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Abstract

This work presents a statistical analysis of the confidence in fracture parameters of polymers estimated through the essential

work of fracture (EWF) methodology under impact conditions. Fracture toughness parameters—essential, we, and non-essential

work of fracture, wp—are obtained from the experimental relationship between specific total work of fracture wf and ligament

length of the tested samples l: we is obtained from the y-intercept and wp from the slope of wf versus l in cases where a linear fit is

suitable. The distribution of ligament lengths within a fixed number of samples to be tested under impact loading conditions is

determined in order to minimize the uncertainty of the estimated parameters when linear reduction of the data is assumed. The

statistical approach applied to two different polymeric materials shows that the uniform ligament length distribution along the

ligament range is not the optimal one. We propose an optimal distribution of ligament lengths to be tested that depends on

the distribution of error standard deviations of the measured work of fracture along the l-axis.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Notched Charpy and Izod tests are commonly used to

evaluate the fracture behaviour of polymers and composites

at high strain rates due to their simplicity [1–5]. Never-

theless, impact strength is not a material property indepen-

dent of testing geometry. Moreover, in the case of ductile

polymers the samples are frequently not fully broken, and

therefore the impact strength is not a good parameter to

characterize their toughness. Fracture mechanics theories

can provide the necessary theoretical framework needed to

overcome these disadvantages. In response to this need, the

J-Integral method and CTOD were developed to evaluate

the fracture toughness of ductile materials. However, the

adoption of fracture mechanics theories under impact
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conditions is not simple, i.e. these tests require specialized

equipment for accurate crack growth measurements.

For polymers presenting ductile behaviour, better

characterization of the impact fracture energy can be

obtained using essential work of fracture (EWF) method-

ology [6–11]. EWF has been specially developed as a sound

methodology to characterise the fracture toughness of

ductile polymer films, ductile metals, paper sheets and

fibrous composites under plane stress condition [12–20].

Mai and co-workers [6] have extended the EWF concept to

impact testing of ductile polymers. Since then, some

research has been conducted on the validity of impact

EWF concept to characterize the toughness of ductile

polymers and their blends [21–27].

The simplicity of the EWF approach, analogous to the

simplicity of the Charpy test, is the main reason why this

method has gained so much popularity for evaluation of the

fracture toughness of ductile polymers [28]. Its experimental

measurement is fairly easy since it only consists of
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Fig. 1. Comparison of the profiles of compact and SENB specimens

with the same in-plane characteristics dimensions (W and a).
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the determination of the total fracture energy of several

samples differing in initial ligament length, and the linear

regression of the data. It has been stated that the EWF

method can be applied to either plane stress or plane strain

provided the ligament is fully yielded and the plastic zone is

scaled with the square of the ligament length (load-line

curves self-similarity) [7,29,30]. Furthermore, the size

requirements for valid plane strain measurements are still

less stringent that the ones for J-integral or CTOD methods

[31,32]. When these conditions are fully satisfied, the

impact specific EWF can be considered a material constant

independent of specimen geometry for a given sheet

thickness in plane stress; and it is also invariant with

specimen thickness when plane strain conditions are met.

However, in many cases large experimental scatter is

observed when tests are done under impact conditions [33].

This scatter could be explained through the combined effect

of low resistant areas and low energies. That is, the

percentage error in the specific fracture work is inversely

proportional to the ligament length. Besides, under impact

conditions, periodic variation in the measured force signal

caused by specimen bouncing, stress waves developed on

first contact with the hammer and kinetic energy effects

constitute an inherent problem of impact testing [34–36]

leading to extra errors and variability. As a result, the relative

uncertainty in the measurements decreases in a sort of

exponential form as l is increased. This difficulty to measure

precisely the work offracture of samples with small ligaments

has been already pointed out in literature [24,37,38]. Taking

into account this scatter, the usual practice in order to obtain

valid EWF data is that the linear regression confidence limit

has to be at least 95%. As a result, to achieve an acceptable

accuracy in the estimated parameters, especially the

y-intercept, it is necessary to test a large number of samples.

Fracture toughness could be performed on either

compact or single edge notch bend (SENB) specimens

[39]. Impact testing with Charpy specimens has been used

for several decades as a standard toughness test. It is

essentially a high strain rate, three-point bend test of

notched specimens. In an effort to obtain flat, plain strain

fracture toughness, sharp cracks were employed in Charpy

specimens [40,41]. It, therefore, appears that three-point

bend configuration is the natural one in impact experiments.

The SENB configuration is simple, and therefore less

expensive to fabricate. If the test fixture is designed

properly, the span can be adjusted continuously allowing

specimens with a range of thickness to be tested [42]. One

problem with a SENB specimen is that it consumes more

material than a compact specimen for the same character-

istic dimensions (thickness B, width W, and crack length a)

as shown in Fig. 1. This is a major shortcoming when

evaluating new materials, where only small samples are

available. Hence, there is a need to obtain reliable toughness

parameters performing only a limited number of tests.

The present work presents a statistical analysis of the

EWF methodology under impact conditions limited to
the cases where the linear fit is suitable. It aims to determine

the form to optimally distribute the ligament lengths to be

tested, within a fixed number of them, in order to minimize

the uncertainty of the estimated fracture parameters, taking

into account that the relative uncertainty in the measure-

ments is not constant along the l-axis.
2. The essential work of fracture method

The EWF Method was developed by Cotterel and Reddel

[12], based on the idea of Broberg [43] who proposed that in

ductile materials fractured under elasto-plastic conditions,

the crack tip region can be divided in two parts: an inner

fracture process zone and an outer plastic deformation zone.

The total work of fracture is the sum of an essential work of

fracture We spent in the end regions ahead of the crack tips,

i.e. in the fracture process zone, and a non-essential plastic

work Wp dissipated in the outer region:

Wf Z We CWp (1)

As the essential term is proportional to the ligament area,

it can be written

Wf Z welt Cbl2twp (2)

where t is the plate thickness, b is the shape factor, and we

and wp are, respectively, the specific essential work of

fracture and the specific non-essential work of fracture. By

dividing Wf by the ligament area lt, one obtains the specific

total work wf that can be expressed as:

wf Z we Cblwp Z we Cw0
pl (3)

When plane stress conditions prevail for all ligaments, it

is further assumed that we is a constant dependent on

thickness and, if the product bwpðw
0
pÞ is independent of the

ligament length l, plotting wf against ligament length l

should give a linear relationship where the ordinate at lZ0

is the specific essential work of fracture we. When ligaments

fall in the plane-stress/plane-strain region, the extrapolation

to zero ligament length is uncertain and both linear and

power curve fitting have been proposed [26]. However, in

many cases when ligament ceases to be yielded completely

before the plain strain size conditions are violated

BR l; BR25we=sy (4)
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the extrapolation should be still linear since deformation is

similar and the specific essential work of fracture is the plain

strain value. The latter situation is very common in impact

experiments. In fact, many researchers have found exper-

imentally a linear relationship between wf and l under

impact conditions, when the ligament is fully yielded before

breaking [3,22,24,25,27,37,44–48]. Therefore, in what

follows linear fitting is adopted as a valid approach.
3. Optimal design of the test

In a set of n experimental values of wf (wfi, iZ1,.,n)

taken at different values of l (li, iZ1,.,n) we can be

estimated using Eq. (3). The main parameter to be estimated

is we, but also w 0
pZbwp may be of interest in some cases

[48]. The estimates of we and w 0
p using least squares and

Eq. (3) are given by

ŵe Z

Pn
jZ1 wjwfj

Pn
iZ1 wiliðli K ljÞ

n o
Pn

jZ1 wjlj

Pn
iZ1 wiðlj K liÞ

� � (5)

ŵ0
p Z

Pn
jZ1 wjwfj

Pn
iZ1 wiðlj K liÞ

n o
Pn

jZ1 wjlj
Pn

iZ1 wiðlj K liÞ
� � (6)

The weights wi are the inverse values of the variance of

each measurement; i.e. 1/si, iZ1,.,n.

In an ideal situation in which a large number of

measurements are available, the estimates of the intercept

and the slope of Eq. (3) can be obtained with high accuracy

even when the measurement errors involved were signifi-

cant. However, each measurement requires a lengthy and

expensive preparation and in three-point bending the

ligament range is limited due to the configuration. Thus,

the experiment should be designed considering a small

number of samples that have to be placed along the l-axis in

an optimal form such as to minimize the uncertainty of the

estimated parameters.

The uncertainties of the estimated parameters, described

by Eqs. (5) and (6), are usually characterized by their

standard deviations

sŵe
Z

Pn
iZ1 wil

2
iPn

jZ1 wjlj
Pn

iZ1ðlj K liÞ

� �1=2

(7)

sŵ0
p

Z

Pn
iZ1 wiPn

jZ1 wjlj
Pn

iZ1ðlj K liÞ

� �1=2

(8)

where sŵe
and sŵ0

p
are the estimated standard deviations of

we and w 0
p.

The problem of selecting optimal locations for a fixed

number of measurements can be formulated mathematically as

min
n1 ;n2 ;.;nm

J Z p1

sŵe

ŵe

Cp2

sŵ0
p

ŵ0
p

� �
(9)
with:

n Z
Xm

iZ1

ni (10)

The expression to be minimized is the weighted sum of the

relative standard deviations of the estimated parameters. The

absolute standard deviations are normalized to the estimated

value in order to have the terms in the sum weighted only with

the parameters p1 and p2. For instance, if only the essential

work of fracture we is needed, p2 is set to 0 and there is no need

for normalization. However, if both parameters are needed

with the same relative accuracy, p1 must be set equal to p2 and

for convenience equal to 1. Fixing the total number of

experimental determinations, n, and the number of intervals

along the l-axis, m, the unknowns in this optimisation problem

are the number of points, ni, in which each of the m intervals on

the l-axis should be divided.

The problem posed by Eqs. (9) and (10) could be solved

numerically using some of the available minimization

algorithms. However, if one notes that the unknowns can

only take integer values, the complete space of feasible

solutions can be easily explored and the solution that

minimizes Eq. (9) obtained.
4. Data points

In this work, two types of data are used. Initially, a set of

simulated data is used to compute the objective function

(Eq. (9)) repeatedly in order to explore the influence of the

distribution of tested ligament length on the fracture

parameters confidence. Finally, experimental data published

before [24] are used with the aim of validating the obtained

findings.
4.1. Set of simulated data

The set of simulated measurements is generated using

Eq. (3). The parameters used in this equation are ŵe Z8:3,

ŵ0
p Z4. The clean measurements thus generated are

corrupted with random error generated from a uniform

distribution. The l-axis is divided in m intervals. Each region

is now considered to have a different measurement error.

The error standard deviations in each region (si, iZ1,.,m)

are given by:

si Z

Pni

jZ1ðw
ðiÞ K ŵe K ŵ0

plðiÞj Þ2

ni K2

( )1=2

(11)

with ni the number of points in each interval. The error

standard deviation value employed for the first interval was

s1Z10, and si(iZ2,.) were varied in order to obtain

different relationships si/s1. Ligament lengths were taken at

equal spacing within each interval.



Table 1

Conventional properties of used materials

Material Density, r at

23 8C g/cm3

Elastic modulus,

E (tensile) GPa

Notched impact

strength, Charpy

at 23 8C KJ/m2

Vestolem

P9421

0.898 0.70 20

Lustran

ABS-740

1.040 1.93 21

Fig. 3. Specific total work of fracture plotted against ligament length

for acrylonitrile-butadiene-styrene (ABS).
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4.2. Set of experimental data

Work of fracture vs. ligament length data points for two

commercial polymeric materials: a polypropylene random

copolymer, Vestolem P9421 (PP); and an acrylonitrile-

butadiene-styrene terpolymer, Lustran ABS-740 (ABS), are

used. Conventional properties of these commercial

materials are summarized in Table 1. Fracture mechanics

evaluation was performed on pre-cracked single-edge-

notched-bend (SENB) specimens with razor-sharp notches

of different notch depth. The specimen thickness, B, and the

span to depth ratio, S/W, were kept equal to W/2 and 4,

respectively. Specimen thicknesses were the typical ones

and equal to 4 and 5 mm for PP and ABS, respectively.

Materials were evaluated at room temperature with an

impact velocity of 1.8 m/s for the polypropylene copolymer

and 3.5 m/s for ABS. It was reported that in both cases

geometric similarity was achieved and all the conditions

necessary for the EWF method to work were obeyed [24].

Plots of specific total work of fracture, wf, against ligament

length, l, are shown in Fig. 2 for PP and in Fig. 3 for ABS.
5. Results and discussion

As discussed in Section 3, when the total number of

experimental determinations, n, and the number of intervals
Fig. 2. Specific total work of fracture plotted against ligament length

for polypropylene random copolymer (PP).
along the l-axis, m, are fixed, the unknowns of the

optimisation problem are the number of points, ni, in which

each of the m intervals on the l-axis should be divided.

Let us first evaluate the total number of samples to be

tested. The influence of the number of data points on the

accuracy of the essential work method has been mapped out

for different polymeric materials in the ESIS TC4

Experience with the Essential Work of Fracture under

plain stress conditions [19,49]. They came to the conclusion

that optimum number of specimens to be tested is roughly

30–40 but, as this is rather demanding, a minimum number

of 20 is advocated. Regarding data point distribution, they

recommended that the specimens should cover the entire

ligament length range and found no basis for biasing the

data towards the intercept, since the confidence limits on the

essential work determined in such situations were not

smaller. Even though the preceding discussion is for static

cases (under plain stress conditions), in what follows it will

be assumed that the total number of samples is fixed and

equal to 20, the minimum value recommended.

Once the total number of experimental determinations, n,

is fixed, a decision on the number of intervals along the

l-axis, m, and their limits must be taken. It is convenient to

bear in mind that from the experimental observation it

emerges that the percentage error in the specific fracture

work is inversely proportional to the ligament length and

thus the possible error for very small ligaments is high [37].

This could be explained using the error propagation theory.

It states that when some quantities measured with different

uncertainties are used to calculate a new quantity, the

uncertainties are combined in a new total one. The new

calculated quantity, f, can be written as a function of n

measured values, x1,x2,.,xn:

f Z f ðx1; x2; :::; xnÞ (12)

By variation of a single input parameter xi in the

calculation model, the sensitivity vf/vxi can be determined



Fig. 5. Distribution of the relative uncertainties of the measured

specific total work of fracture along the ligament axis for

experimental points of ABS.
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on the basis of partial derivation of the function f with

respect to the chosen input parameter. The absolute

uncertainty of function dfi related to the uncertainty of the

input parameter xi results from the multiplication of the

sensitivity vf/vxi with the calculated or estimated absolute

uncertainty dxi. Each input parameter is affected by a

different uncertainty, i.e. x1Cdx1,x2Cdx2,.,xnCdxn.

Therefore, the total uncertainty of the calculated value f is

given by [50]:

df Z
vf

vx1

����
����dx1 C

vf

vx2

����
����dx2 C/C

vf

vxn

����
����dxn (13)

The work of fracture is a function of different

experimental inputs: fracture energy U and fracture surface

lB, i.e.

wf Z
U

lB
(14)

Based on Eqs. (13) and (14), the relative uncertainty of

the work of fracture is given by

dwf

wf

Z
1

l
C

1

B

� 

dl C

dU

U
(15)

being l the ligament length, B the thickness, dl the

uncertainty of l and B, and dU the uncertainty of the

calculated energy. It is easy to see from Eq. (15) that when

the fracture area is small, i.e. the ligament is small, the

uncertainty of the calculated work of fracture, dwf/wf,

increases. dwf/wf calculated from instrument characteristics

and experimental points of PP copolymer is shown in Fig. 4

as a function of ligament length l. In this figure, three

regions can be recognized clearly: in first place, for low l

(identified in Fig. 4 with (1)), the dwf/wf value is between 30

and 10% approximately with an elevated slope of variation

with l; following this, for intermediates values of l (zone

(2)), dwf/wf varies from about 10–5% showing a lower slope
Fig. 4. Distribution of the relative uncertainties of the measured

specific total work of fracture along the ligament axis for

experimental points of PP.
of variation with l; finally, for the largest values of l (zone

(3)), dwf/wf seems to be linear and constant with a value

below 5%. The same trend was displayed by ABS as clearly

seen in Fig. 5. It appears that in three-point bending tests

under impact conditions a pattern in the uncertainty of work

of fracture measurements could be identified. This could be

justified considering that in SENB experiments sample

thickness is limited because the dimensions of the testing

device do not allow too big or too small samples. According

to these observations, we decided to divide the working

interval along the l-axis in three sub-intervals, mZ3,

to solve the minimization problem: (1) 1 mm%l%4 mm,

(2) 1 mm!l%7 mm and (3) 7 mm!l%11 mm.

Table 2 shows the results of minimizing the objective

function with the simulated data. The optimal distribution of

points along the l-axis (n1, n2 and n3) is shown for every set

of possible values of the weights p1 and p2, and different

combinations of values of the standard deviations s1, s2 and

s3. The optimal distribution of data points along the l-axis

appeared highly dependent on the distribution of standard

deviations and on the weights used in the objective function.

Hence, the definition of an optimal data point distribution

along the ligament length range to be tested implies the ‘a

priori’ knowledge of the work of fracture error distribution

along the l-axis.

First the experimental error standard deviation values for

every region for the considered materials are calculated.

These values are s1Z10.7, s2Z5.98, and s3Z3.8 for PP,

and s1Z7.36, s2Z3.9, and s3Z2.08 for ABS. Therefore,

for the experimental analysed cases the same error

distribution was determined (s2/s1y0.5 and s3/s1y0.3

for both materials) suggesting that this distribution is

inherent to three point bending experiments under impact

conditions. Again, this result seems to be related to the fact

that in SENB experiments sample dimensions are restricted.

In what follows it will be assumed that error standard



Table 2

Optimal distributions of measurements for different combinations of error variances in the measurements, compared to the case in which the

measurements are taken at equal spacing

p1 p2 s2/s1 s3/s1 Optimal spacing Equal spacing

n1 n2 n3 J sŵe
sŵ0

p
J sŵe

sŵ0
p

1 1 1 1 13 0 7 0.314 2.11 0.38 0.460 2.93 0.46

0.8 0.6 12 1 7 0.255 1.76 0.30 0.388 2.70 0.41

0.7 0.5 12 1 7 0.251 1.73 0.30 0.361 2.60 0.38

0.6 0.4 13 2 5 0.205 1.51 0.25 0.271 2.48 0.37

0.5 0.3 8 3 9 0.217 1.56 0.24 0.284 2.16 0.30

0.4 0.2 2 11 7 0.144 1.10 0.14 0.181 2.01 0.29

1 0 1 1 20 0 0 0.191 1.66 0.47 0.298 2.93 0.46

0.8 0.6 18 2 0 0.123 1.59 0.50 0.215 2.70 0.41

0.7 0.5 14 2 4 0.124 1.60 0.47 0.197 2.60 0.38

0.6 0.4 13 3 4 0.113 1.49 0.42 0.125 2.48 0.37

0.5 0.3 10 2 8 0.121 1.53 0.35 0.164 2.16 0.30

0.4 0.2 4 10 6 0.108 1.08 0.28 0.140 2.01 0.29

0 1 1 1 9 1 10 0.123 2.60 0.33 0.162 2.93 0.46

0.8 0.6 8 5 7 0.132 2.81 0.30 0.173 2.70 0.41

0.7 0.5 7 2 11 0.127 2.65 0.29 0.164 2.60 0.38

0.6 0.4 6 3 11 0.092 2.32 0.22 0.146 2.48 0.37

0.5 0.3 4 2 14 0.096 1.91 0.23 0.120 2.16 0.30

0.4 0.2 1 10 9 0.036 1.09 0.13 0.041 2.01 0.29
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deviation distribution is indeed a-priori known in this type

of experiment. As a consequence, the optimal distribution of

ligament length to be tested seems to be 8, 3, 9 when both we

and wp are of interest; 10, 2, 8 when only we is desired, and

4, 2, 14 when only wp is looked for.

With the purpose of validating the proposed distribution,

the objective function was calculated using part of the

experimental points so as to satisfy ligament length

distributions proposed above. The same computation was

performed using also part of the experimental points but now

to cover the l-axis uniformly (Table 3). It simply emerges that

the values of J for the proposed distributions are always

smaller than the value of J for equal spacing of ligament

lengths. It could be, therefore, concluded that the uniformly

ligament length distribution along the ligament range is not

the optimal one, and that the tests could be planned in order to

minimize the uncertainty of the desired parameters.

To conclude, we propose to distribute the experimental

determinations taking into account that the relative
Table 3

Objective function calculated for the points distributions proposed in Tab

measurements are taken at equal spacing, for an error distribution of s2/s

Material p1 p2 Optimal spacing

n1 n2 n3 J

PP

1 1 8 3 9 0.

1 0 10 2 8 0.

0 1 4 2 14 0.

ABS

1 1 8 3 9 0.

1 0 10 2 8 0.

0 1 4 2 14 0.
uncertainty in the measurements is not constant along the

l-axis, instead of performing a large number of experiments

in order to obtain reliable fracture parameters. The

distribution of tests along the l-axis proposed in this work

reduces the number of measurements needed to obtain a

good value of the estimated impact toughness parameters.
6. Conclusions

In this work, the changes in reliability of fracture

parameters—arising from the Essential Work of Fracture

methodology—with the distribution of tested ligament

lengths have been discussed and the following conclusions

drawn.

Theoretically, to improve the accuracy of fracture

parameters estimated from EWF a large number of

measurements is required covering the entire ligament

range. However, samples with very small ligaments are
le 2 using experimental points, compared to the case in which the

1Z0.5 and s3/s1Z0.3

Equal spacing

sŵe
sŵ0

p
J sŵe

sŵ0
p

297 1.86 0.22 0.357

2.50 0.30276 1.57 0.30 0.279

076 2.51 0.16 0.078

192 0.60 0.08 0.223

0.69 0.09047 0.57 0.09 0.057

138 0.68 0.05 0.166
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difficult to make and to measure precisely. The reason for

this is that the relative uncertainty in the measured work of

fracture (wf) of an experiment is a function of the ligament

length: when the fracture area is small, i.e. the ligament is

small, the uncertainty of the measured wf is large, arising

from small fracture areas combined with the lack of

instrument sensitivity at low energies. As a consequence,

there is a need to improve the accuracy of toughness

estimated from EWF by selecting the appropriate ligament

lengths to be tested within a limited number of samples.

Consistently, the uniform ligament length distribution

along the l-axis is not necessarily the optimal one. In this

work, it is shown that it is possible to improve the accuracy

of EWF parameters by distributing the tests along the l-axis,

bearing in mind the distribution of error standard deviations

along this axis.

Results demonstrate that the optimal distribution of

experimental ligament lengths to be tested depends on the

distribution of standard deviations along the l-axis, which is

strictly a-priori unknown. However, from experimental data

it emerges that the distribution of standard deviation seems

to be mainly associated to the SENB impact test itself,

appearing to be around to s2/s1Z0.5 and s3/s1Z0.3, when

three ranges on the l-axis are selected.

It seems that there is a universal distribution of tests

along the l-axis that leads to the estimation of toughness

parameters with higher confidence. This distribution also

depends on which parameter (we or bwp) is of more interest.

For instance, if both parameters are of equal interest, the

optimal distribution of experiments along the l-axis is

certainly close to 8, 3, and 9 samples with ligament lengths

between 1–4, 4–7, and 7–11 mm, respectively.
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