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Reproductive obstacles have led scientists to develop novel techniques/technologies for artificial
reproduction. We aimed to investigate the possibility of propagating zebrafish females using sperm
ovarian lavage with and without presence of male stimulus. This experiment consisted of several
treatments: traditional spawning approaches with females and wild-type males (AB? x ABJ); no males
present with non-manipulated females (AB?); no males present with females inseminated with NaCl into
ovarian lobes [AB®(inj.NaCl)]; no males present with females inseminated with sperm from transgenic
males into ovarian lobes [AB?(inj.Tgd)]; non-manipulated females kept separately from wild-type males
(ABR|ABJ); females kept separately from wild-type males and inseminated with NaCl into ovarian lobes
[AB®(inj.NaCl)|AB3]; and females kept separately from wild-type males and inseminated with sperm
from transgenic males into ovarian lobes [AB2(inj.Tgd)|ABJ]. There were no released eggs in both
negative control treatments (AB? and AB?|ABJ). Egg production increased (ranged from 0 to 28.5 eggs/
female) when females were injected in the presence [AB? (inj.NaCl) [AB3] or absence of male stimulus
[AB? (inj.NaCl) and (AB®(inj.Tgd)]. A further increase in egg production [relative to AB?, AB? (inj.NaCl),
and AB?|ABJZ] was detected when females were inseminated with pooled sperm from transgenic males
in the presence of male stimulus [AB2(inj.Tgd)|ABJ; ranged from 2.5 to 55 eggs/female] or when using
traditional spawning approaches (AB? x ABJ; ranged from 25 to 131 eggs/female). Females inseminated
with sperm produced embryos, although no differences were detected when females were inseminated
with pooled sperm from transgenic males in presence (11.8 + 16.3%) or absence (average = 12.6 + 9.2%)
of male stimulus. Traditional spawning approaches produced the most eggs (81.2 + 42.3 per female) and
highest fertilization rate (81.3 + 10.4).
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1. Introduction female gonads [1,2]. Fish ontogeny then begins with fertilization

leading to and resulting in the fusion of the nuclei of the male and

Fish are the largest group of vertebrates (~33,500 species; www.
fishbase.org) and inhabit almost every aquatic environment on
planet Earth. With the exception of hermaphrodite fish species, the
majority of sperm and eggs develop separately within male and
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female gametes to form a diploid zygote [2,3]. Fertilization can
occur either internally or externally of the female reproductive
tract. External fertilization is by far the most common reproductive
strategy in teleosts where eggs are ovulated from the ovarian fol-
licles into the ovarian lumen or peritoneal cavity, usually following
completion of the first meiotic division [4]. Once the mature egg
has attained the metaphase of the second maturation (meiotic)
division, it is released into the external aquatic environment and
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subsequently fertilized [1,2]. However, the external aquatic envi-
ronment can be very hostile for gametes, and thus, the lifespan of
activated sperm is usually short following contact with water,
ranging from a few seconds to several minutes for the majority of
fish species [5]. This limits sperm-egg interactions that control
fertility and subjects gametes to strong selection or competition
[6—9].

During in vitro fertilization, numerous steps can impact the final
result of fertilization, from sperm collection to gamete mixing and
incubation [10]. The success of fertilization in external aquatic en-
vironments can be aggravated by plugging of the micropyle [2],
limited egg receptivity [11], and sperm longevity [12]. This scenario
has been shown for zebrafish (Danio rerio, Hamilton, 1822), where if
no sperm enter the egg during the first ~30 s post-activation, the
fertilization process will be hampered [13]. Another barrier is non-
synchronous spawning between sexes [14]. Together, these repro-
ductive obstacles have led scientists to develop novel techniques
and technologies for artificial reproduction, such as direct sperm
injection into the fish's oviducts/ovary. For example, Miiller et al.
[15—18] developed a fish propagation method where sperm were
delivered into the ovarian lobes of females by ovarian lavage in
common carp (Cyprinus carpio, Linnaeus, 1758) and African catfish
(Clarias garepinus, Burchell, 1822) parallel with hormonal induc-
tion. Together, their results showed that all sperm-injected females
produced fertilized eggs that developed normally.

In this study, we used zebrafish as the model organism to
further investigate this phenonemon. Zebrafish is an excellent
model for studying aspects of reproductive biology, due to their
growing popularity as a biomedical species, and the need to
maintain numerous breeding lines [19,20]. Thus, advanced in vivo
and in vitro reproductive studies will lead to more efficient prop-
agation protocols, which can also be applied to other commercially
viable species for hatchery production. More specifically, we aimed
to investigate the possibility of propagating females using sperm
ovarian lavage/sperm insemination without the presence of male
stimulus.

2. Material and methods
2.1. Zebrafish lines and husbandry conditions

Zebrafish female broodstock were wild-type line [21] that have
been incrossed for several years in the zebrafish laboratory of Szent
Istvan University, Hungary. Two male lines were used: i. wild-type
line AB bred in the zebrafish laboratory [22], and ii. neutrophil-
specific transgenic zebrafish line Tg(mpx:GFP)i114, that express
green fluorescent protein (GFP) under myeloperoxidase (mpx)
promoter [23]. AB females [n 191, standard length
(SL) = 10—28 mm] and males (n = 60, SL = 9—30 mm) were
maintained under constant water quality parameters (25 + 0.5 °C,
pH 7.0 + 0.2, conductivity 500 + 50 S, 0 mM CO3~, 0.4 mM HCO3~;
degree German hardness < 0.5°; dissolved oxygen > 90%) in a
Tecniplast ZebTec (Buguggiate, Italy) recirculating zebrafish hous-
ing system. The photoperiod was set at 14h light/10h dark. Zebra-
fish were kept in 3 L polycarbonate tanks and fed twice a day with
Zebrafeed (Sparos, 400—600 pm) and twice a week with brine
shrimp (Ocean Nutrition > 230.000 nauplii/g). Transgenic males
used for experiments (Tg(mpx:GFP)i114, n = 15, SL = 19—25 mm)
were kept together in a 3 L polycarbonate tank in the same system.

The protocols for fish propagation and experimentation (Sci-
entific Ethics Council for Animal Experimentation; XIV-001-2306-
4/2012 and PE/EA/742-7/2020) have been reviewed and approved
by the National Food Chain Safety Office of Hungary and the Animal
Health and Animal Welfare Directorate of Government Office of
Pest County.
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2.2. Experimental design

2.2.1. Sperm collection

Tg(mpx:GFP) homozygous males were removed from their
breeding tank and anaesthetised with MS-222 (4.2 mL, 15.3 mM
MS-222/100 mL water). After anesthetization the genital area was
dried with a paper towel and sperm stripping was performed under
a Leica M205 FA microscope. Sperm were obtained by applying
gentle pressure to the sides of the transgenic males and collected
using 0.2 to 2 pL pipette tips (Thermo Scientific Finnpipette™ F1)
and G-1 glass capillary tubes (length 90 mm, external
diameter = 1 mm; Narishige Scientific Instrument Lab. Japan). After
collection the sperm were pooled.

2.2.2. Sperm and isotonic solution insemination

Isotonic (physiological) NaCl solution 0.9% (Fresenius Kabi
Deutchland GmbH) or a pooled sperm sample (0.4 puL) was artifi-
cially inseminated into one AB female (see Section 2.3 below). Fe-
males were anaesthetised, as above, ~1 h from the expected
spawning time (i.e. when dark/light changes). Sperm was injected
using specific pipette tips (Finnpipette™ F1) (Thermo Scientific
Finntip™ 20 pL, CE marked), which were inserted ~2 mm deep into
the oviduct through the genital papilla of anaesthetised females.
Thereafter, females were placed back into their respective spawn-
ing tanks for recovery and spawning.

2.3. Experimental design

These experiment series consisted of 7 independent treatments
which are highlighted below. For Treatment 1, traditional spawning
approaches were used (absolute control, wild-type female x wild-
type male: AB? x ABJ). Specifically, zebrafish propagation took
place in ~1.7 L spawning tanks (Sloping Breeding Tank, ZebTec,
Tecniplast S.p.a., Italy) which features a sloped interior, or “beach
style”, that facilitates and promotes zebrafish spawning (tanks also
used for all treatments). These tanks contain two interchangeable
containers, where the bottom of the inner vessel is perforated to
facilitate egg collection and movement of fish post-spawning.
Propagating tanks were paired with one female and two wild-
type males in the afternoon prior to spawning (n = 232, 463,
Table 1, Fig. 1). Spawning took place the following morning, typi-
cally a few hours after the lights turned on, as zebrafish repro-
duction is strongly influenced by photoperiod [24].

In the next series of treatments (Treatments 2—4) the zebrafish
spawning tanks did not contain males (n = 4 females/spawning
tank, Table 1, Fig. 1). More specifically, Treatment 2 was the negative
control, where females were not manipulated (AB?). For Treatment
3 the females were artifically inseminated with only NaCl [positive
control; AB? (inj.NaCl)], while in Treatment 4 the females were
artifically inseminated with pooled sperm from the transgenic (TG)
males [AB2(inj.Tgd)].

For the last series of treatments (Treatment 5—7) the females
were kept separately from the wild-type males using a transparent
divider in each spawning tank (n 4 females and 6 males/
spawning tank, Table 1, Fig. 1). Here, Treatment 5 was the negative
control Il (AB?|AB3) where females were not manipulated, while in
Treatment 6 the females were inseminated with only NaCl [positive
control II; AB? (inj.NaCl) |AB3]. Finally, in Treatment 7 the females
were inseminated with pooled sperm from transgenic males
[AB2(inj.Tgd) |AB3]. Males were selected randomly from the same
broodstock (see 2.1. zebrafish lines and husbandry conditions) in
every experimental series.
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Summary of treatments used to study how traditional spawning (Treatment 1) and ovarian inseminated sperm impacts spawning success in zebrafish (Danio rerio) without
male stimulus (Treatments 2—4) and with male stimulus (Treatments 5—7).

Exp. Treatment description Abbreviation # females and males/per spawning tank Replicate
1 Traditional spawning AB?xABJ 42x63 7
2 Females without males Non-manipulated AB? 42 7
3 NaCl inseminated AB? (inj.NaCl) 42 7
4 Sperm inseminated AB2(inj.TG3) 49 7
5 Females separated from Non-manipulated AB?|ABS 42168 7
6 males by transparent NaCl inseminated AB? (inj.NaCl)|AB3 42|63 7
7 plastic screen Sperm inseminated AB2(inj.TG3)|AB3 42|63 7

2.4. Egg collection and incubation

initiation of light. Eggs were incubated in a thermostat with photo-

period set at 14 h light:10 h dark with daily water changes. After 72 h
of incubation, genotypes (wild-type line or transgenic) of embryos
were determined using a Leica M205 FA microscope with LAS X (Leica
Application Suite X) 3.4.2.18368 software (Leica Microsystems CMS

Water conditions for egg incubation were: Temperature = 25.5°C;
pH="7.0+0.2; and conductivity = 525 uS. Eggs were collected from all
tanks and placed into Petri dishes (100 mm diameter) 4 h after

traditional
spawning
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Fig. 1. A: Summarised schematic figure about the experimental design. B-C: Sloping Breeding Tanks for experiments, B: without divider screen C: with divider screen.
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Gmbh). Offspring originating from injected transgenic sperm were
counted upon detection of green fluorescence protein expression
using an EGFP2 filter, where the maximal excitation and emission
values were 489 nm and 508 nm, respectively.

2.5. Reproduction parameters

The number of eggs in each tank were quantified. Thereafter,
egg production per female was calculated as: quantity of eggs
counted per tank/number of females per tank. In addition, fertil-
ization rate (%) was calculated as: (number of fertilized eggs at 72 h/
number of eggs) x 100.

2.6. Statistical analysis

Data were analyzed using SPSS 22.0 for Windows. Residuals
were tested for normality and homogeneity of variances. Data
deviating from normality or homoscedasticity were transformed.
Alpha was set at 0.05. Tukey's analysis was used to compare least-
square means between treatments. Egg production and hatching
rate data were subjected to one-way analysis of variance.

3. Results

Spawning treatment impacted both egg production (P < 0.05)
and fertilization rate (P < 0.05). As evident in Table 2 there were no
released eggs in both negative control treatments (Treatment
2 = AB? and Treatment 5 = AB?|ABg). Egg production increased
when females were injected with NaCl in the presence [Treatment
6 = AB? (inj.NaCl) |AB3] or absence of male stimulus [Treatment
3 = AB? (inj.NaCl) and Treatment 4 = (AB2(inj.TG3)]. There was
also a high-degree of variation in egg production between spawns
for these three treatment groups (Treatments 3, 4, and 6 ranged
from O to 28.5 eggs per female), however as would be expected no
eggs were fertilized from the positive controls (Treatments 3 and
6). Females from these treatments, in the presence (Treatment 6) or
absence of male stimulus (Treatments 3 and 4), statistically
released a similar amount of eggs.

A further increase in egg production (relative to Treatments 2, 3,
and 5) was detected when females were inseminated with pooled
sperm from transgenic males in the presence of male stimulus
[Treatment 7 = AB®(inj.Tgd)|AB3] or when using traditional
spawning approaches (Treatment 1 = AB? x ABGJ). A high-degree of
within treatment spawning variability was also detected when
using this sperm insemination treatment (Treatment 7 ranged from
2.5 to 55 per females) or the traditional spawning approach
(Treatment 1 ranged from 25 to 131 eggs per female) (Table 2).

Females artificially inseminated with sperm also produced
viable embryos, although no significant difference was detected
when females were inseminated with pooled sperm from trans-
genic males in the presence or absence of male stimulus (Table 2).

Table 2
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Specifically, fertilization rate was 12.6% (ranged from 0 to 24.7%)
when no males were present [Treatment 4 = (AB®(inj.Tgd)] and
was 11.8% (ranged from 0 to 39.3%) with male stimulus [Treatment
7 = AB?(inj.Tgd)|ABJ]. All embryos from the sperm inseminated
group [AB®(inj.Tgd)|ABJ3] were fertilized by transgenic sperm and it
is indicated that all embryos were diploid (not haploid) and the AB
males were not involved in fertilization (Fig. 2). Meanwhile, the
traditional spawning approach (Treatment 1 = AB? x ABJ) had the
highest fertilization rate (81.3%) with a high degree of variability
(Table 2).

4. Discussion

Our previous studies indicated that artificial sperm insemina-
tion or sperm ovarian lavage is an effective tool for fish captive
breeding [15—17,25,41]. In this study, spawning success of sperm
inseminated zebrafish females was studied without males or
without direct presence of males (i.e. males were separated from
females with a divider) during spawning. Our results clearly
showed no spontaneous spawning for the negative control treat-
ments (Treatment 2 = AB? and Treatment 5 = AB?|AB3). In nature,
zebrafish spawn in groups during the reproductive season [20,26].
This is also observed under lab conditions, where group spawning
increases reproduction efficiency, including egg production, fertil-
ization rate, hatching rate, larval viability, and genetic variability
[20,24]. Here, group spawning was not enough to induce sponta-
neous ovulation for the untreated groups (AB? and AB?|ABGJ),
despite the fact that females could observe males through trans-
parent screens and receive visual stimulus and paternal
pheromones.

Only a few infertile eggs (0—15.5 per female) were released from
females that were injected with physiological saline solution into
their ovarian lobes [Treatment 3 = AB? (inj.NaCld) and Treatment
6 = AB2(inj.NaCl)|AB]. Generally, during in vitro fertilization pro-
cedures eggs can easily be released by gentle pressure on the fe-
males abdomen [27]. It is suggested that handling stress and saline
injections or even the slope of the breeding screen can also induce
female ovulation due to increases in internal pressure similar to the
pneumatic egg collection method [28]. Our study along with others
[29] have shown that females can spontaneously release eggs
without the presence of males in captivity. For instance, percid
females (i.e., pikeperch, Sander lucioperca Linnaeus, 1758; perch,
Perca fluviatilis Linnaeus, 1758) can ovulate and spontaneously
release their eggs/egg ribbons regardless of male presence [30,31].
Stagey et al. [29] investigated reproductive dynamics in goldfish,
Carassius auratus, Linnaeus, 1758 and demonstrated ovulation
without males under different spawning combinations, such as in
the presence or absence of aquatic plants. After hormonal induc-
tion, several species can also release a proportion of their entire egg
mass, including eel species, Anguilla sp. Garsault, 1764 [32—36],
common carp [15,27], pikeperch, and perch [31]. In these cases

Egg production and hatching rate from 7 treatments used to study how traditional spawning (Treatment 1) and ovarian inseminated sperm impacts spawning success in
zebrafish (Danio rerio) without male stimulus (Treatments 2—4) and with male stimulus (Treatments 5—7). Treatments with different superscripts significantly differ (P < 0.05).

Treatment Abbreviation Egg production per female Fertilization rate (%)

Mean + SD min-max Mean + SD min-max
1 AB? x AB3 81.2 + 42.3¢ 25-131.3 81.3 + 10.4° 61.6—93.2
2 AB? 0 . 0
3 AB? (inj.NaCl) 34+ 427 0-9.5 0 .
4 AB2(inj.Tgd) 16.1 + 11.6%° 0.5-28.5 12.6 +9.2° 0-24.7
5 AB?|AB3 0 . 0
6 AB? (inj.NaCl) |AB3 7.9 + 4.8 2.8-15.5 0 .
7 AB%(inj.Tgd) |AB3 27.8 + 20.6" 2.5-55 11.8 + 16.3° 0-39.3
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Fig. 2. Phenotypic appearance of offspring from different spawning treatments as a marker for transgenic (Tg) and wild type (AB) genotypes. Zebrafish embryos (72 h old) were
imaged in the dark (left) and under fluorescence microscopy (right), resulting from crosses as follows: (a) AB x AB; (b) AB2(inj.Tgd) |ABS.

(among others), hormonal stimulation is enough to induce ovula-
tion without other stimulating factors.

Sperm inseminated zebrafish [Treatment 4 = AB2?(inj.Tgd) and
Treatment 7 = AB2(inj.Tgd)|ABJ] or those females injected with
saline in the presence is male stimulus [Treatment 6 = AB?
(inj.NaCl) |AB3] produced more eggs then those injected with just
saline in adsense of males indicating that both males and injected
milt provided an ovulation stimulus. Seminal plasma of sperm
typically contains androgens, such as testosterone and 11-
ketotestosterone, as well as the progesterone, 172,208,21-
trihydroxy-4-pregnen-3-one [37—39]. These seminal plasma hor-
mones are likely absorbed through the ovarian wall [ 16] and impact
blood serum hormone levels that partly control ovulation processes
and the general physiology of females. At present, information on
this topic is limited. Thus, we speculate that if these absorbed
seminal hormones manipulate the hypothalamic-pituitary-gonadal
(HPG) axis they may infact improve artificial induction of ovulation
for large scale propagation. Furthermore, if we can better under-
stand the specific mechanisms of spontaneous egg release and
group spawning behaviours these phenomena can be applied for
improving induced spawning techniques for hatchery production
of fishes.

In our study, females which were inseminated with sperm
produced viable embryos, but lower fertilization rates were
detected. It is worth speculating that the relatively thick automatic
pipette tip may have pressed against the urinary bladder of some
females, which is very close to the urogenital papille. Thus, the
inseminated sperm samples might have been contaminated with
urine within the female reproduction organ decreasing sperm
quality. In teleosts, contamination of sperm by urine leads to de-
creases in sperm quality [40]. Suboptimal inseminated sperm de-
livery into the oviduct may also lead to sperm leakage/release from
the inseminated females, which would decrease fertility. Thus,
further research is needed (e.g. sperm injection volumes, timing of
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injections) to optimize these insemination techniqiues and tech-
nologies for precise adaptation to other fish species [41]. Here, fe-
males were subjected to group spawning. Therefore, it was not
possible to check egg production from individual females. Never-
theless, fertilisation rates for the natural spawning fish (AB? x AB3)
was four-fold higher than sperm injection groups with large indi-
vidual differences between groups (61.6—93.2% fertilization rate).
Injected sperm does not cause internal fertilization. In ovulipar
species, release of eggs from the female is followed by activation
and fertilization within the external environment [42]. To the best
of our knowledge, there are three studies where egg-laying fish
species were internally fertilized and embryos developed within
the ovarian lobes. For instance, Hayakawa and Munehara [43] re-
ported that eyed embryos were found in the ovary of a marine
sculpin species, Hemilepidotus gilberti, Jordan & Starks, 1904. The
authors reported that all embryos died during early developmental
phases or were deformed in the ovary. A single three-spined
stickleback, Gasterosteus aculeatus, Linnaeus 1758 was also
observed with embryos retained in the ovaries [44], but these
embryos were not assessed for deformities or viability. Dean et al.
[45] were the first scientists to detect living embryos in a non-
copulatory, egg-laying teleost species, the three-spined stickle-
back. Here, larvae hatched and developed to maturity. During in-
ternal fertilization there needs to be sperm and egg contact.
According to Miiller et al. [ 18] simple sperm injection into the ovary
before ovulation is not sufficient to stimulate internal fertilization,
as water is also needed to activate the gametes. Munehara et al. [46]
discovered a subcategory of ovuliparity, called “internal gametic
association,” which refers to the association of male and female
gametes in the female reproductive tract followed by release and
fertilization in the external environment. Miiller et al. [18] inves-
tigated this sperm ova interaction just after gamete stripping
without water activation in African catfish using electron micro-
scopy. They showed that sperm distributed near the micropylar
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region and sperm were detected within the micropylar canal,
similar to observations by Munehara et al. [46]. As a result, we
suggest that sperm are inactive near the micropyle region (or in it)
and just after gamete release the closest sperm to the micropyle
will fertilize the egg after expulsion into the external environment.

During artificial propagation, hormonal injections typically help
to induce spawning [27]. According to our previous observations on
common carp [15] and the critically endangered C. carpio River
Danube subpopulation [47] originating from Lake Héviz [48] in
spawning cages the females could release all their eggs after hor-
monal induction without the presence of males (unpublished data).
Therefore, our insemination methods of reproduction can be
improved by combining artificial induction of ovulation using
different hormone treatments.

Further investigations are needed to develop this method in
other fish species, as well as to reveal the biological background of
fertilization capacity, including sperm competition, which may
result in more viable embryos.

4.1. Conclusion

Spawning success of sperm inseminated zebrafish females
(external fertilized fish species) was studied without males or
without direct presence of males (i.e. males were separated from
females with a divider) during spawning. The treated females
partly ovulated and produced living embryos in different ratios
without induced hormonal stimuli. Injected sperm does not cause
internal fertilization. In ovulipar species, release of eggs from the
female is followed by activation and fertilization within the
external environment. This proof of concept experiment demon-
strates successful spawning in case of external fertilized fish
without direct presence of males by using sperm injection method.
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