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Abstract

The impact that Artificial Intelligence is having in modern society is undeniable. Many companies are now using Al to improve the throughput
and automate their processes. But the challenge is that Artificial Intelligence is both a source of enthusiasm and skepticism for industries. The
manuscript points out the main causes of skepticism giving at the same time some possible technical solutions to exploit at the best the potentialities
of Al even in those conditions in which the data are imbalanced and the object classes are not well separated. This work also emphasizes the
delicate relationship between artificial intelligence, researchers, and industries, and tries to give an overview of a possible trade-off between the
two parties. The document ends up proposing an ’interpretable learning’ approach that can be exploited as a common language between the two

players. The desirable practice would be to make Al explainable, provable, and easily understandable by the companies.
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1. Introduction

After a winter stage in the development of neural networks,
the rapid growth in computing power put the reflectors on Al
again. The impact that Artificial Intelligence is having in mod-
ern society and the interest in searching for its application in
the various sectors is undeniable. Nowadays it is not only an
interesting field of research but it is also a useful tool that in-
dustries want to employ to improve the throughput and auto-
mate their processes. But the challenge is that Artificial Intelli-
gence is both a source of enthusiasm and skepticism for indus-
tries. This manuscript aims to point out the delicate relation-
ship between artificial intelligence, researchers and industries,
and tries to give an overview of a possible trade-off between the
two parties.
There are two main reasons for that:

e Deep learning is a data-driven technology, so data are im-
portant to obtain good performance. Problems solved us-
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ing Al are as good or as bad as the data they are trained
on. But what does it means good or bad? and how much
data are enough?

o Itis difficult to explain to companies what a network does
and why it does, so they see Al as a black box. Sometimes
happens that for reasons related to the previous point the
machine is not able to accomplish the task properly and
the manager wants to know why it happens and how it is
possible to integrate such processes without tangling the
company Key Performance Indicators (KPI).

The manuscript addresses these key points explaining the
causes of the skepticism and giving some possible technical
solutions to exploit at the best and in the correct way the po-
tentialities of Al even in those conditions in which the data are
imbalanced and the object classes are not well separated.

The document finally proposes an approach for giving a
common language to the two players, the researcher from one
side and the industry guy from the other. The first can exploit
this approach as a pipeline to follow for sharing a common lan-
guage with the other party. The desirable practice would be
to make Al explainable or interpretable so that the algorithm
decision would be understood by the companies to facilitate
decision-making.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-ne-nd/4.0/)
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2. Any Scraps there?

A good part of Engineers life is usually spent working or re-
searching for companies, with a special focus on tasks of in-
dustrial production of goods and materials. To exploit to the
best such relationship, both the parties, engineers and company
guys, should speak and hopefully think the same language.

In this context, starting from a typical dialogue between the
two parties, this essay aims to discuss diverging opinions and
possibly introduce existing solutions and a common playground
where the language of Deep Learning can be understood and
outcomes of the application of such technology discussed with
a common view by both the parties.

In most of the situations, the demand from the industrial con-
tractor of a DL project is always "We would like to improve our
business using artificial intelligence methods. Nowadays our
daily outcome for this task is a certain amount of production
units and the task is currently performed by human personnel”.
Perfect, it seems that there is some margin of improvement, at
least trying to remove human personnel from repetitive and bor-
ing tasks and employing them elsewhere.

Then, it usually comes a visit to the manufacturing plant, an
analysis of the process to optimize, and unfortunately the phase
of the project where the engineers state their request to the com-
pany to proceed with the development. “From our preliminary
analysis, We concluded that the project could benefit from a
Deep Learning architecture able to classify production defects
and perform an automatic quality assessment of the product.
To train the DL model, We estimate that a sufficient number of
data samples that allows achieving the requested performance
metrics would be in the order of tens of thousands of samples”.
“Perfect”, says the company guy, “We have hundreds of thou-
sands of good samples and We can provide them to you easily”.
Here, people that work on the subject should have already spot-
ted the critical issue.

”We are happy to hear that, but”, a little pause to refresh in
mind what to say to the customer and trying no to break their
excitement, ’the number of samples we had in mind should rep-
resent equally both the good products and the scrap ones”.

This is the exact moment when it is possible to scout dis-
comfort in the eyes of the listener. "But We dont have so many
scraps. Our company would have shut down if We had such an
amount of defective products!”.

This is the first problem that should be faced when dealing
with industrial production. Differently from laboratory or re-
search setups where classification tasks are run over well de-
fined and distinguished classes, industries that operate on the
market have specific needs, and they usually want to classify
defects on their products. This, from one side, means that the
separation between classification targets is not ideal and most
of the samples share features between them (see figure 1). Sec-
ondly, industries are efficient and the number of defective prod-
ucts that are produced during months could be counted on the
fingers of a hand.

Despite any point the engineering team will present in their
favor, the company guy will always answer that "Human per-

sonnel can do this, even having seen only a few scrap examples
and even if the defects have not been quantitatively defined.
They are always able to decide whether a product is scrap or
not, just from experience”. Nothing to say, it makes sense. And
it should make sense also that a solution to the issue could be
found in the AI domain. This, in turn, is not implying that an
Al expert should provide a network to rule them all. This is not
possible by the way, as the no free lunch theorem states [1] any
two ML algorithms are equivalent when their performance is
averaged across all possible problems, but, a specific solution
can be tailored to satisfy each specific project needs.

Possible approaches that have been used in the literature to
overcome the limitation imposed from poor availability of data
are discussed hereafter.

3. Facing imbalanced data sets with low samples

Basically, problems regarding defect detection are classifica-
tion problems. Following the first approaches combining tradi-
tional and machine learning techniques [2], methods based on
deep learning have been encouraged after the development of
AlexNet [3]. Convolutional Neural Networks(CNN) have been
widely adopted for diverse applications in industries ranging
from object detection for pick and place [4] to automating op-
tical quality inspection [5]. Such networks, however, often dis-
play an intolerable problem that is their need for large amounts
of labeled data necessary to properly train their parameters. In
fact, a prerequisite for the training of CNNss is the availability
of adequate training data. What does it mean? The ideal case
is the one in which ten of thousand samples for each class are
available, the inputs for each class are balanced and the classes
are well separated each other. In this way, it is possible to pro-
vide as input a representative set of examples of the entire in-
put space and the network cannot be confused by similarities
among classes or by an uneven distribution of the inputs. But
unfortunately, in a real industrial scenario, for example for de-
fect detection in a product line, it is possible to obtain many
good samples but too few scraps. It is then really easy to fall
into the problem of imbalanced datasets. The worst-case sce-
nario is, for sure, when the dataset is imbalanced with very few
scrap samples and the classes are very close to each other in
the input space. Figure 1 clarifies visually this concept. Defects
like scrap number 3 are easily separable while other kinds of
defects pose problems in the classification. In the following are
presented the main state of the art techniques and strategies that
are useful in such situations.

3.1. Sampling Strategies

In the case of imbalanced datasets, having at disposal only a
few samples for the scrap class, it could be convenient to use
as many goods as the available scraps you collected. This ap-
proach is called undersampling in literature. This is feasible,
of course, if the number of scrap examples is sufficient for the
training task. On the other way around, in order not to reduce
the good examples class, it is possible to present to the network,
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Fig. 1. Imbalanced Data-set with few scrap samples. Classes Scrap 1 and Scrap 2 are close to the Good class, while the Scrap 3 class is easy separable from the

others in the feature space.

multiple times, the available scraps trying to reach the same
number of good samples. This second approach is known in the
literature as oversampling. This is a bit dangerous since it is
easy to overfit the network given the poor representation of the
input space that usually cannot cover completely the possible
cases. However, there are situations in which they are precious
means to improve the performance of the classifier as the work
proposed by [6]. Figure 2 gives a graphical visualization of the
two techniques.

3.2. Data Augmentation

Another technique, improving in robustness, is data augmenta-
tion. Traditional approaches involve cropping, rotation, mirror-
ing, scaling, color-shift [7]. They have been exploited in many
defect inspection methods [8, 9]. In this case, the samples are
augmented based on the available data and it is possible to gen-
erate only samples with a strong correlation between them with
the risk of overfitting on a small dataset. But if the augmen-
tation is done properly, it could improve the performance of
the classifier. Figure 3 shows some of the most common affine
transformation used for modifying the images and enlarging the

input data.
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Fig. 2. Oversampling (left) and Undersampling (right)
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Fig. 3. Typical affine transform for data augmentation
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Other techniques for augmenting the data-set have been ex-
perimented like propagating the input data through an encoder-
decoder network where different transformations featured with
random noise are applied [10]. Figure 4 shows roughly the idea
of the architecture behind this technique.

Another method that it is worth to notice is the generation
of virtual samples. It has been successfully exploited in [11]
for face reconstruction. Figure 5 depicts the potentiality of the
method.

In order to augment the input data, given the lack of training
samples that cover the whole input feature space, one can think
to create synthetic images to train the models using a Generative
Adversarial Network(GAN) [12] or the most recent Conditional
GAN (cGAN) [13]. This is a very promising alternative for fac-
ing the lack of sufficient training data or the case of unbalanced
datasets. However, this is very time consuming and requires to
take into account all possible configurations and boundary con-
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Fig. 4. Data augmentation exploiting encoder-decoder propagation

ditions for generating samples as close as possible to real ones.
For instance, if the intention is to augment the number of de-
fects, there is the need for focusing on the defected part of the
image leaving untouched the defect-free area. The problem is
that modifying just the defect part could lead to a blending and
blurring phenomenon in the defect neighbor pixels generating
a not realistic sample.

3.3. Transfer Learning

As humans can learn from experience and transfer the concept
learned between different application scenarios, similarly, a DL
architecture can be trained using the so-called transfer learning
paradigm. The working principle is to train the network on a
larger dataset for learning how to extract the features and then
adjust only the final classification layers using the appropriate
dataset for the specific task. Knowledge transfer breaks the fun-
damental assumption that the data presented to the network dur-
ing the training phase must be in the same feature space of the
ones presented in the inference phase. A feature extractor ob-
tained using transfer learning would be able to extract generic
convolution features that can be exploited in different tasks. So,
if we are interested in detecting, for instance, surface scratches
on a product, and the amount of available sample images for the
scratched products is not sufficient for proper training, it will be
possible to train the network with examples of other products
that present a scratched surface. The learned kernels can then
be transferred to the final architecture implementation. A suc-
cessive fine-tuning procedure will be responsible for success-
fully transferring the learned kernels to the domain of interest
[14]. For these reasons, transfer learning achieves better classi-
fication results reducing the amount of training time and train-
ing labeled data required. Successful implementation of such an
idea in an industrial context can be found in [5]. In this work,
the authors were able to train a classification network starting
with few hundreds of scrap images still obtaining accuracy and
recall metrics of 97.22% and 100% respectively.

With well-optimized processes, it is often not possible to
obtain a sufficiently large set of scraps samples for training
the CNN for classification and most of the time the training
objective moves from defect classification to anomaly detec-
tion. Deep metric learning uses deep neural networks to directly
learn a similarity metric, rather than creating it as a byproduct
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Fig. 5. Data augmentation using virtual samples. The real and augmented sam-
ples were generated by TL-GAN (transparent latent-space Generative Adver-
sarial Network) [15]

of solving a classification task [16]. They are well suited for
tasks in which the amount of object classes is perhaps endless
and classification is not applicable. This approach would not
require defective samples for training if the geometry and sur-
face appearance of a part are well defined and distinct from
each other. The idea is to calculate the distance of the proposed
sample to an ideal prototype. Unfortunately, textured objects
present surface appearance and properties that are stochastic.

3.4. Outliers

Another important aspect to take into account is to present cor-
rect examples for the learning process. As it happens with hu-
mans, when learning new concepts if the concept is not clearly
defined it could lead to fuzzy assumptions that in the end could
produce wrong outcomes. This, in turn, is reflected in the choice
of a proper dataset for training. In particular, when dealing with
data provided by some sensing technology installed in an in-
dustrial site, it is necessary to verify the correctness of the data
samples and avoid possible sources of classification mistakes
“cleaning” the dataset. The cleaning process should detect pos-
sibly the presence of outliers (wrong data association of a sam-
ple with a class) and also spot possible “borderline” samples
that could confuse the learning process. This may often happen
in industrial processes where the definition of a certain class is
not given with quantitative metrics but with a qualitative evalu-
ation. In fact, it is unfortunately common that different quality
experts in the same industrial process classify the same prod-
uct as belonging to different classes. If the same concept is im-
bued into the DL architecture, the learning process will proba-
bly worsen the decision process.

In most of the cases, in order to let the neural network work
properly, the training could benefit of a pre-processing stage on
the input data, encoding the input in the most suitable form for
the network. In those cases, the help of professionals of the sec-
tor is needed for interpreting well the input to feed into the net-
work for filtering and pre-processing the data or for performing
some optimization.

This is extremely important in situations where the intro-
duction of new machinery or the change of one or more com-
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ponents or procedures in a manufacturing scenario (i.e. change
of material producer, change of parameters, etc.) induces in the
produced pieces some undesired alteration. These artifacts will
certainly affect quality inspection results. In these cases, the use
of a data filtering technique is recommendable. In [17] a pre-
filtering stage has been introduced by the authors to smooth out
the presence, on a metallic surface, of nuances due to a change
in the welding process.

3.5. Performance Metrics and Loss functions

When the dataset is heavily unbalanced, it is necessary to con-
sider correct metrics to evaluate the performance of the trained
algorithms. In this context, authors in [18] propose a balanced
accuracy statistic computed as:

Recall + S pecificity
5 .

Balanced Accuracy = (D
A different approach could be to directly scale the confusion
matrix terms based on the relative support of each class as in
[17].

Other studies propose the modification of the loss function
to account for class imbalance. In particular, the binary cross-
entropy loss is a common choice for classification tasks. Start-
ing from such a formulation, a balanced cross-entropy is intro-
duced in [19]. In this solution, the part corresponding to the
dominant class in the loss function is multiplied by the fraction
of the less dominant class.

A second alternative is proposed in [20] where the authors
address the problem of class imbalance by reshaping the stan-
dard cross-entropy loss such that it down-weights the loss as-
signed to well-classified examples. The resulting loss is called
Focal loss.

In the balanced cross-entropy loss, while the importance of
positive and negative examples becomes balanced, the method
does not differentiate between easy/hard examples. The Focal
loss instead, focus the training on hard negatives. It is a dynam-
ically scaled cross-entropy loss, where the scaling factor decays
to zero as the confidence in the correct class increases.

4. Explainable ML

Differently from the first Al systems that were composed of few
neurons and very few connection layers, and thus, easily inter-
pretable, modern Al systems employ more complex networks
like Deep Neural Networks (DNN5s) that are instead opaque de-
cision systems since it is hard to understand what happens un-
der the hood even for the network designers. The power of these
neural networks stems from the combination of learning algo-
rithms and the interactions of thousands of neurons in hundreds
of layers within a huge parametric space. Such a combination of
factors makes modern networks considered as black-box mod-
els [21]. The trend is to make light on the dark aspects of com-
plex networks, giving transparency to the mechanisms by which
the model works [22].

According to Breiman [23] accuracy generally requires com-
plex prediction methods, thus simple and interpretable func-
tions can not make the most accurate predictors. Black-box
models are not interpretable unless the data have low dimen-
sionality.

Given the diffusion of bigger datasets in many application
domains, black-box supervised learning models, like neural
networks, complex trees, random forests, local kernel-weighted
methods, and many others, are being commonly employed in
favor of more transparent linear regression models for capturing
nonlinear behaviors. The advantage of using black-box mod-
els is gaining efficiency and practicality since these models are
more accurate and can learn the features of the input samples
autonomously. Such an advantage is paid at the price of loss
in interpretability of the predictor variables on the predicted re-
sponse. However, for many applications in different contexts
like medicine, finance, and industry, understanding the effects
of the predictors is crucial. As the use of black-box machine
learning models increases, so it does the demand for trans-
parency from the various stakeholders in Al [24].

This demand is dictated from one side by regulation require-
ments, from the other side to get insights from the models and
possibly make scientific/business findings or understand where
a process went wrong. To reach this specific goal, it is of utter
importance to understand which variables mainly contribute to
the outcome of a prediction, to retrieve an input-output relation-
ship for each important variable, and to model the interaction
between them.

The recent works on the interpretability of neural networks
concern the input and the output layers. Perhaps, this is preva-
lently due to the fact that these layers have a precise meaning.
Indeed, in computer vision, the input layer usually represents
the values of three channels (red, green, and blue) for every
pixel in the input image, while the output layer shows the class
labels and their associated probabilities. Nevertheless, to get the
final result in the output layer, the data traverses the hidden lay-
ers that constitute the real potentiality of the neural network
model because, at each layer, the network learns a new repre-
sentation of the input, depending on the activation of the neu-
rons. The difficult part stays in explaining the reasons behind
such activations since the networks usually use abstract vectors.

A common way of qualitatively interpret the representation
learned by the first layer of a deep architecture is by visual-
izing the filters learned by the model. Many times, these fil-
ters represent stroke detectors on digit data, or Gabor filters
(edge detectors) on natural image patches [25]. If early lay-
ers encode low-level features like edge or curve, later layers
would learn higher-level features like mouth, nose, or eyes in
face recognition applications. The research community is split
on whether this is true. Many researchers see a meaningful and
understandable relationship among neurons as an almost trivial
fact [26, 27]; many others do not believe that latent variables
could be meaningful [28, 29].

One of the main problems that make it difficult to visualize
and understand neural networks is the relationships among the
variables and the extremely high-dimensionality of the param-
eter space.
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In the last years, many works have been proposed to im-
prove the interpretability of a particular statistical learning pro-
cedures output. Rao and Potts [30] proposed a method that visu-
alizes the decision boundary of bagging decision trees. Tzeng
[31] tried to visualize the layers of neural networks to study
the dependencies between the inputs and the outputs and give
information about the classification uncertainty. Jakulin et al.
[32] analyzed the interpretability of support vector machines
using nomograms that provide a graphical representation of the
contribution of the variables. Breiman [33], through random-
ization of out-of-bag observations, estimated a metric for the
importance of the variables for Random Forests (RF). The most
popular method for visualizing the results of predictors with
black box supervised learning models is the Friedman’s Par-
tial Dependence (PD) Plots [34]. For data with small corre-
lations, PDPs can reliably estimate the relationships between
the predictors and the fitted response in terms of nonlinearities,
directions, and interactions. Other diagnostic tools have been
proposed by extending PDP. Accumulated Local Effects (ALE)
plots [35] do not require PDP unreliable extrapolation with cor-
related predictors and are less computationally expensive. In-
dividual Conditional Expectation (ICE) plots identify interac-
tions analyzing the connection of the predicted response on in-
dividual features for each sample point [36]. The ANOVA de-
composition of ICE plots measures the variable importance and
is consistent with the global sensitivity indices of Sobol [37].
To make the model easily explainable, Additive Index Mod-
els (AIM) with neural networks ridge functions have been pre-
sented as eXplainable Neural Networks (xXNN) [38]. AIM de-
composes a complex function into the linear combination of
multiple component functions, and as such represents a good
model for explainability. Current research investigates upon the
naive version of xNN to enhance its explainability capabilities
[39]

All these methodologies aim at making the prediction pro-
cess explainable. However, the focus of the proposed approach
is not on the interpretation of the process but the interpreta-
tion of the outcomes. The industrial staff usually is not inter-
ested in how the computation is performed, they are interested
in understanding the meaning of a prediction that a simple per-
centage value (usual network output) cannot represent by itself.
The next section will introduce for such a purpose a possible
approach to face the problem.

5. A Common Language

What has been discussed in the previous paragraphs depicts a
complex and intricate scenario where industrial needs, aims,
and desiderata, together with engineering knowledge and math-
ematical approaches should converge and find a common goal,
vision, and understanding.

The current solutions employed at industrial production fa-
cilities for quality and defect analysis involve classical com-
puter vision inspection techniques, capturing images of the
products in the analysis at several stages on the production
line. Typical graphical user interfaces and usually stored per-

formance data includes the current image of the product at the
specific stage, quantitative measurements of the characteristics
of the product and current efficiency of the process typically
measured as Overall Equipment Effectiveness(OEE). These are
the information that industry people understand and are used to
deal with. Black-boxes architectures that provide just a proba-
bility of belonging to a certain class without a context are diffi-
cult to understand. In the specific, given that the aim is usually
to rapidly adjust some machinery parameters to tackle produc-
tion defects avoiding long stops of the working cells.

Given these premises, it is obvious that it would be optimal if
any DL system integrated into an industrial context could pro-
vide the information that industry workers are accustomed to
processing. For sure the efficiency estimation can be provided
easily but other information that provides semantic and quanti-
tative information like the exact position of a defect, the length
of a certain component, etc. are hard to be directly coded into
a machine learning algorithm especially when the samples for
the training phase are limited as discussed in the text.

The approach proposed here is to set up a particular DL
architecture that allows taking advantage of both state-of-the-
art machine learning techniques and knowledge representation
properties typical of classical computer vision approaches. The
main idea is to let the user understand why a product has been
classified as scrap with some measures.

To make it simple, in the following, the problem of quality
inspection of daily contact lenses is discussed. In the case of
contact lenses, the producer could be interested in several char-
acteristics of the product to judge if the quality of the product
is acceptable or if it should be discarded. Suppose that these
characteristics are the circular shape, the measure of its radius,
and to asses the presence of occlusion patterns over the cen-
tral surface of the lens itself in order to avoid the selling of bad
looking products. This kind of measurement and identification
could be carried out with classical computer vision. However,
given a large amount of variation of the lenses product, cus-
tomizing the computer vision tasks for each possible combina-
tion of colors and patterns will be expensive. A DL approach
could instead satisfy the industry needs generalizing the con-
cept of a good quality product against a scrap product. In this
case, unfortunately, the information about the measures of in-
terest are lost in the process. The solution, proposed here, is to
approach the problem still with an ML architecture but having
as output an intermediate and simplified representation of the
input data so that simple computer vision techniques could be
applied without the need for customization for every variation
of the product. This particular encoder-decoder architecture is a
compromise that will allow the industrial people to understand
and correctly assess the output provided by the DL software.
Figure 6 shows an example of an architecture that given as input
the image of a contact lens acquired by a camera, it produces
a simplified representation of the lens as output. This special
encoding allows measuring with ease the characteristics of the
lens product in a way that is completely clear both to the in-
dustry partner and to the engineering one. Different variations
of good contact lenses are converted to the same encoding by
the network. The new encoding allows the easy computation of
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Fig. 6. Proposed encoding architecture applied on a contact lenses case. From a latent space representation, a simplified version of the input is generated in order to
compute with classical computer vision techniques quantitative measurements and detect defects.

the measures of interest, and defects on the products are imme-
diately visible and can be spotted with simple computer vision
techniques.

5.1. Discussion

Small deviations on an acquired product image could result
in misclassification in a typical classification network. For this
special reason, a particular focus has been put in the last years
on the study of adversarial inputs [40] that could drive un-
wanted results in the classification process. When a slight mod-
ification appears in the product surface under analysis, if this
kind of alteration has not been considered during the training
stage of the machine learning algorithm, the membership class
probabilities could increase in the wrong class and decrease in
the desired (correct) one. The result is that the system produces
a class label that is not correct, and no clue is given on how this
particular decision has been made. On the contrary, employ-
ing the proposed architecture, the presence of an alteration in
the input should result in an alteration in the output image that
is still interpretable by human operators and probably also by
classical computer vision techniques measurements. This situ-
ation satisfies both the engineers that can still analyze the input
and produce automated results and the industry personnel that
can understand visually what led to the result presented by the
inspection system.

The presented case is simple by design to give a clear and un-
derstandable example of the idea of the proposed methodology
applied to a real industrial problem. Furthermore, the presented
methodology is not application-specific and is designed to be
generally applicable to other industrial common cases. The key
idea behind the approach is to substitute a network that directly

gives the decision as output with a network that instead pro-
cesses the input to provide a simplified version of it in such a
way that the user can reasonably (directly or by using classical
computing) take the same decision.

6. Conclusions

This manuscript discusses problems faced by Al solution de-
velopers during the integration of such technologies in indus-
trial manufacturing facilities. It starts analyzing the divergence
in opinions between developers and users of the systems aiming
at identifying the sources of skepticism in the adoption of Ma-
chine Learning Solutions. It continues presenting possible ap-
proaches to solve the problem of data imbalance that is crucial
for correctly train a deep learning architecture, and a short in-
troduction to explainable machine learning is provided to com-
plete the discussion. An approach providing a sort of common
language to both Al designers and Industry people is finally in-
troduced. The approach presents a conceptual architecture that
will facilitate understanding and improve the explainability of
Deep Learning systems.
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