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Abstract 

A unified formulation of thermomechanical, geometrically nonlinear, laminated plates that integrates mechanical and thermal 
aspects is presented. It allows for constructing and comparing a variety of continuous models of different mechanical richness 
and with full thermoelastic coupling embedded, as well as for deriving minimal reduced order models suitable to provide useful 
information on fundamental thermomechanical phenomena occurring in the system nonlinear and complex dynamics. 
Comparative numerical investigations of free and forced vibrations can be carried out through both models of three, fully 
coupled, ordinary differential equations and simplified, partially coupled, models of two, or even one, ODEs, with the aim to 
unveil the actual importance of accounting for the various terms to reliably describe the most important thermomechanical effects 
on the system response. 
© 2016 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the organizing committee of ICOVP 2015. 
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1. Introduction 

In the framework of the 2D modeling of laminated plates [1,2], different approximations for the deformation of 
the reference plane and for the shear-warping of the cross section result in distinct geometrically nonlinear and shear 
deformation models, respectively. In addition to these mechanical features, it is often important to evaluate the 
effects of thermal phenomena [3-6], by properly selecting some relevant simplifying assumptions (with/without 
thermomechanical coupling, ratio between current and reference temperatures, order of the temperature distribution, 
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etc.). This results in a large number of possible continuous models that can be effectively constructed and compared 
through a unified formulation. In turn, when aiming at identifying reduced order models to be used for highlighting 
some main features of nonlinear dynamic response, shear deformations and, possibly, nonlinear curvatures are taken 
into account [7], whereas thermoelastic coupling is generally overlooked. 

This paper presents a unified modeling of thermomechanically coupled laminated plates at both continuous (Sect. 
2) and discretized (Sect. 3) levels, providing sample equations and variables of selected reference models, whose 
reduced response in free linear dynamics (Sect. 4) and forced nonlinear dynamics (Sect. 5) is exemplarily illustrated.  

2. Two-dimensional modeling 

The structure of many physical theories aimed at building the various fundamental models is independent of the 
underlying physical content, as it can be highlighted by the classical Tonti diagram [8] which identifies the three 
basic sets of balance, configuration and phenomenological equations, with the related variables, that give rise to the 
3D governing equations of a generic theory.  

When dealing with a multiphysics problem in a bidimensional engineering framework, a similar structure can be 
obtained starting from the basic generalizing assumption 3D→2D 

 3D configuration variables = shape × generalized configuration  variables (2D)   (1) 

that expresses the 3D configuration variables in terms of 2D generalized ones (through shape mathematical 
functions), and generalizing all the equations and variables of Tonti’s decomposition. By applying this procedure to 
the 2D thermomechanical laminated plate, we obtain the unified modeling scheme in Fig. 1 [6], which integrates 
mechanical and thermal aspects by addressing them in parallel via the introduction of generalized 2D variables and 
equations also for the latter. 

 
Fig. 1. Unified modeling scheme for the 2D nonlinear thermomechanical plate. 
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The unified scheme allows to construct and compare different continuous nonlinear models with full 
thermoelastic coupling, which result from different assumptions about the plate mechanical and thermal 
configurations. The resulting models are not equally advantageous. As regards geometric nonlinearities, general 
models accounting for all of them [2] involve significant computational difficulties when aiming to obtain minimum 
order discretized models for the analysis of nonlinear vibrations through the procedure generally used for the 
classical von Karman models. On the other hand, von Karman strains - although involving some nonlinear terms - 
do not account for the change of structural configuration within the curvature-displacement relationship, because of 
considering only linear terms in the curvature expressions. Yet, the neglected geometric nonlinearities may entail 
non-negligible effects in the nonlinear analysis of composite plates. Therefore, in addition to the general and von 
Karman types of continuous models, intermediate models [7] also accounting for nonlinear terms in the curvature 
expressions can be considered. They retain the great advantage of all von Karman models as regards performing 
minimal reductions.  

Table 1 shows some possible models that, based on a variety of kinematical and thermal features, are classified in 
the three groups outlined above, i.e. (i) general models (which turn out to be mathematically intractable in a reduced 
order modeling perspective based on kinematic condensation), (ii) classical von Karman models (mathematically 
tractable for all types of laminates), and (iii) intermediate models (mathematically tractable only for symmetric 
laminates). 

 

Table 1. Some general, intermediate and classical continuous models. 

 General intermediate classical (von Karman deformation) 
Features GTTC GCTC MGFTC MGCTC TTC FTC CTC 

in-plane deformation cubic cubic quadratic quadratic quadratic quadratic quadratic 
flexural and twisting curvatures cubic cubic cubic cubic linear linear linear 
spiral curvatures quadratic quadratic absent absent absent absent absent 
shear deformability cubic absent linear absent cubic linear absent 
temperature field cubic linear linear linear cubic linear linear 

 

By way of example, Figure 2 displays the mathematical relationships C2 and C3 implicitly reported in the 
configuration block (see Fig. 1) of the TTC (Third-order shear-deformable theory with Thermomechanical 
Coupling) model (Table 1), that is a geometrically nonlinear model with third order shear deformability and 
temperature distribution along the thickness which is assumed consistently cubic (Fig. 3), with the associated four 
thermal variables being reduced to two by imposing the convective boundary conditions on the plate upper and 
lower surfaces. For the same model, Figure 4 shows the thermal and thermomechanical relationships P3, P4 and P5 
of the phenomenological block (remind Fig. 1). In Figs. 2 and 4, the following 2D quantities appear: u, v, w, 
displacements of the reference plane; 1 , 2 , rotations of the cross section; 0T , 1T , membrane and bending 

components of the temperature; (0)
ij , (1)

ij , (3)
ij , von Karman nonlinear membrane strains, Kirchhoff linear bending 

strains (curvatures), and Reddy higher order bending strains; (0)
i , (1)

i , Mindlin linear transverse shearing strains 

and Reddy higher order transverse shearing strains; (0)
jg , (1)

jg , membrane and bending components of the thermal 

gradient; (0) (1),  i iq q , (0) (1),  b b , (0) (1),  a a , membrane and bending components of the heat flow, internal energy 

and interaction energy; , , , ,A B D E F
ij ij ij ij ij , , , , , , ,A B D E F G H

ij ij ij ij ij ij ij , , , , ,A B D E FC C C C C , thermal 

conductivities, thermal capacities, and thermoelastic stiffnesses of the laminate, which involve membrane (upper-
case A), bending-membrane (D), bending (B), and higher order (E, F, G, H) contributions; refT , reference 

temperature; ic , ir , expressions containing geometrical and phenomenological parameters. All details of the 
formulation can be found in [9]. 
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Fig. 2. Some relationships in the configuration block of the TTC model. 

 

Fig. 3. Single contributions in the overall cubic temperature profile of the TTC model. 

3. Zero-dimensional modeling 

The dimensional reduction of the previous 2D formulation can be performed starting from the basic assumptions: 
 

 generalized configuration  variables (2D) = shape × reduced configuration variables (0D)   (2) 

that expresses the 2D generalized variables in terms of 0D reduced ones (through shape mathematical functions). 
In order to describe some basic phenomena of the dynamics, an effective minimal dimension reduction of the 

continuous models can be pursued via a Galerkin procedure [6]. In the case of TTC model, the seven 2D 
configuration variables 1 2 0 1, , , , , ,u v w T T  (Fig. 2) can be expressed in terms of seven time-dependent reduced 
variables 1 2 0 1, , , , , ,R RU V W T T through only one shape function for each component. Indeed, expressing both in-
plane displacement components and out-of-plane shear angles in terms of transverse displacement and of the two 
(membrane and bending) thermal variables via kinematic condensations performed at the continuum and discrete 
level, respectively, [9], only three reduced components remain in the problem: the deflection amplitude W and the 
membrane 0RT  and bending 1RT  temperature amplitudes. This allows us to end up with a system of three 
thermomechanically coupled ordinary differential equations. In Fig. 5, these equations are embedded in the 0D 
unified thermomechanical scheme which underlies the governing ODEs of the reduced models, similar to the unified 
scheme (Fig. 1) underlying the PDEs of the continuous models. The coefficients ija  are constant expressions that 
incorporate the features and physical properties of the model [9]. A mechanical type body diagram of the reduced 
TTC model, that schematizes in mechanical terms also the thermal aspects of the problem, is reported in Fig. 6. 
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Fig. 4. Some relationships in the phenomenological block of the TTC model. 

iq , jg are vectors while ij are symmetric matrices (2x2), with i=1,2 and j=1,2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Unified modeling scheme for the 0D nonlinear thermoelastic plate: reduced TTC model. 
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The 0D unified framework enables (i) to identify all terms of the reduced model by referring to the underlying 
continuous one, and (ii) to possibly consider further models variably simplified owing to the presence/absence of 
mechanical and/or thermal excitations and to consideration of coupling terms. In particular, variably decoupling the 
elastic aspects from the thermal one and neglecting membrane or/and bending thermal dynamics allows us to end up 
with two-degree-of-freedom models, or even with a single-degree-of-freedom model, with an actually two-way or a 
solely single-way thermomechanical coupling. For example, in Table 2, possible reduced models based on the 
continuous CTC (Classical von Karman theory with Thermomechanical Coupling) model (Table 1) are summarized. 

Table 2. Reduced models based on the classical von Karman CTC model. 

Features CTCRa CTCRb CTCRc CTCRd CTCRe CTCRf CTCRg 
number of ODEs 3 3 2 2 2 2 1 

thermal dynamics 
membrane 
& bending 

membrane 
& bending 

membrane membrane bending bending absent 

multiphysicsinteraction two-way one-way two-way one-way two-way one-way one-way 

4. Numerical validation in linear dynamics  

Linear models extracted from nonlinear reduced models of the previous section allow to obtain numerical 
benchmarks as regards linear dynamics. The ensuing frequency values in Table 3 show remarkable agreement with 
the most refined ones (LD4) obtained for the isotropic plate in [5] through the Carrera Unified Formulation (CUF). 
Of course, in the case of stubby plates, a good agreement is kept when considering shear deformable models (e.g. 
TTC). The thermomechanical coupling provides slightly higher frequencies with respect to the pure mechanical case 
because it acts like a thermal source which leads to a wider global stiffness of the plate [5].  

Table 3. Fundamental frequency (Hz) for the isotropic plate with several models and thickness ratios a/h. 
(M) means thermal part of the model removed. CLT refers to Kirchhoff plate, LD4 to layer-wise  
               plate with fourth-order expansion of displacements and temperature in thickness direction. 

a/h 5 10 50 100 
CTC(M) 194.16 48.542 1.9416 0.4854 

CTC 195.15 48.787 1.9515 0.4878 

FTC(M) 175.39 47.228 1.9395 0.4852 

TTC(M) 175.16 47.211 1.9394 0.4852 
TTC 175.87 47.436 1.9492 0.4877 

LD4 [5] 172.40 46.946 1.9390 0.4852 

LD4(TM) [5] 173.10 47.158 1.9481 0.4875 

CLT [5] 188.08 48.148 1.9411 0.4854 

CLT(TM) [5] 189.87 48.607 1.9596 0.4900 

 

Fig. 6. A mechanical type body diagram of the reduced thermomechanical model in Fig. 5. 
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5. Nonlinear vibrations 

Fundamental aspects of the nonlinear dynamics of continuous models of different richness and accuracy can be 
highlighted by analyzing the relevant minimal models. By way of example, considering a symmetric cross-play 
laminate, Figure 7 shows the global bifurcations diagrams of the configuration variables W, 0RT  and 1RT versus the 

frequency of an applied harmonic transversal mechanical forcing, as obtained by using the fully coupled classical 
von Karman CTCRa model of Table 2 for a multilayer laminated plate. Typical nonlinear dynamical behaviors 
including various periodic motions, jump phenomena, sub-harmonics and aperiodic responses are observed. The 
thermal dynamics 0RT  and 1RT is activated and sustained by the sole mechanical forcing (since there is no external 

thermal forcing) through the thermomechanical coupling terms of the model; as expected, when the aperiodic plate 
deflection W appears, the thermal dynamics becomes irregular too. 

 

   

Fig. 7. Global bifurcation diagrams of plate deflection W and temperatures 0RT , 1RT versus the frequency Ω of an harmonic transversal 
mechanical forcing (CTC model). 

Within the multitude of parameters governing the plate response, some of them are seen to induce a significant 
thermoelastic damping causing decay of the vibration amplitude, as highlighted by other outcomes (here not 
reported); in particular, possibly chaotic responses of (partially) uncoupled models are seen to be somehow 
regularized by the full coupling effects of the complete model. Based on the possible importance of 
thermomechanical phenomena in free and forced nonlinear vibrations, comparative numerical investigations are 
presently going on with also a view on the suitability and effectiveness of strongly simplified models in reliably 
describing thermal effects under variable system and excitation conditions.  

The comparative analysis of reduced models is useful also in view of applications, since it may throw useful light 
on the possibility to exploit thermal effects to favorably affect the system response via an appropriate control of 
some parameter.  
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6. Conclusions 

A unified formulation of thermomechanical nonlinear laminated plates that integrates mechanical and thermal 
aspects has been presented. At 2D level, it allows for constructing and comparing different continuous models with 
full thermoelastic coupling embedded. At 0D level, the unified framework enables to identify all terms of the 
reduced model by referring to the underlying continuous one, and to possibly consider further variably simplified 
models. 

Fundamental aspects of the nonlinear dynamics of continuous models of different richness and accuracy can be 
highlighted by analyzing the relevant, variably reduced, minimal models; and the suitability and effectiveness of 
strongly simplified models in reliably describing thermal effects under variable system and excitation conditions can 
be analyzed.  
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