by →∗

∆ℓ

its reflexive and transitive closure, and by =∆ℓ its symmetric, reflexive and
transitive closure.

Notice that the definition of ∆ℓ-reduction is not standard. In fact, the reduc-
tion is defined by closing the reduction rule only under application, while in
the standard case the closure is under abstraction too.

The notion of normal form can be adapted for the ∆ℓ-reduction in the obvious
way, as shown in the next definition. Informally a term is in ∆ℓ-normal form
if it has no occurrences of ∆-redexes, but under the scope of a λ-abstraction.

Definition 7 (i) A term M is in ∆ℓ-normal form if and only if it has no
occurrences of ∆ℓ-redexes.

(ii) A term M has ∆ℓ-normal form if and only if there is a term N in lazy
∆-normal form such that M →∗

∆ℓ N .
(iii) A term M is ∆ℓ-strongly normalizing if and only if there is not an infinite

sequence of ∆ℓ-reductions starting from it.

Clearly, a ∆-normal form is a ∆ℓ-normal form.

Note that the Λℓ-normal form of a term, if there exists, may not be unique.
In fact, (λxy.x)(II) →∗

Λℓ λy.II and (λxy.x)(II) →∗

Λℓ λy.I where both λy.II
and λy.I are Λℓ-normal forms.

6

2.2 Some properties of strongly normalizing terms

We will now consider two particular calculi, namely the Λ-calculus and the
Λℓ-calculus. We will prove some useful properties related to their strong nor-
malization.

Lemma 8 (i) M ∈ Λ-SN implies that all subterms of M belong to Λ-SN.
(ii) M 6∈ Λ-SN implies that s(M) 6∈ Λ-SN, for all substitutions s.
(iii) C[(λx.P)Q] 6∈ Λ-SN, Q ∈ Λ-SN and C[(λx.P)Q] →Λ C[P [Q/x]] imply

C[P [Q/x]] 6∈ Λ-SN.

PROOF.

(i) Obvious.
(ii) It is sufficient to observe that every substitution preserves an infinite

reduction chain.
(iii) By definition C[(λx.P)Q] 6∈ Λ-SN implies that there is an infinite re-

duction chain starting from it. Since Q ∈ Λ-SN, the infinite reduction
sequence is preserved by the reduction. 2

Lemma 9 (i) M 6∈ Λℓ-SN implies that s(M) 6∈ Λℓ-SN, for every substitu-
tion s.

(ii) C[(λx.P)Q] 6∈ Λℓ-SN, Q ∈ Λℓ-SN and C[(λx.P)Q] →Λℓ C[P [Q/x]] imply
C[P [Q/x]] 6∈ Λℓ-SN.

PROOF. Similar to the proof of Lemma 8.(ii) and (iii). 2

3 The problems and the proposed solutions

Due to the introduction of the parametric λ-calculus, we can rephrase in a
more precise way the two problems stated in the introduction.

Problem 1 Is there a set of input values ∆ such that the set of potentially
∆-valuable terms coincides with the set of Λ-strongly normalizing terms?

Problem 2 Is there a set of input values ∆ such that the set of potentially
∆-valuable terms coincides with the set of Λℓ-strongly normalizing terms?

First of all, one could think of proposing Λ-SN and Λℓ-SN as trivial solutions
for the two problems, respectively. But both sets are not sets of input values,
since they do not have the closure properties of Definition 2: they are closed

7

under Λ and Λℓ-reductions respectively, but they are not closed under sub-
stitution. Indeed, they would induce non-confluent calculi [15, Theorem 28].
An easy way to restrict these sets in order to satisfy also this constraint is
to take only the closed terms. Remembering that a set of input values needs
to contain the set of variables, we can define the two subsets of Λ-SN and
Λℓ-SN: ∆0 = (Λ-SN)0 ∪Var and ∆1 = (Λℓ-SN)0 ∪Var. It is easy to check that
∆0, ∆1 are sets of input values and that they are solutions to Problems 1 and
2, respectively.

Theorem 10 (i) ∆0-PV = Λ-SN.
(ii) ∆1-PV = Λℓ-SN.

PROOF.

(i) M ∈ ∆0-PV implies, by definition, that there is a substitution s : V ar →
∆0 such that s(M) →∗

∆0
N ∈ ∆0, which implies that N is Λ-strongly

normalizing. All redexes in the considered reduction sequence have argu-
ments in ∆0 ⊂ Λ-SN, so s(M) ∈ Λ-SN by Lemma 8.(iii). Hence M ∈ Λ-
SN, by Lemma 8.(ii).

(ii) Similar to that of Lemma 9.(i). 2

The previous theorem shows that both the sets Λ-SN and Λℓ-SN can be de-
scribed through a proper subset of them. Hence a more interesting question
would be:

Problem 3 Are there two minimal restrictions of Λ-SN and Λℓ-SN which are
solutions of Problem 1 and 2 respectively?

Moreover, it is well known that both Λ-SN and Λℓ-SN are not recursive sets,
and hence neither are ∆0 and ∆1. Thus another relevant question would be:

Problem 4 Are there two recursive sets of input values which are solutions
of Problem 1 and 2 respectively?

Let us first consider the set of Λ-strongly normalizing terms. A first attempt
on finding a decidable solution, and hence solving Problem 4, would be to take,
as a decidable restriction of Λ-SN, the set Λ-NF, trasforming it into a set of
input values by taking the subset of its closed terms plus the variables, i.e.,
∆2 = (Λ-NF)0 ∪Var. But this does not work, since, for example, I(λx.(I(xx))
is Λ-strongly normalizing, it is closed, but it does not ∆2-reduce to a term in
∆2. In fact both xx and I(xx) do not belong to ∆2.

We will prove in Section 7 that there isn’t a decidable set of input values,
which is a proper subset of ∆0 and a solution to Problem 1. Next definition is

8

of the set of terms Φ, that will be proved to bet a minimal solution to Problem
1, and hence solving Problem 3 restricted to Λ-SN.

Definition 11 (i) The sets of λ-terms Υi, Φi (i ∈ N) are defined by mutual
induction, as follows

Υ0 = Var

Φi = Var ∪ (Υi)
0

Υi+1 = Var ∪ {xM1...Mn | Mk ∈ Υi(1 ≤ k ≤ n)} ∪ {λ~x.M | M ∈ Υi}

⋃







(λx.P)QM1...Mn

∣
∣
∣
∣
∣
∣
∣

Q ∈ Υi − (Λ0 ∪ Var), M1, ...,Mn ∈ Υi,

P [Q/x]M1 . . . Mn →∗

Φi
R ∈ Υi







(ii) Υ = ∪iΥi and Φ = Var ∪ (Υ)0.

For example, Φ0 = Var, Υ1 = Var ∪ {xy1...yn | yi ∈ V ar} ∪ {λ~x.y | y ∈ Var}
and Φ1 = Var ∪ {λx1...xm.xj | 1 ≤ j ≤ m}.

Proposition 12 Φi is a set of input values, for all i ∈ N.

However, let us notice that neither Υ nor Υi are sets of input values.

The motivation behind the contruction of set Φ is on what follows. Φ is the
least solution of the two recursive equations

Θ = Var ∪ {xM1...Mn | Mk ∈ Θ (1 ≤ k ≤ n)}

∪{λ~x.M | M ∈ Θ}∪

{(λx.P)QM1...Mn | P,Q,Mk ∈ Θ (1 ≤ k ≤ n), Q 6∈ V ar ∪ (Λ)0,

P [Q/x]M1...Mn →∗

Σ N ∈ Σ}

Σ = V ar ∪ (Θ)0

The previous equations characterize the minimal set ∆ satisfying the three
following constaints:

• ∆ ⊆ ∆-NF.
• ∆ is a set of input values.
• ∆ does not contain terms that can be equated to ∆-liar-normal forms.

In fact the set Φ satisfies some other properties, as given in the next proposi-
tion.

Lemma 13 (i) Φ ⊂ Φ-NF ;
(ii) Φ is a set of input values;

9

(iii) M ∈ Φ implies M is potentially Φ-valuable;
(iv) Φ ⊂ Λ-SN.

PROOF.

(i) By construction, Φ ⊆ Φ-NF . A counterexample proving that the inclu-
sion is proper is the term M ≡ λz.(λx.D)(zI)D. M ∈ Φ-NF since zI 6∈ Φ.
But M 6∈ Υ and M 6∈ Φ.

(ii) By construction Φ contains the variables. Moreover a term in Φ either
is a variable or it is closed, so the substitution property is satisfied. The
reduction closure follows from the previous point.

(iii) M ∈ Φ implies, by construction, that either M is a variable or it is closed.
So M is potentially Φ-valuable if and only if it is Φ-valuable, and this
last property follows immediately from point [(i)].

(iv) The inclusion is obvious. As far as the proper inclusion, II ∈ Λ-SN but
it does not belong to Φ. 2

Lemma 13.(iii) implies that the λΦ-calculus enjoys the confluence property.
Moreover it is possible to check that it also satisfies the additional necessary
condition for standardization, stated in [15,18].

As far as Problem 2 is concerned, we will prove, in Section 7, that there is
not a minimal solution. On the other hand, a decidable set of input values
satifying the Problem 2 is Γ = Var ∪ {λx.M | M ∈ Λ}, which is the set of
input values of Plotkin’s λβv-calculus [16].

4 Two intersection type assignment systems

In this section, we introduce two type assignment systems, assigning to λ-
terms intersection types, which will be the fundamental tools for proving our
results. The first one is the system already introduced in [6], while the second
one has been defined in [13].

Definition 14 (i) Let Cν be a countable set of type-constants (ranging over
α, β, ..) containing at least the type constant ν and let C = Cν − {ν}.
The set T (C) of types, ranging over by σ, τ, π, ρ, .. is inductively defined
as follows:

σ ∈ C ⇒ σ ∈ T (C)

σ, τ ∈ T (C) ⇒ (σ → τ) ∈ T (C)

σ, τ ∈ T (C) ⇒ (σ ∧ τ) ∈ T (C).

10

T (Cν) is defined similarly. Types will be considered modulo associativity,
commutativity and idempotency of the constructor ∧ (i.e., modulo an
equivalence ≃ which is the contextual, reflexive and transitive closure of
the following rules: σ∧τ ≃ τ ∧σ, σ ≃ σ∧σ and (σ∧τ)∧π ≃ σ∧(τ ∧π)).
We use the convention we will use the notation σ1 ∧ ...∧ σn for denoting
every type up to ≃. Moreover the constructor ∧ take precedence over →.

(ii) A basis (or ν-basis) is a partial function from Var to T (C) (or from Var
to T (Cν)) having a finite domain of definition. If B is a (ν)-basis then
B[σ/x] denotes the (ν)-basis such that

B[σ/x](y) =







σ if y ≡ x,

B(y) otherwise.

Furthermore, the (ν)-basis B such that dom(B) = {x1, ..., xn} and B(xi) =
σi, for 1 ≤ i ≤ n will be denoted by [σ1/x1, ..., σn/xn].

(iii) The type assignment system ⊢ is a formal system proving typing judg-
ments of the shape:

B ⊢ M : σ

where M is a term, σ ∈ T (C) and B is a basis.

The type assignment system ⊢ consists of the following rules:

(var)

B[σ/x] ⊢ x : σ

B[σ/x] ⊢ M : τ
(→I)

B ⊢ λx.M : σ → τ

B ⊢ M : σ → τ B ⊢ N : σ
(→E)

B ⊢ MN : τ

B ⊢ M : σ B ⊢ M : τ
(∧I)

B ⊢ M : σ ∧ τ

B ⊢ M : σ ∧ τ
(∧El)

B ⊢ M : σ

B ⊢ M : σ ∧ τ
(∧Er)

B ⊢ M : τ

(iv) The type assignment system ⊢ν is a formal system proving typing judg-
ments of the shape:

B ⊢ν M : σ

where M is a term, σ ∈ T (Cν) and B is a ν-basis.

The type assignment system ⊢ν consists of the same rules for ⊢ plus the
rule:

(ν)

B ⊢ν λx.M : ν

We will write ⊢∗ when referring to both ⊢ and ⊢ν, and we will use the
word basis to refer both to basis and ν-basis.

11

If B,B′ are bases then B ∩ B′ is the basis defined as follows:

(B ∩ B′)(y) =







B(y) ∧ B′(y) if both B(y) and B′(y) are defined,

B(y) if B(y) is defined and B′(y) is undefined,

B′(y) if B′(y) is defined and B(y) is undefined,

undefined otherwise.

The following lemma relates the shape of a term with the shape of its typing
derivation.

Lemma 15 (Generation)

(i) If B ⊢∗ M : σ, then B − {x : τ | x 6∈ FV (M)} ⊢∗ M : σ.
(ii) If B ⊢∗ M : σ then B ∩ B′ ⊢∗ M : σ, for any basis B′.
(iii) If B ⊢∗ x : σ then either x : σ ∈ B or x : ρ ∈ B, where ρ ≃ σ ∧ τ , for

some τ .
(iv) If B ⊢∗ MN : σ then there are types ρi and τi such that σ ≃ ρ1 ∧ . . .∧ρn,

B ⊢∗ M : τi → ρi and B ⊢∗ N : τi with 1 ≤ i ≤ n.
(v) B ⊢∗ λx.M : σ → τ if and only if B[σ/x] ⊢∗ M : τ .

PROOF.

(i) Trivial.
(ii) Easy, by induction on the derivation d proving B ⊢∗ M : σ.
(iii) Easy, by induction on the derivation and remembering the definition of

≃.
(iv) Easy, by induction on the derivation d proving B ⊢∗ MN : σ.
(v) (⇐) By rule (→ I).

(⇒) d : B ⊢ λx.M : σ → τ implies that d has the following shape. There
are k ≥ 1 subderivations di of d, ending by:

B[σi/x] ⊢ M : τi
(→I)

B ⊢ λx.M : σi → τi

followed by a sequence of applications of rules (∧I) and (∧E), being these
ones the only rules that do not modify the shape of the term. Then σ ≡ σi

and τ ≡ τi, for some i, and the proof is given. The case for the system
⊢ν is similar, taking into account that some of the di can end with an
application of the rule (ν), but clearly each occurrence of ν will be erased
in the rest of the proof. 2

12

The following, very easy, property puts in evidence the difference between the
two type assignment systems, and will be useful in what follows.

Proposition 16 (i) d : B ⊢ M : σ implies that every subterm of M is typed
by a subderivation of d;

(ii) d : B ⊢ν M : σ implies that every subterm of M , which is not under the
scope of a λ-abstraction, is typed by a subderivation of d.

The type systems ⊢∗ enjoy the subject-reduction property and a restricted
form of subject-expansion.

Proposition 17 (Subject-reduction)

If B ⊢∗ M : σ and M →Λ N then B ⊢∗ N : σ.

PROOF. Standard, using the Generation Lemma.iv) and v). 2

Proposition 18 (Typed subject-expansion)
Let C[.] be a context. Then B ⊢∗ C[P [Q/x]] : σ and B′ ⊢∗ Q : τ imply
B ∩ B′ ⊢∗ C[(λx.P)Q] : σ.

PROOF. We will show the proof for ⊢ν . The other proof is similar but simpler
(see [6]).

The proof is by induction on C[.]. Let d be a derivation proving B ⊢ν C[P [Q/x]] :
σ. We may assume, without loss of generality, that B is undefined on x and
that all typings in d have the same basis B. Indeed, (→ I) is the only rule
having a basis, in the premises, different from the basis in the conclusion; but
we can assume that free and bound variables have different names in M .
In case C[.] = [.], there are two cases to analyze.

(i) Suppose that either x 6∈ FV(P) (hence P [Q/x] ≡ P) or Q occurs only in
subterms of P which are subjects of an application of the rule (ν).
In both cases, B ⊢ν P [Q/x] : σ; therefore B[τ/x] ⊢ν P : σ, by Lemma 15.ii),
for every τ . Then B ⊢ν λx.P : τ → σ, by rule (→ I) and, by Lemma 15.i),
both B∩B′ ⊢ν λx.P : τ → σ and B∩B′ ⊢ν Q : τ . Hence, by rule (→ E),

B ∩ B′ ⊢ν (λx.P)Q : σ.

(ii) Suppose that Q occurs in P [Q/x] and let di : B ⊢ν Q : σi be the sub-
derivation occurrences, being not inside subterms typed by the rule (ν),
that we want to extract. The derivation d can be transformed into a
derivation d′ proving B[σ1 ∧ ... ∧ σn/x] ⊢ν P : σ by performing the fol-
lowing operations.

13

• Replace each typing B ⊢ν Q : σi by:

(var)

B[σ1 ∧ ... ∧ σn/x] ⊢ν x : σ1 ∧ ... ∧ σn
(∧E∗)

B[σ1 ∧ ... ∧ σn/x] ⊢ν x : σi

where (∧E∗) denotes a sequence of applications of (∧El) and (∧Er).
• Replace each occurrence of Q in P [Q/x] by x.
• Replace each occurrence of B by B[σ1 ∧ ... ∧ σn/x].
It is easy to check that d′ is well defined. By rule (→ I) we obtain
B ⊢ν λx.P : σ1 ∧ ...∧ σn → σ. Moreover, since Q is a subterm of P [Q/x],
then the free variables of Q are all in the domain of B, so there are
derivations B ⊢ν Q : σi, and by repeatly applying rule (∧I), we can build
a proof of B ⊢ν Q : σ1 ∧ ... ∧ σn, and the result follows by rule (→ E).

For the general case, where C[.] = λx.C ′[.] or C[.] = C1[.]C2[.], the result
follows easily by induction. 2

5 Strong Normalization and Potentially valuability vs Typability

In this section, we will prove that both Λ-strong normalization and Λ-potential
valuability imply typability in the system ⊢, and that both Λℓ-strong normal-
ization and Λℓ-potential valuability imply typability in the system ⊢ν . Note
that the result about Λ-strong normalization is already known, but we chosed
to treat all cases by completeness. To this aim, let us recall the shape of a
normal form in both the considered calculi. A term in Λ-normal form M is of
the shape λx1 . . . xm.xM1 . . . Mn, where m,n ≥ 0 and Mi is a Λ-normal form
for all 1 ≤ i ≤ n. A term in Λℓ-normal form either is of the shape λx.M ′, for
some M ′ ∈ Λ or xM1 . . . Mn with n ≥ 0 where Mi is a Λℓ-normal forms for all
1 ≤ i ≤ n.

Lemma 19 (i) M ∈ Λ-NF implies it is typable in the system ⊢.
(ii) M ∈ Λℓ-NF implies it is typable in the system ⊢ν.

PROOF. In both cases the proof is carried out by induction on the structure
of a normal form.

(i) Let M ≡ λx1 . . . xm.xM1 . . . Mn. If n = 0, and m = 0 the proof is trivial.
Let n > 0 and m = 0. By inductive hypothesis there are B1, . . . , Bn

and σ1, . . . , σn such that: Bi ⊢ Mi : σi. Then M has type σ in the basis

14

B′ = B1 ∩ . . . ∩ Bn ∩ [σ1 → . . . → σn → σ/x] since:

B′ ⊢ x : σ1 → . . . → σn → σ
(∗)

...
B′ ⊢ Mi : σi

...

B′ ⊢ xM1 . . . Mn : σ
(→E)

where (∗) denotes a sequence of applications of rules ((var)), (∧I), (∧El)

and (∧Er). In case m > 0, let B′′ = {xj : τj | xj ∈ {x1, ..., xm}, xj 6∈
dom(B′), τjfresh}. By Lemma 15.(ii), B′ ∩ B′′ ⊢ xM1 . . . Mn : σ, so
B′′′ ⊢ λx1 . . . xm.xM1 . . . Mn : ρ1 → ... → ρm → σ, where B′′′ is obtained
from B′ ∩ B′′ by erasing the assignments about xi (1 ≤ i ≤ m) and
xi : ρi ∈ B′ ∩ B′′.

(ii) In case M ≡ xM1 . . . Mn the proof is similar to the similar case of the
previous point, just replacing ⊢ by ⊢ν . In the case M ≡ λx.M ′ then
B ⊢ν M : ν for any basis B. 2

An innermost redex is a redex such that its argument is in normal form. It is
easy to check that, if a term M is not in normal form, in any calculus, then it
contains at least one innermost redex.

Theorem 20 (i) M ∈ Λ-SN implies M is typable in ⊢.
(ii) M ∈ Λℓ-SN implies M is typable in ⊢ν.

PROOF.

(i) If M is in Λ-NF, then the proof follows from Lemma 19.(i). Otherwise,
we can assume that there is a Λ-reduction sequence

M ≡ M0 →β M1 →β . . . →β Mn ≡ N

reducing at each step the leftmost innermost redex (n > 0).This reduction
sequence is finite, since M is Λ-strongly normalizing. The proof is given
by induction on n.
By induction hypothesis, there are a base B1 and a type σ such that
B1 ⊢ M1 : σ: let (λx.P)Q be the reduced redex. Then, there is a basis B2

and a type τ such B2 ⊢ Q : τ by Lemma 19.(i). Then the result follows
trivially from Property 18.(i).

(ii) Similar to the proof of the previous point, taking into account that the
innermost redex cannot occur in a subterm typed by the type ν. 2

Corollary 21 (i) M ∈ Φ implies M is typable in ⊢;
(ii) M ∈ Γ implies M is typable in ⊢ν.

PROOF.

15

(i) By Lemma 13.(iv) and Theorem 20.(i);
(ii) From Theorem 20.(i), observing that Γ ⊂ Λℓ-NF.

Now let us consider the potential valuability property.

Theorem 22 (i) M ∈ Φ-PV implies M is typable in ⊢.
(ii) M ∈ Γ-PV implies M is typable in ⊢ν.

PROOF.

(i) Let M ∈ Φ-PV. Then there is a substitution s, replacing variables by
terms belonging to Φ, such that s(M) →∗

Φ N ∈ Φ. Then, by Lemma
21.(i), there are B and σ such that B ⊢ N : σ. Moreover, since every Φ-
reduction step is a β-reduction too, by Corollary 21 and Proposition 18
B′ ⊢ s(M) : σ, for some B′ such that B ⊆ B′. Let FV (M) = {x1, . . . , xn}
(n ≥ 0), and let s(xi) = Pi ∈ Φ. So, again by Corollary 21 and Proposition
18, B′′ ⊢ (λx1 . . . xn.M)P1 . . . Pn : σ, for some B′′ such that B′ ⊆ B′′.
Then, by Proposition 16, M is typable.

(ii) Let M ∈ Γ-PV. Then there is a substitution s, replacing variables by
terms belonging to Γ, such that s(M) →∗

Γ N ∈ Γ. Let FV (M) =
{x1, . . . , xn} (n ≥ 0), and let s(xi) = Pi ∈ Γ. By mimicking the proof of
the previous point, we can obtain that d : B ⊢ν (λx1 . . . xn.M)P1 . . . Pn :
σ, for some B and σ. In order to conclude, assume M is not typed by a
subderivation of d. But in this case it there must be j such that d′ : B′ ⊢ν

λxj . . . xn.M : ν is a subderivation of d (1 ≤ j ≤ n). But, since the type
ν has not applicative power, only the subterm (λx1...λxj−1.M)P1 . . . Pj−1

can be typed, contrary to what we obtained before. 2

6 Typability vs strong normalization and potential valuability

One of the tools used in the literature for proving the strong normalization of
a type assignment system is reducibility, introduced by Tait [19]. Here we need
a stronger result, since we want to prove that typability implies both strong
normalization and potential valuability. In order to prove both implications
at the same time, we use a reducibility method, based on a non standard
definition of saturated sets.

Definition 23 (i) Let a k-saturated set Sk be a set such that:
1. Sk ⊆ Λ-SN;
2. x ∈ Var and Mi ∈ Λ-SN imply xM1...Mn ∈ Sk (1 ≤ i ≤ n);
3. M [P/x]M1...Mn ∈ Sk and P ∈ Λ-SN imply (λx.M)PM1...Mn ∈ Sk.

16

4. ∀h ≥ k, Oh ∈ Sk, where Oh ≡ λx1 . . . xhxh+1.xh+1.
Let SATk be the set of all k-saturated sets.

(ii) A k-lazy saturated set Sℓ
k is defined in a similar way as a k-saturated set,

only replacing Λ-SN by Λℓ-SN. Let SAT ℓ
k be the set of all k-lazy saturated

sets.
(iii) SAT =

⋃

k∈ω SATk and SAT ℓ =
⋃

k∈ω SAT ℓ
k .

We will call saturated set (lazy-saturated set) a k-saturated set (k-lazy sat-
urated set), for some k. Note that the previous definition differs from the
classical one by adding one more condition (item 4). Hence there are satu-
rated sets according to the classical definition which are not saturated in our
sense (e.g. the least saturated set containing all variables).

Theorem 24 (i) Λ-SN ⊆ SAT .
(ii) Λℓ-SN ⊆ SAT ℓ.

PROOF. In both cases, the proof is obvious. 2

Let S and T be either two saturated sets or lazy-saturated sets. Define:
S → T = {M | MN ∈ T, for all N ∈ S}. In order to prove that S → T is
saturated, we need a further property.

Proposition 25 (i) T ∈ SATk implies that Ok+1N ∈ T, for all N ∈ Λ-SN.
(ii) T ∈ SAT ℓ

k implies that Ok+1N ∈ T, for all N ∈ Λℓ-SN.

PROOF. Both proofs follow from Definition 23.(iii). 2

Lemma 26 (i) T ∈ SATt implies that (S → T) ∈ SATt+1, for all S ∈ SAT .
(ii) T ∈ SAT ℓ

t implies that (S → T) ∈ SAT ℓ
t+1, for all S ∈ SAT ℓ.

PROOF. Both proofs follow trivially from Definition of → and Proposition
25, since S is respectively included in Λ-SN and Λℓ-SN. 2

Now we will interpret types as (lazy) saturated sets, and bases as sets of
substitutions, in the following way.

Definition 27 (i) If ρ : Var → SAT then [[.]]ρ is the function from types to
saturated set defined as follows,
• [[α]]ρ = ρ(α);
• [[σ → τ]]ρ = [[σ]]ρ → [[τ]]ρ;
• [[σ ∧ τ]]ρ = [[σ]]ρ ∩ [[τ]]ρ.

17

(ii) If ρ : Var → SAT ℓ then [[.]]ℓρ is the function from types to lazy saturated
set defined as follows,
• [[α]]ℓρ = ρ(α);
• [[ν]]ℓρ = Λℓ-SN;
• [[σ → τ]]ℓρ = [[σ]]ℓρ → [[τ]]ℓρ;
• [[σ ∧ τ]]ℓρ = [[σ]]ℓρ ∩ [[τ]]ℓρ.

(iii) If B = x1 : σ1, ..., xn : σn then [[B]]ρ = {s | s(xi) ∈ [[σi]]ρ} and [[B]]ℓρ = {s |
s(xi) ∈ [[σi]]

ℓ
ρ}.

Both the type assignment systems are correct with respect to the previous
defined semantics.

Lemma 28 (i) B ⊢ M : σ implies ∀ρ : Var → SAT , ∀s ∈ [[B]]ρ, s(M) ∈
[[σ]]ρ.

(ii) B ⊢ν M : σ implies ∀ρ : Var → SAT ℓ, ∀s ∈ [[B]]ℓρ, s(M) ∈ [[σ]]ℓρ.

PROOF.

(i) By induction on the derivation. If the last applied rule is (var) then the
result is obvious. In the case the last applied rule is

B[σ/x] ⊢ M : τ
(→I)

B ⊢ λx.M : σ → τ

by induction, ∀ρ,∀s ∈ [[B]]ρ, s(M) ∈ [[τ]]ρ. Since s(x) ∈ [[σ]]ρ, the result
follows by the definition of [[σ]]ρ → [[τ]]ρ. In case the last applied rule is

B ⊢ M : σ → τ B ⊢ N : σ
(→E)

B ⊢ MN : τ

by induction, ∀ρ.∀s.s(M) ∈ [[σ → τ]]ρ and s(N) ∈ [[σ]]ρ. Then s(MN) ∈
[[τ]]ρ, by definition of [[σ]]ρ → [[τ]]ρ. The cases dealing with the rules in-
volving ∧ come immediately by induction.

(ii) (ν) is obvious. Further cases are similar to that of the previous point. 2

Proposition 29 Let O be the set of all substitutions mapping each variable
xi to a term of the shape Oki, for some ki ∈ N.

(i) B ⊢ M : σ implies that there exists o ∈ O such that o(M) ∈ Λ-SN.
(ii) B ⊢ν M : σ implies that there exists o ∈ O such that o(M) ∈ Λℓ-SN.

PROOF.

18

(i) Let B = x1 : τ1, ..., xn : τn, and let ρ : Var → SAT . Definition 27 implies
Oki ∈ [[τi]]ρ, for some ki ∈ N. Let o(xi) = Oki , so o ∈ [[B]]ρ. Then by
Lemma 28 M ∈ [[σ]]ρ, so M ∈ Λ-SN.

(ii) Similar to that of the previous case. 2

Lemma 30 (i) M ∈ Λ-SN implies M →∗

Φ N ∈ Υ.
(ii) M ∈ Λℓ-SN and M ∈ Λ0 implies M →∗

Γ N ∈ Γ

PROOF.

(i) To each M ∈ Λ-SN, associate the number l(M) that is the maximum
length of a derivation M →∗ N , where N ∈ Λ-NF. Note that, if M →Λ N
then there is a sequence of reductions starting from M of length 1+ l(N),
hence l(N) is strictly less than l(M).
The proof is by induction on the pair (l(M), |M |). If M ≡ λx.P or
M ≡ xM1 . . . Mm the result follows easily by induction.
Let M ≡ (λx.P)QM1 . . . Mm. If M contains at least one Φ-redex, then the
proof follows by induction. Otherwise, by induction Q,M1, . . . ,Mm ∈ Υ.
Moreover, P [Q/x]M1 . . . Mm →∗

Φ N ∈ Υ by induction. Note that Q is
neither a variable nor a closed term, otherwise (λx.P)Q would be a Φ-
redex. Therefore, M ∈ Υ by the definition of Υ.

(ii) The proof is easy by induction on |M |. 2

Theorem 31 (i) B ⊢ M : σ implies M ∈ Φ-PV.
(ii) B ⊢ν M : σ implies M ∈ Γ-PV.

PROOF.

(i) By Property 29.(i) and by Lemma 30.(i).
(ii) By Property 29.(ii) and by Lemma 30.(ii). 2

Theorem 32 (i) B ⊢ M : σ implies M ∈ Λ-SN.
(ii) B ⊢ν M : σ implies M ∈ Λℓ-SN.

PROOF.

(i) Let B = x1 : τ1, ..., xn : τn, and let ρ : Var → SAT . Then xi ∈ [[τi]]ρ (by
Definition 27.(iii)). Let s be such that s(xi) = xi, so s ∈ [[B]]ρ. Then, by
Lemma 28, M ∈ [[σ]]ρ, so M ∈ Λ-SN.

(ii) Similar to that of the previous case. 2

19

7 On the quality of the proposed solutions

In Section 3 we refined the two problems of characterizing the notion of (lazy)
strongly-normalization through potential valuability, asking also for the ex-
istence of both decidable and minimal solutions. In this last section we will
show that the solutions we propose are good, in some sense. In particular, we
will prove that the set Φ is a minimal solution of Problem 1. Clearly Φ is a
non recursive set, but we will prove that a decidable solution does not exist.
Moreover we will show that Γ, although decidable, is not a minimal solution
of Problem 2, but a minimal solution does not exist.

Theorem 33 Φ is minimal between all the solutions of Problem 1.

PROOF. Let ∆⋆ be a set of input values.
We will prove that, if the set of potentially ∆⋆-valuable terms coincides with
the set of the strongly Λ-normalizing terms and ∆⋆ ⊂ Φ then ∆⋆ = Φ. Clearly
∆⋆ = Φ if and only if (∆⋆)0 = Φ0, since ∆⋆ ⊂ Φ and Φ = Var∪Φ0. Let M ∈ Φ0.
Note that M is Φ-valuable, potentially Φ-valuable, in Φ-normal form and also
a closed strongly Λ-normalizing term. Thus, M is potentially ∆⋆-valuable by
hypothesis and M ∈ Λ0 implies that M is ∆⋆-valuable. But ∆⋆ ⊂ Φ implies
Φ-NF ⊂ ∆⋆-NF, hence M ∈ ∆⋆-NF. Then M ∈ ∆⋆ and the proof is done. 2

Also, it is worthy to say that, although Φ is minimal, it is not the minimum set
answering Problem 1. In fact, the minimum solution to the following equations:

Θ = {λx0...xn.y | y 6= xi (0 ≤ i ≤ n) } ∪

{xM1...Mn | Mk ∈ Θ (1 ≤ k ≤ n)} ∪ {λ~x.M | M ∈ Θ}∪

{(λx.P)QM1...Mn | Q,M1, ...,Mn ∈ Θ, Q 6∈ ∆, P [Q/x]M1...Mn →∗

∆ R ∈ Θ}

∆ = {λx0...xn.y | y 6= xi (0 ≤ i ≤ n) } ∪ (Θ)0

is also a solution to Problem 1. Sets Θ and Φ are not comparable, in fact
λx.y ∈ Θ but not in Φ, while I(λx.y) ∈ Φ but not to Θ.

In order to prove the next result, we need to recall a property, first proved in
[10].

Proposition 34 For every term M , there is an effective procedure building
two Λ-normal forms, PM and QM , such that PMQM →∗

Λ M .

PROOF. The proof is by induction on the structure of M . If M ≡ x, then
PxQx ≡ (λy.y)x. If M ≡ λx.N , then by induction there are PN and QN such

20

that PNQN →∗

Λ N . So PMQM ≡ (λx.xQN)PN , where x is fresh. If M ≡ NR,
then PMQM ≡ (λy.yPNQN(yPRQR))I, where y is fresh.

Theorem 35 There isn’t a decidable set of input values which is a solution
of Problem 1.

PROOF. Assume that such a set, say ∆#, exists. Since D ≡ λx.xx is a
closed Λ-normal form, it closed ∆#-normal form, and hence it must be in
∆#. Henceforth, xx cannot belong to ∆#, since sets of input values need to
be closed under substitution and DD is not a strongly normalizing term. Let
M ≡ (λz.P)(xx)Q where P,Q ∈ Λ-NF0. M is an open ∆#-normal form, so it
does not necessarily belong to ∆#.
Clearly, M is Λ-strongly normalizing if and only if PQ is Λ-strongly normaliz-
ing. Let s be a substitution replacing x by I. s(M) →∗

∆# PQ, since I belongs
to every set of input values (satisfying the Problem 1). Therefore M belongs
to ∆# if and only if PQ is Λ-strongly normalizing. So the problem is reduced
to that one of deciding if a term which is an application of two Λ-normal
forms is Λ-strongly normalizing. But, by the previous property, this problem
is equivalent to the general Λ-strongly normalization problem, which is well
known to be undecidable (see [20]). 2

Hence, it is reasonable to say that Φ is the best solution to Problem 1, since it
is minimal (but the minimum does not exist) and semi-decidable (while there
cannot be a decidable one).

About Problem 2, it is interesting to note that Γ is not a minimal solution of
it. Indeed, ΓD = Γ − {M ∈ Γ|M →∗

Γ λx.xx} is a proper subset of Γ, and it
is also a solution to Problem 2. This remark is the starting point for proving
that no minimal solution exists.

Theorem 36 There is not a minimal solution of Problem 2.

PROOF. Let ∆ be a solution of Problem 2. Let ωk
3 ≡ λz.

k+2
︷ ︸︸ ︷

(λx.xxx)...(λx.xxx)
for all k ∈ N. Since D3 ≡ λx.xxx is a closed normal form, then D3 ∈ ∆ by
hypothesis. Note that ωk

3 contains a single redex and ωk
3 →∆ ωk+1

3 for all k ∈ N,
since D3 ∈ ∆.
Each ωk

3 must be ∆-valuable, since ωk
3 ∈ Λℓ-NF0; thus, there exists n ∈ N

such that ωn
3 ∈ ∆. Indeed ∆ contains an infinite subset of ωk

3 -terms.
Clearly ∆∗ = ∆ − {ωn

3 |n ∈ N} is strictly contained in ∆, but it is again a set
of input values such that its potentially valuables terms correspond exactly to
that of Λℓ-strongly normalizing terms. 2

21

Hence we could say that Γ is the best solution to Problem 2, since it is decid-
able, with an easy syntax, although not minimal, but a minimal solution does
not exist.

References

[1] Abramsky S., Ong L.C., “Full abstraction in the Lazy Lambda Calculus”,
Information and Computation, 105, 1993, pp. 159-267.

[2] van Bakel S., Intersection type assignment systems, Theoretical Computer
Science, 38(2):246-269, Elsevier, 1997.

[3] Barendregt H.P., The Lambda Calculus: its syntax and semantics, N.103 in
Studies in Logic and the Foundations of Mathematics (revised edition), North-
Holland, Amsterdam, 1994.

[4] Böhm, C. Alcune proprietà delle forme βη-normali nel λK-calcolo,
Pubblicazioni dell’istituto per le applicazioni nel calcolo, n. 696, Roma, 1968.

[5] Coppo M., Dezani-Ciancaglini M., Zacchi M., Type Theories, Normal Forms
and D∞ Lambda Models, Information and Control, 72, 2, 1987, pp.85-116.

[6] Coppo M., Dezani-Ciancaglini M., An Extension of the Basic Functionality
Theory for the λ-Calculus Notre-Dame Journal of Formal Logic, 21(4), pp. 685-
693, October 1980.

[7] Egidi L., Honsell F., and Ronchi della Rocca S., Operational, denotational and
logical descriptions: a case study, Fundamenta Informaticae, 16(2) 149–170,
1992.

[8] Krivine J.L., Lambda-Calculus, Types and Models, Ellis Horwood Series in
Computers and Their Applications. 1993.

[9] Landin P.J., The mechanical evaluation of expressions, Computer Journal, 1964.

[10] Nederpelt R., Strong normalisation in a lambda calculus with lambda structured
types, PhD thesis, Eindhoven University of Technology, The Netherlands, 1973.

[11] Paolini L.,Call-by-value separability and computability, ICTCS’01, Restivo,
Ronchi Della Rocca, and Roversi, eds, LNCS 2202, Springer-Verlag, 74-89.

[12] Paolini L., Pimentel E., Ronchi Della Rocca S. Lazy strong normalization,
ITRS’04, ENTCS vol. 136, pp. 103–116, 2005.

[13] Paolini L., Pimentel E., Ronchi Della Rocca S. An Operational characterization
of Strong Normalization, FOSSACS’06, LNCS vol. 3835, pp. 352–366, 2006.

[14] Paolini L., Ronchi Della Rocca S., Call-by-value Solvability, Theoretical
Informatics and Applications, 33(6), 507-534, 1999.

22

[15] Paolini L., Ronchi Della Rocca S., The Parametric Parameter Passing λ-
calculus, Information and Computation, 189(1):87-106, 2004.

[16] Plotkin G.D., Call-by-name, call-by-value and the λ-calculus, Theoretical
Computer Science (1) 125-159, 1975.

[17] Pottinger G., A type assignment for the strongly normalizable λ-terms, in
To H.B. Curry: essays on combinatory logic, lambda calculus and formalism,
pp.561-577, Academic Press, London, 1980.

[18] Ronchi Della Rocca S., Paolini L., The Parametric λ-calculus. A meta-model
for computation, Texts in Theoretical Computer Science: an EATCS Series,
Springer-Verlag, Berlin, 2004.

[19] Tait, W. W., Intentional interpretations of functionals of finite type I Journal
of Symbolic Logic, 32(2):198-212, 1967.

[20] Urzyczyn, P., A simple proof of undecidability of Strong Normalization, Notes,
2000.

23

