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A B S T R A C T   

As a major eukaryotic cell clearing machinery, autophagy grants cell proteostasis, which is key for neuro
transmitter release, synaptic plasticity, and neuronal survival. In line with this, besides neuropathological events, 
autophagy dysfunctions are bound to synaptic alterations that occur in mental disorders, and early on, in 
neurodegenerative diseases. This is also the case of methamphetamine (METH) abuse, which leads to psychiatric 
disturbances and neurotoxicity. While consistently altering the autophagy machinery, METH produces behav
ioral and neurotoxic effects through molecular and biochemical events that can be recapitulated by autophagy 
blockade. These consist of altered physiological dopamine (DA) release, abnormal stimulation of DA and 
glutamate receptors, as well as oxidative, excitotoxic, and neuroinflammatory events. Recent molecular insights 
suggest that METH early impairs the autophagy machinery, though its functional significance remains to be 
investigated. Here we discuss evidence suggesting that alterations of DA transmission and autophagy are 
intermingled within a chain of events underlying behavioral alterations and neurodegenerative phenomena 
produced by METH. Understanding how METH alters the autophagy machinery is expected to provide novel 
insights into the neurobiology of METH addiction sharing some features with psychiatric disorders and 
parkinsonism.   
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1. Introduction 

Interconnections have been documented between the effects of the 
widely addictive and neurotoxic drug methamphetamine (METH), and 
the autophagy machinery, which grants synaptic plasticity besides 
neuronal survival (Birdsall and Waites, 2019). While consistently 
altering the autophagy machinery (Larsen et al., 2002; Lin et al., 2012; 
Lazzeri et al., 2018), METH produces multifaceted, and long-lasting 
effects in the human/animal brain. These include psychomotor alter
ations, such as hyper-locomotion, and stereotypies, addiction, depres
sion, eating disorders, psychosis, memory impairment, and altered 
cortical excitability (Meredith et al., 2005; Homer et al., 2008; Brown 
et al., 2011; Glasner-Edwards et al., 2011; Cadet and Bisagno, 2016). All 
these effects vary over time following reiterated drug exposure, and they 
may occur as the consequence of neurotoxicity or epigenetic and tran
scriptional changes fostering drug-induced behavioral sensitization 
(Nestler, 2001; Godino et al., 2015; Moratalla et al., 2017; Robinson and 
Berridge, 2008) This involves mostly the dopamine (DA) mesostriatal 
and mesocorticolimbic brain systems. Repeated/high doses of METH 
deplete striatal DA, which is due to a loss of nigrostriatal DA terminals, 
and as occasionally documented, of cell bodies within the substantia 
nigra pars compacta (SNpc) (Ares-Santos et al., 2014; Biagioni et al., 
2019; Kitamura, 2009; Liu and Dluzen, 2006; Hirata and Cadet, 1997). 
METH toxicity against DA axons and cell bodies largely relates to an 
increase in oxidative species that impair proteostasis and mitochondrial 
function while promoting neuroinflammation and apoptosis (Cadet 
et al., 1994; Jayanthi et al., 1998, 2001, 2004, 2005; Thomas et al., 
2008; Limanaqi et al., 2018b). Within DA cells and nigral cell bodies, 
METH produces cytoplasmic alterations which also extend to the cyto
plasm and nucleus of striatal GABA neurons (Fornai et al., 2003, 2004; 
Lazzeri et al., 2006, 2007; Lin et al., 2012; Li et al., 2017; Ferrucci et al., 
2017). These consist of protein inclusions staining for heat shock pro
teins, as well as autophagy and proteasome substrates, such as ubiquitin, 
parkin, alpha-synuclein, tau, and prion protein. Such alterations are 
partly reminiscent of those detected within DA and hippocampal neu
rons of METH abusers (Quan et al., 2004; Kitamura, 2009). However, 
direct evidence relating these alterations to autophagy or proteasome 
specifically in the post-mortem brain of METH users is lacking so far. 

It is fascinating that beyond both frank proteinopathy and neuro
toxicity, which may occur during METH administration/intake, auto
phagy alterations are also bound to innumerous neurochemical, 
oxidative, and neuroinflammatory events. These are known to sustain 
METH-induced behavioral sensitization, aside from them being impli
cated in some mental disorders and neurodegenerative diseases (Da Luz 
et al., 2015; Du et al., 2017; Krasnova et al., 2016; McCutcheon et al., 
2019; Puri and Subramanyam, 2019; Ryskalin et al., 2018). This is not 
surprising since autophagy intermingles with the proteasome system 
and secretory/trafficking pathways to control behavior. This occurs 
through the turnover of synaptic components and modulation of neu
rotransmitters that are implicated in METH-induced addiction, 
including DA, glutamate (GLUT), and GABA (Hernandez et al., 2012; 
Shehata et al., 2012; Limanaqi et al., 2018a; Hui and Tanaka, 2019). In 
turn, dysfunctions of various synaptic proteins and the occurrence of 
non-canonical biochemical pathways that are bound to the effects of 
METH, converge in altering both neurotransmission and autophagy 
(Beaulieu et al., 2009; Hong and Amara, 2013; Limanaqi et al., 2018a; 
Murdoch et al., 2016; Wang et al., 2015, 2018). Rescuing autophagy is 
pivotal for the survival of catecholamine and in particular, DA neurons 
that are highly susceptible to DA-related oxidative damage, as that 
induced by METH (Castino et al., 2008; Da Luz et al., 2015; Wei et al., 
2016; Sun et al., 2019). In line with this, compounds that are known to 
act as autophagy inducers, have been shown to counteract both 
METH-induced behavioral sensitization and neurotoxicity (Ago et al., 
2012; Beaulieu et al., 2004; Huang et al., 2018; Lazzeri et al., 2018; Li 
et al., 2017). Some of these compounds are increasingly shown to 
possess antidepressant, mood-stabilizing, or antipsychotic effects which 

are partly bound to autophagy activation (Zhang et al., 2007; Gassen 
and Rein, 2019; Ryskalin et al., 2018). This is in line with evidence that 
loss of autophagy can disrupt neuronal cell biology and predispose to 
behavioral changes including psychotic-like symptoms, and cognitive 
alterations, up to neurodegeneration (Hara et al., 2006; Hu et al., 2017; 
Merenlender-Wagner et al., 2015; Sato et al., 2018; Schneider et al., 
2016). 

This suggests that rescuing autophagy in the brain may produce 
plastic effects that relate to both behavioral improvements and neuro
protection against METH neurotoxicity. Notwithstanding these pieces of 
evidence, controversial results and confounding outcomes still exist on 
the autophagy status during METH administration. Therefore, the role of 
the autophagy cascade in regulating neurotransmission and cell survival 
within METH-affected brain structures will be here analyzed in an 
attempt to correlate autophagy alterations with the maladaptive plastic 
changes sustaining addiction. This extends to degenerative phenomena 
that occur during METH abuse. Such an analysis will encompass (i) an 
overview of the anatomical and molecular targets of METH, and hints to 
the role of autophagy; (ii) molecular and biochemical pathways linking 
autophagy and synaptic plasticity; (iii) evidence on autophagy-based 
modulation of DA-related behavior, which is critical for METH- 
induced addiction; (iv) past controversies and novel insights on the 
fine molecular mechanisms through which METH alters the autophagy 
machinery; v) bridging METH-induced autophagy alterations and 
neurotoxic degenerative phenomena; vi) role of autophagy in METH- 
induced neuroinflammation. The present knowledge discussed here is 
expected to provide novel experimental clues on the role of cell-clearing 
systems in METH-induced addiction and neurotoxicity, with potential 
implications for some DA-related psychiatric and neurodegenerative 
diseases. 

2. METH-induced behavioral sensitization: hints to the role of 
autophagy 

METH is a widely abused psychostimulant owning powerful addic
tive and neurotoxic potential. The drug rapidly enters the central ner
vous system (CNS) where it persists for up to 12 h (Fowler et al., 2008; 
Volkow et al., 2010a). The drug kinetics in the CNS (and mostly within 
monoamine-containing brainstem nuclei projecting to the limbic sys
tem) parallel the acute effects of METH in both animals and humans. 
These consist of euphoria, excitation, subjective perception of increased 
energy, motor stimulation, active waking state, sleeplessness, and 
alertness (Stephans and Yamamoto, 1995; Cruickshank and Dyer, 2009; 
Marshall and O’Dell, 2012; Radfar and Rawson, 2014). Reiterated 
intake/administration of METH produces long-lasting alterations, which 
may be the consequence of neurotoxicity or persistent, epigenetic and 
transcriptional changes driving maladaptive plasticity within striatal, 
limbic, and isocortical brain areas (Uehara et al., 2004; Battaglia et al., 
2002a, b; Godino et al., 2015; Limanaqi et al., 2018b; Moratalla et al., 
2017; Li et al., 2015). Reiterated intake/administration of METH in
duces a compulsive pattern of drug-taking behaviors, which produces 
long-lasting neuronal adaptations making reward and motivation brain 
systems hypersensitive to drug and drug-associated stimuli (Nestler, 
2001; Robinson and Berridge, 2000, 2008). This is bound to the onset of 
drug-induced behavioral sensitization, which translates into long-lasting 
psychomotor effects such as stereotypies, addiction, craving, aggres
siveness, bulimia and anorexia, psychosis, depression, cognitive im
pairments, and altered cortical excitability (Zweben et al., 2004; 
Meredith et al., 2005; Homer et al., 2008; Hoffman et al., 2006; McKetin 
et al., 2006; Brown et al., 2011; Glasner-Edwards et al., 2011; Marshall 
and O’Dell, 2012; Hadamitzky et al., 2012; Dean et al., 2013; Radfar and 
Rawson, 2014; Glasner-Edwards and Mooney, 2014; Cadet and Bisagno, 
2016; Ferrucci et al., 2019). At the molecular level, activation of the 
cAMP/AKT pathway, as well as CREB and ΔFosB provides a mechanism 
of addiction based on the stability of these proteins, by which 
drug-induced changes in gene expression within striatal neurons can 
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persist long after drug withdrawal (Nestler, 2001; Robison and Nestler, 
2011; Li et al., 2015). Again, reduced protein degradation, regulation of 
receptor sensitivity, along with structural changes, such as increased 
spine density within the neurons of the mesolimbic DA system and their 
targets, are key modifications that occur after repeated drug adminis
tration (Nestler, 2001; Robison and Nestler, 2011; Li et al., 2015). 

The biochemical basis underlying this phenomenon is largely due to 
altered synaptic transmission at the level of monoamine, mainly the DA 
brain system (Lazzeri et al., 2007; Sulzer, 2011). In fact, as measured by 
brain dialysis, reiterated METH administration in mice produces dra
matic oscillations of extracellular DA, which ranges from high peaks 
(exceeding by 10-fold baseline levels) to severe deficiency (no detect
able extracellular levels) within just a few hours (Battaglia et al., 2002a, 
b; Lazzeri et al., 2007). This surpasses at large the slight oscillations 
produced by physiological DA release to produce abnormal, pulsatile 
stimulation of postsynaptic DA receptors (DRs). This involves mostly 
type 1 DRs (D1DRs), which in turn, trigger non-canonical transduction 
pathways that alter the responsivity of postsynaptic neurons to sustain 
drug addiction (Merchant et al., 1988; Centonze et al., 2003; Fleck
enstein et al., 2007; Li et al., 2015; Limanaqi et al., 2018b, 2019; Cadet 
et al., 2012; Surmeier et al., 2010). This occurs within reward-related 
brain areas where DA terminals are most abundant, namely the 
medium-sized spiny neurons (MSNs) of the striatum, although limbic 
and isocortical brain regions are involved as well (Fig. 1, Volkow and 
Morales, 2015). 

The alterations in physiological DA release, in time, amount, and 
place, represent a major determinant of both the behavioral syndrome 
occurring immediately after METH intake and the long-term behavioral 
changes that reflect mainly the persistent alterations in postsynaptic DA 
brain regions following chronic METH exposure. METH use disorder 
(MUD) is characterized by the occurrence and relapse of neuropsycho
logical symptoms which may widely contribute to exacerbating pre- 
existing neuropsychological deficits and comorbid neurological or 

psychiatric disorders (Volkow, 2009; Glasner-Edwards and Mooney, 
2014; Cadet and Bisagno, 2016). The neurobehavioral effects of 
METH-induced sensitization are recapitulated at the neurochemical 
level, since abnormal DA synthesis, release, and re-uptake, along with 
the abnormal activity of DRs are bound to psychiatric symptoms 
occurring in MUD, as postulated for some mental disorders as well 
(Abi-dargham and Moore, 2003; Howes et al., 2012; Laruelle et al., 
1999; Perreault et al., 2010; Ryskalin et al., 2018; Weidenauer et al., 
2017). 

In this frame, it is remarkable that impairment of autophagy ma
chinery within DA neurons of experimental animals leads to increased 
evoked striatal DA secretion along with decreased DA re-uptake, in a 
way reminiscent of the mechanisms of action of METH (Hernandez et al., 
2012; Hunn et al., 2019). Again, autophagy is variously affected by 
abnormal stimulation of DRs, with D1DR inhibiting the autophagy flux 
while largely contributing to METH addiction (Wang et al., 2018; Yang 
et al., 2020a, b). Furthermore, several synaptic proteins, and suscepti
bility genes for mental disorders, do converge on autophagy-related 
pathways (Limanaqi et al., 2018a; Ryskalin et al., 2018; Section 3.2). 
Intriguingly, these are mostly involved in pre-synaptic DA release and 
those post-synaptic DR-related cascades that are altered by METH. In 
line with this, mTOR or GSK3-β inhibitors, and/or AMPK/TFEB in
ducers, which are known to promote autophagy, revert DA-related 
behavioral sensitization, memory impairment, and morphological al
terations that are produced by METH (Ago et al., 2012; Beaulieu et al., 
2004; Castino et al., 2008; Xu et al., 2011; Huang et al., 2018; Lazzeri 
et al., 2018; Li et al., 2017; Yan et al., 2019). Again, these compounds are 
shown to produce antipsychotic, antidepressant, or antimanic effects 
(Cleary et al., 2008; Kara et al., 2013, 2018; Kim et al., 2018; Mai et al., 
2018; Ryskalin et al., 2018; Zhang et al., 2007). Such an issue is dis
cussed in depth ahead when focusing on METH-related molecular and 
biochemical events with which autophagy is intermingled (Section 3). 
Here, we wish to anticipate that METH may produce detrimental effects 
bridging alterations in DA neurotransmission and cell clearing systems. 
This may extend well beyond neuroprotection against METH toxicity to 
sustain METH-related behavioral sensitization. Most of the research 
aimed at dissecting the effects of METH upon the autophagy machinery 
is based on toxicity studies, correlating autophagy with the cytopatho
logical and apoptotic effects of METH. Despite increasing evidence 
linking autophagy dysfunctions, neurotransmitter release, synaptic 
plasticity, and neuropsychiatric alterations, studies investigating the 
role of autophagy in the behavioral effects of METH specifically are 
missing so far. Here we bring together direct and indirect evidence 
joining the plastic and neuroprotective effects of the autophagy ma
chinery in brain structures that are targeted by METH, with a primary 
focus on the DA system. Before moving to such an issue, the molecular 
targets of METH within DA neurons are briefly summarized to ease 
comprehension of the intermingling effects of autophagy with DA 
metabolism and secretory machinery. 

2.1. Molecular effects of METH in monoamine-containing neurons, a 
focus on dopamine 

The bases for the effects of METH stem from a quite selective uptake 
and the presence of common intracellular targets within monoamine- 
containing neurons, which in turn, produce widespread innervation 
within a variety of brain areas where the effects of METH are ultimately 
produced. 

Within monoamine neurons, the effects of METH stem from its 
interaction with three molecular targets, namely 1) the synaptic vesicles 
and the vesicular monoamine transporter type-2 (VMAT-2), 2) the 
monoamine transporters, namely DA transporter (DAT), norepinephrine 
(NE) transporter (NET), and serotonin (or 5-hydroxytryptamine, 5-HT) 
transporter (SERT), and 3) mitochondrial electron transport chain 
complexes, and monoamine oxidase (MAO) enzyme, which carries out 
monoamine oxidative deamination. The activities of all these proteins 

Fig. 1. DA pathways and target brain areas affected by METH. Both the 
short-term and long-term behavioral effects of METH stem from altered DA 
transmission within the mesostriatal, nigrostriatal, mesolimbic, and meso
cortical pathways projecting to the ventral and dorsal striatum, limbic brain 
areas (amygdala and hippocampus), and the prefrontal cortex, respectively. The 
ventral striatum, which comprises the NAc (Nucleus Accumbens); and OT (ol
factory tubercle), is mostly involved in goal-directed behavior, while the dorsal 
striatum in the habit-based behavior induced by METH. METH neurotoxicity 
mostly affects striatal DA terminals arising from the SNpc (substantia nigra pars 
compacta) though it may also extend to neuronal cell bodies within the SNpc, 
and as occasionally documented, within the VTA (ventral tegmental area), 
striatum, and hippocampus. 
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are impaired by METH once it enters DA/NE/5-HT terminals via either 
monoamine transporters or passive diffusion. Although most of this 
evidence emerges from studies carried out within DA-containing neu
rons, it is worth mentioning that METH-induced addiction, psychotic 
signs, and memory deficits are also bound to alterations of NE, and 5-HT 
and their transporters (Weinshenker and Schroeder, 2007; Reichel et al., 
2012; McFadden et al., 2012, 2018; Ferrucci et al., 2019). 

VMAT-2 selectively recognizes and transports cytosolic monoamines 
DA, NE, and 5-HT within synaptic vesicles (Erickson et al., 1996). 
Contrarily to VMAT-1 being expressed within both neuronal and 
non-neuronal cells (e.g. chromaffin cells of the adrenal medulla), 
VMAT-2 is most abundantly expressed in the brain, with a higher affinity 
for DA and NE compared with VMAT-1 (Erickson et al., 1996). VMAT-2 
plays a key role in cytosolic catecholamine homeostasis and release 
since it guarantees the vesicular packaging and storage of both newly 
synthesized and synapse-recycled DA. This grants the compartmental
ized physiological oxidative deamination of DA, which is key to pre
venting DA self-oxidation and production of reactive DA by-products, 
such as DA-quinones. Within DA-storing synaptic vesicles, METH acts as 
a weak base to disrupt the proton gradient and rise the acidic 
compartment towards basic values, which makes nonpolar DA freely 
diffusible out of the vesicles (Cubells et al., 1994; Sulzer and Rayport, 
1990; Sulzer, 2011). Again, METH directly inhibits VMAT-2 and dis
places VMAT-2 molecular complex from synaptic vesicle membranes to 
non-canonical membranous compartments, such as those of the 
trans-Golgi network (Brown et al., 2000; Sandoval et al., 2002, 2003). 
These events prevent DA from re-entering the vesicles meanwhile 
impairing physiological DA storage, which generates massive levels of 
extra-vesicular DA within axons (Fleckenstein et al., 2007; Guillot et al., 
2008; Volz et al., 2007). METH-induced alkalization per se may not be 
sufficient to fully produce the typical redistribution of vesicular DA, thus 
its action as a weak base to tone down the vesicular pH gradient must be 
coupled with the selective inhibition of VMAT-2. In fact, bafilomycin, 
which acts as a proton pump inhibitor only with no effects on VMAT-2, 
redistributes only half of METH-induced DA levels in the extracellular 
compartment, despite decreasing the pH ratio vesicle/cytoplasm by 
2-fold compared with METH alone (Floor and Meng, 1996). While 
increasing cytosolic DA levels through a collapse in secretory vesicle pH 
gradients, prolonged exposure to amphetamines and other weak bases 
produces a compensatory response resulting in vesicle acidification, 
which enhances vesicular catecholamine release and quantal size during 
fusion events (Markov et al., 2008). Similar to what documented in both 
experimental models and human METH abusers, VMAT-2 is reduced in 
the brains of animal models and subjects with Parkinson’s disease (PD) 
or psychiatric disorders (Miller et al., 1999; Mooslehner et al., 2001; 
Kitamura, 2009; Iritani et al., 2010; McFadden et al., 2012; Purves-Ty
son et al., 2017). 

Within the cytosol, METH also acts at the level of mitochondria 
where it inhibits mitochondrial respiratory chain complexes (Brown 
et al., 2005; Ruan et al., 2020), and the MAO enzyme on the outer 
mitochondrial membrane (Gesi et al., 2001; Liu et al., 2016; Suzuki 
et al., 1980). MAO carries out the oxidative deamination of DA, NE, and 
5-HT, and exists as two different isoforms, namely MAO-A and MAO-B. 
The former is present within catecholamine-containing neurons (DA, 
NE, and Epinephrine neurons), whereas the latter occurs mainly in 
5-HT-containing and glial cells. Remarkably, METH inhibits MAO-A 
with a 10-fold higher affinity compared with MAO-B, which un
derlines the crucial role of MAO-A for METH-induced alterations of 
intracellular DA metabolism within DA terminals (Gesi et al., 2001; 
Suzuki et al., 1980). This may also include the uncoupling between 
MAO-A and aldehyde dehydrogenase (AD), thus occluding the 
AD-dependent conversion of the highly reactive by-product of DA 
oxidation 3,4-dihydroxyphenylacetaldehyde (DOPALD) into the quite 
inert 3,4-dihydroxyphenylacetic acid (DOPAC) (Agid et al., 1973; Gesi 
et al., 2001). Joined with the actions of VMAT-2 and DAT mediating DA 
uptake within the nerve terminals and within synaptic vesicles, 

respectively, this represents the most powerful system to surveil DA 
activity. In the absence of a compartmentalized physiological oxidative 
deamination, which occurs following METH administration, DA 
self-oxidation produces a high amount of reactive aldehyde DOPALD, 
which owns a dramatic oxidative potential and quickly interacts with 
various cell substrates within the DA axon terminals and surrounding 
compartments (Gesi et al., 2001). Again, self-oxidative DA metabolism 
leads to the generation of toxic quinones and highly reactive chemical 
species such as hydrogen peroxide (H2O2) and superoxide radicals, 
which react with sulfhydryl groups and promote structural modifica
tions by targeting oxidation-prone domains within proteins, lipids, and 
nucleic acids (Cadet et al., 1994; Cubells et al., 1994; Gluck et al., 2001; 
Guillot et al., 2008; Jayanthi et al., 1998; LaVoie and Hastings, 1999; 
Sulzer and Zecca, 1999; Lazzeri et al., 2007; Miyazaki et al., 2006). Such 
powerful oxidative stress within presynaptic DA terminals is key to 
fostering nigrostriatal toxicity. At the same time, cytosolic presynaptic 
DA diffuses in the extracellular space either by passive diffusion or via 
the reverted direction of DAT, an additional effect which is promoted by 
METH (Fig. 2, Schmidt and Gibb, 1985; Sulzer, 2011; Sulzer and Ray
port, 1990; Volz et al., 2007). 

In fact, METH impairs the plasma membrane DAT which selectively 
takes up extracellular DA within nerve terminals (McFadden et al., 2012; 
Volz et al., 2007). METH impairs DAT activity either via direct inhibi
tion or via reverting its direction, which potentiates the accumulation of 
freely diffusible DA in the extracellular space (Schmidt and Gibb, 1985; 
Sulzer, 2011; Sulzer and Rayport, 1990; Volz et al., 2007). Similar to 
what occurs in the animal and human METH-addicted brain, reduced 
DAT expression was detected in animal models and subjects with psy
chiatric disorders or PD (Wilson et al., 1996; Miller et al., 1999; Kita
mura, 2009; McCann et al., 2008; McFadden et al., 2012; Markota et al., 
2014; Purves-Tyson et al., 2017; Volkow and Morales, 2015; Chang 
et al., 2020). METH-induced impairment and downregulation of DAT 
lead to unusually high extracellular DA levels, which produces synaptic 
effects at both short and long-distance through a volume transmission 
(Fuxe et al., 2010). This encompasses striatal MSNs, and non-neuronal 
targets such as the neurovascular unit, which is implicated in the neu
roinflammatory effects of METH administration (Northrop and Yama
moto, 2015). In fact, METH-induced damage to DA terminals is 
accompanied or even preceded by extensive neuroinflammation and 
gliosis, which may contribute to blood-brain barrier damage and neu
rodegeneration over prolonged periods. 

Catecholamine, and mostly DA neurons, which are massively, and 
quite selectively recruited by stressful events and abused substances, do 
share common morphology and metabolic features, which may explain 
their susceptibility to neurodegenerative phenomena (Krashia et al., 
2019; Limanaqi et al., 2020b). They are long-projecting neurons with 
poorly or unmyelinated axons endowed with multiple varicosities that 
provide profuse synaptic innervations within various brain areas where 
the behavioral effects of METH are eventually produced. Again, their 
autonomous pacemaker activity implies high-energy requirements and 
sustained mitochondrial function. Thus, efficient mechanisms of axonal 
transport and protein quality control are needed to replace damaged 
mitochondria and synaptic components. Within this scenario, auto
phagy holds center stage by operating promiscuously with the protea
some and endocytic/secretory pathways at both synapses and cell 
bodies. In fact, autophagy regulates DA release and activity (Hernandez 
et al., 2012; Hunn et al., 2019), and in turn, catecholamine-containing 
neurons are inherently susceptible to degeneration associated with an 
autophagy failure (Castino et al., 2008; Du et al., 2017; He et al., 2018; 
Lazzeri et al., 2018; Sato et al., 2018; Wei et al., 2016; Xie et al., 2018). A 
basis for the high vulnerability of catecholamine-containing neurons to 
oxidative stress-related damage stems from the reactive nature of DA. In 
this frame, rescuing autophagy is crucial to promote survival (Guo et al., 
2018; Hu et al., 2017; Lazzeri et al., 2018; Li et al., 2017; Wei et al., 
2016). This is not surprising since DA-related oxidative/inflammatory 
events and the build-up of oxidized/misfolded substrates which are 
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induced by METH (such as alpha-synuclein, tau, and prion protein), may 
converge to impairing the autophagy machinery; in turn, impaired 
autophagy may fuel synaptic alterations, accumulation of toxic protein 
aggregates, and neurodegeneration (Da Luz et al., 2015; Feng et al., 
2020; Ferrucci et al., 2017; Fornai et al., 2006; He et al., 2018; Li et al., 
2017; Martinez-Vicente et al., 2008; Muñoz et al., 2012; Silva et al., 
2020; Song et al., 2014). As we shall see, despite increasing the number 
of autophagy markers and vacuoles, METH produces DA-related 
oxidative damage of mitochondria and proteins, which may eventually 
converge to engulfing autophagy compartments while impeding auto
phagy flux. Recent insights on the mechanisms of action of METH sug
gest that such a drug of abuse may early affect the autophagy machinery 
by impairing the recruitment of key components that are required for 
autophagosome formation and maturation (Lazzeri et al., 2018). 

Considering the role of autophagy in the modulation of DA-related 
behavior, this appears as a key for METH-induced behavioral sensiti
zation beyond neurotoxicity. Autophagy is also key to preventing neuro- 
inflammation and disruption of the blood-brain-barrier, which is bound 
to the early effects of DA-related METH administration. This anticipates 
the impressive overlap between the effects of METH and autophagy 
impairment upon DA system alterations, casting the hypothesis that 
autophagy dysfunction in drug abuse may bridge psychiatric manifes
tations and neurodegenerative phenomena. 

3. The autophagy machinery: bridging cell-clearance and 
synaptic plasticity 

Macroautophagy (here referred to as autophagy) is a phylogeneti
cally conserved eukaryotic cell-clearing system that plays a seminal role 
in cell homeostasis (Rubinsztein et al., 2015; Tooze and Schiavo, 2008). 
Autophagy starts with a double-membrane nascent vacuole called 
phagophore, where sequestration of various cellular substrates occurs. 
These encompass lipids, sugars, nucleic acids, proteins, and even whole 
organelles or cell-compartments. The autophagy-dependent clearance of 

specific organelles such as mitochondria, pathogens, ribosomes, por
tions of the endoplasmic reticulum, or synaptic vesicles, is convention
ally designated as mitophagy, xenophagy, reticulophagy, or 
vesiculophagy, respectively (Binotti et al., 2014; Okamoto, 2014; 
Rubinsztein et al., 2015). The sequestration of substrates within the 
sealing phagophore may either occur as a “bulk” process or involve 
adaptor/receptor proteins such as SQSTM1/p62 and optineurin. While 
shuttling ubiquitinated cargoes to the forming autophagosome, these 
proteins are themselves degraded by autophagy, thus serving as markers 
of autophagy progression (Okamoto, 2014; Rubinsztein et al., 2015a). 
Once mature, the autophagosome may fuse either directly with the 
lysosome to produce the autolysosome, or with endomembrane vesicles 
(multivesicular bodies), giving birth to the amphisome (Fader and 
Colombo, 2009). The latter eventually merges with the lysosome to 
complete substrates’ breakdown while some metabolic by-products are 
recycled. 

Autophagy progression, starting from the biogenesis and maturation 
of autophagosomes up to the fusion with lysosomes, is finely orches
trated by a complex machine system that consists of more than 30 
autophagy-related-gene (Atg) products (Xie and Klionsky, 2007; Yu 
et al., 2018). A crucial step in autophagy activation consists of the 
conversion of Atg8 (LC3 in mammals) into LC3I, lipidation of LC3I into 
LC3II isoform, and the incorporation of LC3II into the phagophore 
membrane. This is a key step for the vacuole to expand and seal, and for 
cytoplasmic elements to be properly engulfed. As LC3-II is quite spe
cifically associated with autophagosomes and autolysosomes, it is 
widely employed as a marker for monitoring autophagy at the 
morphological, ultrastructural, and biochemical levels. However, an 
increase in LC3-II levels is not sufficient to draw sound conclusions on 
the autophagy status, since it may indicate either an increase or a 
decrease of the autophagy flux. This is magnified when 
semi-quantitative techniques are employed, such as LC3-positive puncta 
quantification, which is considered as a gold-standard assay for assess
ing the numbers of autophagosomes in cells (Runwal et al., 2019). In 

Fig. 2. Molecular targets of METH within DA 
neurons. METH enters DA terminals via either 
DAT or passive diffusion. Within DA-storing 
synaptic vesicles, METH acts as a weak base 
to disrupt the proton gradient and rise the 
acidic compartment towards basic values, and it 
directly inhibits VMAT-2 while displacing 
VMAT-2 molecular complex from synaptic 
vesicle membranes to non-canonical membra
nous compartments. This makes nonpolar DA 
freely diffusible out of the vesicles thus altering 
the compartmentalized physiological oxidative 
deamination of DA, which leads to DA self- 
oxidation and production of reactive DA by- 
products (Quinones). Such an effect is exacer
bated by METH-induced inhibition of the MAO- 
A enzyme on the outer mitochondrial mem
brane. This may also include the uncoupling 
between MAO-A and aldehyde dehydrogenase 
(AD), which occludes the conversion of the 
highly reactive by-product of DA oxidation 
DOPALD into the quite inert DOPAC. Accumu
lation of DOPALD potentiates the production of 
reactive DA by-products. At the same time, 
METH impairs mitochondrial respiratory chain 
complexes, to produce mitochondrial dysfunc
tions and subsequent intracellular accumula
tion of reactive oxygen species (ROS) adding to 
DA-related oxidative stress and altered proteo
stasis within DA terminals. At the same time, 
cytosolic presynaptic DA diffuses in the extra

cellular space either by passive diffusion or via the reverted direction of DAT. In detail, METH impairs DAT activity either via direct inhibition or via reverting its 
direction, which potentiates the accumulation of freely diffusible DA in the extracellular space.   

F. Limanaqi et al.                                                                                                                                                                                                                               



Progress in Neurobiology 204 (2021) 102112

6

fact, endogenous LC3-positive puncta do occur and become even larger 
in cells where autophagy induction and LC3-II formation are abrogated 
(Runwal et al., 2019). This may be due to either LC3-I sequestration to 
p62-positive aggregates that accumulate when autophagy is impaired, 
or misplacement of LC3 from autophagy vacuoles to the cytosol (Lazzeri 
et al., 2018; Runwal et al., 2019). This may lead to results misinter
pretation unless LC3 assessment is coupled with other autophagy 
markers, autophagy flux assays, or ultrastructural immune-labeling 
(Lazzeri et al., 2018). As we shall see, this is key in the case of METH, 
whereby early autophagy impairment occurs despite the production of 
massive LC3 fluorescent signal (Castino et al., 2008; Lazzeri et al., 
2018). 

Besides LC3, other autophagy proteins ranging from Atg3 to Atg7, as 
well as the adaptor protein SQSTM1/p62 are widely employed as 
markers for monitoring autophagy. In fact, they are key in autophagy 
progression, and also contribute to the processing and conjugation of 
Atg8/LC3 to the growing autophagosome membrane lipids (Xie and 
Klionsky, 2007; Yu et al., 2018). For instance, Atg7 participates in LC3 
lipidation by directly activating Atg8/LC3 meanwhile promoting its 
transfer to the E2 enzyme Atg3. At the same time, Atg7 binds to Atg12 
fostering its binding to Atg5, which leads to the formation of the 
Atg12-Atg5 conjugate complex (Tooze and Schiavo, 2008). After 
recruiting Atg16, such a complex localizes to the expanding phag
ophore, where it acts as an E3 ligase fostering the final transfer of Atg8 to 
its lipid target phosphatidylethanolamine (PE). Several biochemical 
pathways that are placed upstream of the autophagy machinery finely 
tune its activity by regulating Atg products. The best-known pathway 
consists of mTOR complex1 (mTORC1) which hampers autophagy in
duction through phosphorylation of Atg13 and subsequent inhibition of 
Atg1 (ULK1 in mammals) (Kamada et al., 2010). The mTOR complex 
represents a downstream substrate of the PI3K/PTEN/Akt pathway, 
which conveys extracellular and environmental stimuli to orchestrate 
cell growth, proliferation, metabolism, and autophagy initiation in 
response to bioenergetics and nutritional requests (Zoncu et al., 2011). 
The binding of insulin and growth factors promotes Akt/mTOR activity, 
which, in turn, promotes protein synthesis, along with ribosome, and 
lipid biogenesis meanwhile inhibiting autophagy (Ma and Blenis, 2009). 
Conversely, the gold-standard mTORC1 inhibitor rapamycin complexes 
with the FK506-binding protein 12 (FKBP12) of TOR to induce auto
phagy. Additional pathways that foster autophagy initiation consist of 
the activation of 5′ AMP-activated Protein Kinase (AMPK) or inhibition 
of Glycogen Synthase Kinase 3 Beta (GSK3-β) (Fornai et al., 2008; Pas
quali et al., 2010; Weikel et al., 2016). Again, activation of the tran
scription factor EB (TFEB) promotes autophagy induction by acting 
either in cooperation with or independently of mTORC1 to regulate 
lysosomal activation and autophagosome-lysosome fusion (Settembre 
et al., 2012; Zhou et al., 2013a, b). Again, activation of the 
NAD-dependent deacetylase Sirtuin-1 (SIRT1) promotes autophagy via 
de-acetylation of Atg5, Atg7, LC3 and activation of the transcription 
factor forkhead box O3 (FOXO3) (Pietrocola et al., 2012). The latter 
controls the expression of mTOR and several pro-autophagic proteins. 

Similar to stressful events, abused substances produce compensatory 
or maladaptive plastic changes that occur along with alterations of 
protein quality control at the synapses (Limanaqi et al., 2020b). These 
alterations are bound to intracellular stress-related pathways that are 
known to promptly recruit the autophagy machinery in the attempt to 
restore neuronal homeostasis. These include oxidative and ER stress, the 
unfolded protein response (UPR), and para-inflammation. However, 
prolonged stress/drug abuse may hamper the neuronal attempt to clear 
via increased autophagy. This may promote disease through a vicious 
cycle of synaptic alterations spreading to axons, cell bodies, and 
trans-synaptically, to neighboring cells. As a proof of concept, auto
phagy is commonly dysregulated in a plethora of CNS disorders where a 
feedback loop establishes between impaired proteostasis, and oxidati
ve/inflammatory events to foster synaptic alterations up to neuronal cell 
loss (Feng et al., 2020; Hara et al., 2006; Hu et al., 2017; Hui and 

Tanaka, 2019; Komatsu et al., 2006, 2007; Limanaqi et al., 2018a; 
Pigulevskiy et al., 2020; Ryskalin et al., 2018; Sato et al., 2018; Shehata 
et al., 2018; Sumitomo et al., 2018a). In fact, genetically inactivating 
autophagy in murine models reproduces both psychiatric alterations and 
key features of neurodegeneration; rescuing autophagy improves 
behavior and provides neuroprotection instead (Feng et al., 2020; Hara 
et al., 2006; Hu et al., 2017; Hui and Tanaka, 2019; Komatsu et al., 2006, 
2007; Limanaqi et al., 2018a; Merenlender-Wagner et al., 2014; Pigu
levskiy et al., 2020; Ryskalin et al., 2018; Sato et al., 2018; Shehata et al., 
2018; Sumitomo et al., 2018b). 

Bridging autophagy deficits and neuropsychiatric conditions, recent 
studies unraveled a link between synaptic autophagy, synaptic plas
ticity, modulation of behavior, and emotional/cognitive experience 
(Tomoda et al., 2020). Behavioral alterations in autophagy-deficient 
models are bound to an abnormal expression of synaptic proteins, 
which leads to structural changes at the presynaptic active zone and 
enhanced neurotransmitter release (Gupta et al., 2016). Conversely, 
rescuing autophagy/lysosomal protein degradation prevents early syn
aptic alterations and improves behavioral deficits in several experi
mental models of aging, neurodegeneration, as well as cognitive and 
affective disorders (De Risi et al., 2020; Gupta et al., 2016; Masini et al., 
2018; Merenlender-Wagner et al., 2014; Puri and Subramanyam, 2019; 
Tomoda et al., 2020; Vartak et al., 2019; Xiao et al., 2015). These effects 
are lost when autophagy is inhibited pharmacologically, or genetically 
through deletion of Atg7 and Atg8 (De Risi et al., 2020; Gupta et al., 
2016; Merenlender-Wagner et al., 2014). 

Altogether, these findings suggest that autophagy impairment may 
be an early event in neurodegeneration; thus rescuing autophagy/lyso
somal degradation can counteract early synaptic dysfunctions that may 
precede neurodegeneration (Birdsall and Waites, 2019; Lee and Kim, 
2019). This is further supported by the plastic and neuroprotective ef
fects of autophagy-inducing compounds, such as mTOR and GSK3-β 
inhibitors (Ali et al., 2020; Gassen et al., 2014, 2015; Gassen and Rein, 
2019; Gulbins et al., 2018; Kara et al., 2018, 2013; Kim et al., 2018; 
Masini et al., 2018; Merenlender-Wagner et al., 2014; Zhang et al., 2007; 
Ryskalin et al., 2018). This also fits with evidence that various psy
chostimulants and abused substances activate mTOR and GSK3- β in the 
mesostriatal and mesocorticolimbic circuitry, while their inhibition 
through rapamycin and lithium, respectively, reverses 
psychostimulant-induced sensitization, relapse, reinforcement, and 
toxicity (Barak et al., 2013; Beckley et al., 2016; Dayas et al., 2012; 
Huang et al., 2018; Lazzeri et al., 2018; Lee et al., 1999; Li et al., 2017; 
Mehrafza et al., 2019; Neasta et al., 2014; Xu et al., 2011; Yan et al., 
2019). At the molecular level, this is evident by the reversal in 
METH-induced increase in spine density, as well as Fos and CREB ex
pressions in the striatum, prefrontal cortex, and amygdala of murine 
models (Huang et al., 2018; Lee et al., 1999; Mehrafza et al., 2019). A 
graphical summary of the autophagy pathway, along with the specific 
autophagy steps targeted by METH is provided in Fig. 3. 

3.1. Autophagy modifies synaptic events implicated in METH addiction 

Various synaptic events that may occur in substance use disorders 
(SUD), including METH-induced addiction, are bound to autophagy al
terations. These include: 

i) Oxidative-related accumulation of substrates promoting synaptic dys
functions and autophagy blockade. 

The build-up of altered mitochondria and oxidized/altered proteins 
which are implicated in the effects of METH may overwhelm autophagy 
capacity to produce early synaptic dysfunctions and neurotoxicity 
(Atkin et al., 2012; Da Luz et al., 2015; Feng et al., 2020; He et al., 2018; 
Muñoz et al., 2012; Polajnar and Žerovnik, 2014). These include 
alpha-synuclein, tau, prion protein, and DISC-1. Inducing autophagy is 
key to counteracting the accumulation of damaged mitochondria and 
the abovementioned proteins, thus preventing both synaptic alterations 
and neurotoxicity (Decressac et al., 2013; Fang et al., 2019; Han et al., 
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2020; Limanaqi et al., 2020a; Palikaras and Tavernarakis, 2020; Polito 
et al., 2014). Recent studies underscore the pivotal contribution of 
mitophagy in synaptic function beyond neuropathology (Palikaras and 
Tavernarakis, 2020). 

Mitochondrial damage, and mitophagy dysregulations have been 
implicated in synaptic alterations underlying the development and 
progression of mental and neurodegenerative diseases (Manji et al., 
2012; Palikaras and Tavernarakis, 2020; Toker and Agam, 2015). In line 
with this, promoting mitophagy improves both behavioral alterations 
and neuropathology in various experimental models (Fang et al., 2019; 
Han et al., 2020; Palikaras and Tavernarakis, 2020; Toker and Agam, 
2015). The key role of mitophagy in neurodegeneration is best exem
plified by PD, whereby mutations in PINK1 abrogate 
autophagy-dependent removal of impaired mitochondria upstream of 
the Parkin protein (Geisler et al., 2010a). In addition to compromised 
PINK1 kinase activity, reduced binding of PINK1 to Parkin leads to 
failure in Parkin mitochondrial translocation. This, in turn, leads to 
impaired mitophagy and accumulation of damaged mitochondria, 
which may contribute to disease pathogenesis. Also, Parkin pathogenic 
mutations may interfere with distinct steps of mitochondrial trans
location, ubiquitylation, and final clearance through 
p62/SQSTM1-related mitophagy (Geisler et al., 2010b). 

Generation of superoxide radicals, mitochondrial damage, and 
impaired mitophagy are key events in the effects produced by METH 
(Cadet et al., 1994; Jayanthi et al., 2001, 2004; Wu et al., 2007; Lenzi 
et al., 2012; Ruan et al., 2020). The GSK3-β inhibitor, and autophagy 
inducer lithium is key to promote protective mitophagy (Fornai et al., 
2008; Natale et al., 2015), meanwhile counteracting various events that 
are bound to METH-induced mitochondrial alterations. These include 
reduction of mitochondrial Cytochrome c levels, an increase of 
anti-apoptotic Bcl-2/Bax ratio, and alleviation of the respiratory chain 
complex activity impairment induced by METH (Bachmann et al., 2009; 

Feier et al., 2013). Sub-cellular evidence in METH-treated cells has been 
provided that the mitophagy-related protein PINK1 is a key for 
METH-induced alterations in mitochondrial morphology and number. 
Reminiscent of what occurs in PD, METH induces marked accumulation 
of dysfunctional mitochondria in the absence of functional PINK1 and 
upon autophagy alterations (Lenzi et al., 2012). This is not surprising 
since autophagy induction through either mTOR or GSK3-β inhibition is 
seminal to maintain mitochondrial homeostasis by orchestrating 
mitophagy and the biogenesis of novel mitochondria (mitochondrio
genesis) (Ferese et al., 2020; Natale et al., 2015). This occurs in coop
eration with molecules such as PGC-1α, NRF-2, and TFAM. While LC3 
along with the adaptor proteins p62, Parkin, and PINK-1 polarize within 
altered mitochondria to promote mitophagy, Nrf2, PGC-1α, and TFAM 
contribute to shuttling the signal from mitophagy-prone altered mito
chondria towards the nucleus to induce mitochondrial biogenesis (Fer
ese et al., 2020). Remarkably, PGC-1α, NRF, and TFAM are markedly 
reduced by repeated METH administration in experimental animals 
(Beirami et al., 2018). Again, within DA cell lines, METH-induced 
oxidative stress and mitochondrial damage are accompanied by 
impaired mitochondriogenesis (Wu et al., 2007). This suggests that 
METH-related autophagy alterations may impair mitophagy and mito
chondriogenesis, which calls for further studies in METH models linking 
autophagy and defects in mitochondrial dynamics. 

ii) Altered DA release and excitatory-inhibitory activity in the brain 
Autophagy plays a direct role in DA release and re-uptake (Her

nandez and Sulzer, 2012; Hunn et al., 2019). In detail, impairment of 
autophagy at the synapse leads to unrestrained DA release, as docu
mented in mice lacking Atg7 specifically within DA neurons. These an
imals display increased evoked striatal DA secretion along with 
decreased DA re-uptake (Hernandez et al., 2012; Hunn et al., 2019). 
Conversely, activated autophagy following mTOR inhibition, as 
confirmed at the ultrastructural level, degrades DA-filled synaptic 

Fig. 3. Overview of the autophagy pathway 
and autophagy steps targeted by METH. 
Autophagy initiation is governed by the Class I 
PI3K/Akt pathway through activation of 
mammalian Target of Rapamycin (mTOR), 
which in turn inhibits autophagy via inactiva
tion of the ULK1/Atg13, FIP200 complex. 
Again, the Class I PI3K/Akt pathway hampers 
autophagy initiation and progression through 
inhibition of the 5′ AMP-activated Protein Ki
nase (AMPK), and its downstream factors 
Sirtuin-1 (SIRT1) and factor forkhead box O3 
(FOXO3). On the other hand, the Class I PI3K/ 
Akt pathway may promote autophagy through 
inhibition of Glycogen Synthase Kinase 3 Beta 
(GSK3-β). Autophagy initiation and progression 
requires the Class III PIK3 complex that is 
composed of Beclin-1/Vps34/Vps15/Atg14. 
This participates in the phagophore incorpora
tion of Atg proteins such as EndophilinA, Atg9, 
and LC3 (Atg8). Several additional Atg proteins 
ranging from Atg3 to Atg16 L participate in the 
conversion of LC3 into soluble LC3I, 
ubiquitination-like enzymatic lipidation of LC3I 
to form lipid-bound LC3II isoform, and the 
incorporation of LC3II into the phagophore 
membrane. On the other hand, specific proteins 
such as Bassoon impair LC3II formation and the 

incorporation of LC3II into the phagophore membrane. Once mature, the autophagosome merges either directly with the lysosome, or with endosomes and mul
tivesicular bodies (MVB) giving birth to the amphisome. The latter fuses with the lysosome, where cargo degradation eventually occurs. Several endosomal Rab 
proteins ranging from Rab5 to Rab 11 are key for both autophagosome maturation and fusion of autophagosomes with lysosomes. Rab proteins, in cooperation with 
the VPS35 retromer, are also key for sorting endosomal/autophagy proteins and substrates to the trans-Golgi network for re-use and recycling to the plasma 
membrane. METH impairs autophagy at several levels, including i) hyperactivation of mTOR, GSK3-β, and protein kinase C (PKC), ii) hampering of LC3II formation 
and incorporation into the autophagosome, which may be bound to Bassoon upregulation, iii) downregulation of Rab10, iv) impairment of vesicle acidification and 
fusion of autophagosomes with lysosomes.   
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vesicles to decrease evoked DA release in wild-type but not transgenic 
mice (Hernandez et al., 2012). 

Abnormal DA release induced by abused psychostimulants, including 
METH, is also bound to a decreased inhibitory GABA input onto DA and 
GLUT neurons (Centonze et al., 2002; Jiao et al., 2015). Downregulation 
of GABA signaling within the mesolimbic, mesocortical, and cortico
striatal pathways is implicated in the development of SUD (Centonze 
et al., 2002; Jiao et al., 2015; Zhang et al., 2006). In detail, 
METH-induced behavioral sensitization is associated with down
regulation of the GABAA α2 receptor subunit and impaired striatal GABA 
transmission (Zhang et al., 2006). In this frame, it is remarkable that 
autophagy balances excitatory-inhibitory activity in the brain by 
orchestrating the clustering of GABAA receptors on the plasma mem
brane (Hui and Tanaka, 2019; Sumitomo et al., 2018a). In Ulk2+/- mice, 
similar to mice bearing a conditional deletion of autophagy within 
GABA-ergic MSNs neurons, behavioral abnormalities occur, such as 
social deficits, increased distress, and anxiety, along with cognitive al
terations (Hui and Tanaka, 2019; Sumitomo et al., 2018a; Pigulevskiy 
et al., 2020). These abnormalities are associated with the entrapment of 
GABAA receptors within p62-positive aggregates that are reminiscent of 
stagnant autophagy vacuoles, as well as impaired degradation of the 
inwardly-rectifying potassium channel KCNJ/Kir2 (Hui and Tanaka, 
2019; Sumitomo et al., 2018a; Pigulevskiy et al., 2020). Conversely, 
autophagy activation fosters the distribution of GABAA receptors on the 
plasma membrane. This is associated with the reinstatement of 
excitatory-inhibitory balance and reversal of behavioral abnormalities 
(Hui and Tanaka, 2019; Sumitomo et al., 2018a). 

iii) Abnormal stimulation of DA and GLUT receptors 
Abnormal DA and GLUT transmissions play a synergistic role in the 

development of METH psychosis and addiction through convergent 
activation of striatal intracellular signaling pathways that are placed 
downstream of DA and GLUT receptors (Miyazaki et al., 2013). 
Remarkably, autophagy impairment at synapses may occur following 
abnormal stimulation of DA receptors (Wang et al., 2018; Yang et al., 
2020a, b). In detail, D1-like DA receptors (D1DR and D5DR), which are 
mostly implicated in METH-induced addiction and neurotoxicity, inhibit 
autophagy initiation and flux. This occurs through Ca2+

overload-dependent activation of the phospholipase C/inositol tri
sphosphate (PLC/IP3) pathway, and mTOR-dependent mechanisms 
(Wang et al., 2018; Yang et al., 2020a, b). On the other hand, D2-like DA 
receptors (D2D3, D3DR, D4DR) promote autophagy induction and flux 
through BECN1-dependent pathways and preservation of protein syn
thesis (Barroso-Chinea et al., 2020; Dolma et al., 2016; Wang et al., 
2015, 2018). Abnormal stimulation of D2-like DA receptors is also 
involved in the sensitizing and neurotoxic effects of METH, as shown in 
mice models of DRD2 inactivation (Ares-Santos et al., 2013; Moratalla 
et al., 2017; Solís et al., 2019). However, these effects may be also 
related to presynaptic DRs that play an inhibitory role in METH-induced 
potentiation of DA release. A reduction in D2-/D3DRs levels is docu
mented in the striata and orbitofrontal cortex of chronic METH abusers, 
which may explain the decreased sensitivity to natural rewards and the 
compulsive drug use as a means to temporarily compensate for this 
deficit (Lee et al., 2009; Volkow et al., 2001, 2010b). The opposite ef
fects of DR subtypes upon autophagy activity suggest that long-term, 
abnormal activation of D1-like DA receptors, coupled with a progres
sive reduction of D2-like DA receptors may converge to impairing 
autophagy at DA postsynaptic brain regions, which may be key to sus
tain METH addiction. This is supported by evidence that various psy
chostimulants activate mTOR and GSK3-β in the striatal and limbic brain 
areas, while inhibition of mTORC1 and GSK3-β reverses 
psychostimulant-induced sensitization, relapse, and reinforcement 
(Barak et al., 2013; Beckley et al., 2016; Dayas et al., 2012; Huang et al., 
2018; Lazzeri et al., 2018; Lee et al., 1999; Lai et al., 2018; Mehrafza 
et al., 2019; Neasta et al., 2014; Xu et al., 2011; Yan et al., 2019). 
However, the role of autophagy in this frame remains to be specifically 
investigated. Another controversial, yet intriguing issue to be clarified is 

the role of D3DRs. Several reports suggest that abnormal stimulation 
and expression of D3DRs is implicated in METH-induced sensitization, 
as postulated for some psychiatric diseases as well (Leriche et al., 2004; 
Sokoloff et al., 2006; Zhu et al., 2012; Choi et al., 2018). This is 
intriguing if one considers recent evidence indicating D3DR as the main 
D2-like receptor subtype that promotes autophagy induction through 
mTORC1 inhibition (Barroso-Chinea et al., 2020). However, it is worth 
mentioning that this may also involve D1DRs that are known to inhibit 
autophagy instead, as chronic stimulation of D3DRs amplifies 
D1DR-induced Adenylate Cyclase (AC) signaling (Fiorentini et al., 2008; 
Maggio et al., 2009). In fact, D1DRs and D3DRs co-localize in a large 
number of neurons throughout the striatum, where they form hetero
dimers (Fiorentini et al., 2008). In the presence of D3DRs, DA stimulates 
D1DRs with higher potency. Again, hetero-dimerization with D3DRs 
abolishes D1DRs internalization and enables the internalization of 
D1/D3-DR complex through a mechanism involving β-arrestin (Fior
entini et al., 2008). Since both autophagy and proteasome systems are 
implicated in β-arrestin-dependent receptor internalization, it is likely 
that following METH-induced DA overload, impairment of cell-clearing 
pathways occludes the internalization of the D1-/D3DR complex 
(Limanaqi et al., 2019). This is expected to stimulate the D1DR-AC 
pathway with higher potency, which may, in turn, contribute to 
METH-induced behavioral sensitization. 

Rescuing autophagy is also key to preventing abnormal stimulation 
of GLUT receptors and subsequent Ca2+-related excitotoxic cascades, 
which are bound to the effects of METH (Scheyer et al., 2016; Battaglia 
et al., 2002a, b; Kulbe et al., 2014; Shehata et al., 2018, 2012). This 
occurs through the internalization and desensitization of AMPAR (Kulbe 
et al., 2014; Shehata et al., 2018, 2012). This was documented in mice 
models of post-traumatic stress disorder, where autophagy induction, 
through AMPAR endocytosis and degradation, contributes to erasing 
and overcoming reconsolidation-resistant fear memory (Shehata et al., 
2018). This is key in the case of METH addiction since enhanced 
expression and activity of AMPAR in the ventral striatum contributes to 
the incubation of METH craving (Scheyer et al., 2016). 

iv) Altered expression of endocytic synaptic proteins interacting with 
autophagy. 

Alterations (mutations, overexpression, dysfunctions) of canonical 
synaptic proteins occurring in SUD aside from certain psychiatric and 
neurodegenerative disorders, contribute to impairing synaptic auto
phagy. These include Bassoon, Endophilin-A, Rab GTPases, DISC1, and 
the VPS35 retromer (Atkin et al., 2012; Bosch et al., 2015; Brodin and 
Shupliakov, 2018; Lee and Kim, 2019; Limanaqi et al., 2018a; Okerlund 
et al., 2018; Tomoda et al., 2020; Vijayan and Verstreken, 2017). 

Bassoon is a presynaptic scaffolding protein within the active zone, 
which limits synaptic autophagy via binding to Atg5 and hampering of 
Atg5− 12 complex formation (Fig. 3, Okerlund et al., 2018). Conversely, 
Bassoon downregulation promotes synaptic autophagy and degradation 
of synaptic vesicles through the fusion of bouton-derived autophago
somes with lysosomes (Okerlund et al., 2018). Remarkably, Bassoon 
expression is up-regulated in the brain of amphetamine-sensitized ani
mals (Bosch et al., 2015), and it is mutated in patients with dementia and 
neurodegeneration (Yabe et al., 2018). At present, the link between 
Bassoon-related catabolic synaptic processes and specific brain disorders 
remains to be investigated. However, it is conceivable that early syn
aptic insults altering the function of specific synaptic proteins that are, 
in turn, bound to autophagy progression, might foster deficits in syn
aptic transmission. This may promote synaptic loss up to neuronal 
degeneration. 

EndophilinA is a synapse-enriched protein implicated in the stimu
lation of both synaptic autophagy, and synaptic vesicle cycle through 
coordination of neurosecretory vesicle priming, fusion, and endocytosis 
(Gowrisankaran et al., 2020; Soukup et al., 2016). In fact, EndophilinA 
induces the formation of highly curved membranes, which also serve as 
docking stations for autophagy factors (Fig. 3, Soukup et al., 2016). 
EndophilinA is downregulated by METH (Bosch et al., 2015) and its 
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dysfunctions, are accompanied by autophagy impairment, which ac
celerates activity-induced neurodegeneration, as it occurs in PD (Mur
doch et al., 2016; Soukup et al., 2016; Limanaqi et al., 2018a). 

Again, dysfunctional or mutated Rab-GTPases (e.g. Rab4, 5, 10, and 
11) impair both synaptic vesicle recycling and autophagy, since they are 
involved in phagophore formation, autophagosome maturation, and 
fusion with the lysosomes (Fig. 3, Binotti et al., 2016; Palmisano et al., 
2017; Stenmark, 2009; Szatmári et al., 2014). METH directly down
regulates Rab10 (Vanderwerf et al., 2015), the activation of which is 
essential for both LC3 recruitment to the autophagosome and fusion of 
autophagosomes with lysosomes (Li et al., 2016). In fact, down
regulation of RAB-10 impairs autophagy flux, as evident by the loss of 
co-localization between lysosome and autophagosome reporters (Li 
et al., 2016; Palmisano et al., 2017). Again, while impairing autophagy, 
dysfunctions of Rab5 and Rab11 alter the trafficking and recycling of 
DAT to the plasma membrane, which is reminiscent of the mechanism of 
action of METH (Furman et al., 2009; Hong and Amara, 2013; Loder and 
Melikian, 2003). In the light of an interdependency that exists between 
autophagy and endocytic trafficking pathways, it is conceivable that 
autophagy dysregulation may be involved in METH-induced alterations 
of DAT trafficking. In fact, similar to abused drugs, endocytic molecular 
events which impair DAT activity, trafficking, and recycling, do affect 
autophagy progression (Furman et al., 2009; Hong and Amara, 2013; Lin 
et al., 2012; Loder and Melikian, 2003; Tang et al., 2015; Wu et al., 
2017; Zavodszky et al., 2014). Besides alterations/mutations of the 
endocytic proteins Rab5, and Rab11, these include abnormal activation 
of PKC, and impairment of the VPS35 retromer (Furman et al., 2009; 
Hong and Amara, 2013; Lin et al., 2012; Loder and Melikian, 2003; Tang 
et al., 2015; Wu et al., 2017; Zavodszky et al., 2014). PKC is involved in 
METH-induced addiction, memory impairment, and mania-like 
behavior, and remarkably, in METH-induced impairment of both auto
phagy and proteasome (Lin et al., 2012; Narita et al., 2004; Valvassori 
et al., 2020). PKC is directly bound to METH-induced DAT internaliza
tion, and decrease of DAT surface availability, as well as potentiation of 
synaptic DA release via both DAT phosphorylation and downregulation 
of presynaptic D2DR auto-receptors (Lin et al., 2012; Loder and Meli
kian, 2003; Luderman et al., 2015; Shin et al., 2019). 

Considering recent evidence that implies synapses as sites of early 
pathology in neuropsychiatric disorders, a potential role of synaptic 
retromer-autophagy dysfunction in disease initiation is emerging (Bro
din and Shupliakov, 2018). The retromer pathway is bound to both 
autophagy progression and the endocytic trafficking and processing of 
potentially harmful, misfold-prone proteins, such as alpha-synuclein, 
and tau (Brodin and Shupliakov, 2018; Tang et al., 2015; Wen et al., 
2011; Zavodszky et al., 2014). Within DA neurons, the retromer gua
rantees the correct trafficking and recycling of both Atg9 and Lamp2 
proteins to orchestrate autophagy induction and progression (Tang 
et al., 2015; Zavodszky et al., 2014). Again, both Atg9 and the retromer 
are required for the formation, maturation, and compartmentalized 
acidification of endosomal, synaptic, and autophagy-lysosomal vacu
oles, which instead is erased by METH (Bader et al., 2015; Limanaqi 
et al., 2018a; Tallóczy et al., 2008). Intriguingly, the effects of VPS35 
retromer dysfunction are also reminiscent of those produced by METH. 
Deletion/mutations of VPS35 retromer impairs autophagy/lysosomal 
pathway while producing memory deficits, defective long-term poten
tiation, and altered proteostasis, up to PD-like neuropathological 
changes (Tang et al., 2015; Wen et al., 2011; Zavodszky et al., 2014). 
These effects are associated with endosome perturbations, dysfunctional 
autophagy, and aberrant lysosomes. Again, VPS35 retromer dysfunc
tions are associated with altered DA outflow, increased DA turnover, 
decreased DAT availability at the plasma membrane, as well as dystro
phic DA neurites/axons and behavioral alterations (Cataldi et al., 2018; 
Vanan et al., 2020; Zavodszky et al., 2014). In fact, in DA nerve termi
nals and cell bodies, the depletion of VPS35 retromer disrupts both 
autophagy and DAT and VMAT-2 recycling to the plasma membrane and 
synaptic vesicles, respectively (Wu et al., 2016, 2017). Within the 

synapse, the retromer, in cooperation with endocytic Rabs, also recycles 
neurotransmitter receptors including AMPAR, and D1DR (Tian et al., 
2015; Wang et al., 2016; Zhang et al., 2012). This remarks quite 
impressively the interdependency between synaptic homeostasis, auto
phagy, and DA neurotransmission (Fig. 4), which provides a clue for 
investigating the role of synaptic and Rab proteins and the VPS35 ret
romer in models of METH administration and drug addiction. 

It is worth mentioning that besides macroautophagy, two other 
forms of autophagy exist, namely microautophagy (MIC), and 
chaperone-mediated autophagy (CMA), which similarly converge at the 
level of lysosomes (Okamoto, 2014). During MIC, cytoplasmic proteins 
are degraded either by direct transport into lysosomes through in
vaginations of the lysosomal membrane, or via Hsc70-mediated delivery 
of proteins into late endosomes fusing with lysosomes (Sahu et al., 2011; 
Uytterhoeven et al., 2015). The Hsc70 chaperone is also involved in 
CMA, whereby it recognizes proteins with a specific amino acid motif 
and associates with the lysosomal membrane protein Lamp2A to trans
locate proteins into the lysosome (Kaushik and Cuervo, 2012). Lamp2A 
acts as the rate-limiting step for the activity of the CMA pathway 
(Kaushik and Cuervo, 2012). Similar to autophagy, an age-related 
decline occurs in CMA function, which is associated with reduced 
levels of Lamp2A in various models of neurodegeneration (Cuervo and 
Wong, 2014). Again, similar to what is reported for autophagy, CMA is 
impaired by METH, and it appears seminal for the survival of DA neu
rons (Sun et al., 2019). Silencing of LAMP2A in DA neurons is accom
panied by the occurrence of PD-like motor deficits, neuronal protein 
inclusions, accumulation of autophagy vacuoles, neuro-inflammation, 
and progressive neurodegeneration (Xilouri et al., 2016). CMA activity 
can be impaired by oxidized protein adducts such as DA-modified α-syn, 
providing a potential explanation for the high susceptibility of cate
cholamine nuclei (Martinez-Vicente et al., 2008). 

Remarkably, Hsc70 is enriched presynaptically where it promotes 
membrane curve to activate MIC/CMA-related synaptic protein turn
over, meanwhile promoting neurotransmitter release (Uytterhoeven 
et al., 2015). Within DA neurons, Hsc70 interacts with VMAT-2, aro
matic amino acid decarboxylase (AADC), and tyrosine hydroxylase 
(TH), to promote DA synthesis and DA storage within synaptic vesicles 
(Parra et al., 2016). Thus, besides autophagy, MIC and CMA also appear 
key in DA activity and metabolism, which may be relevant for 
METH-induced addiction. Although the present review is focused on 
macroautophagy, we wish to point out that an interplay, and often 
compensatory mechanisms, do occur between the three different forms 
of autophagy, which deserves to be further investigated in the context of 
drug abuse, synaptic plasticity, and neurodegeneration. 

3.2. Susceptibility genes for mental disorders bridging DA activity, 
autophagy alterations, and METH-induced sensitization 

In the frame of synaptic alterations underlying DA-related behavioral 
sensitization, several susceptibility genes for mental disorders encode 
for proteins that are bound to both DA neurotransmission and auto
phagy, configuring as potential targets of METH. 

The disrupted in schizophrenia 1 (DISC1) gene encodes for the DISC1 
protein, which is implicated in neurogenesis, neuronal migration, axon/ 
dendrite, and synapse formation (Brandon and Sawa, 2011). Transient 
knockdown of DISC1 in pyramidal neurons of the prefrontal cortex 
during pre- and perinatal stages leads to selective abnormalities in 
mesocortical DA maturation and behavioral abnormalities associated 
with disturbed cortical neurocircuitry after puberty (Niwa et al., 2010). 
At baseline, DISC1 plays a key role in DA neurotransmission and 
excitatory-inhibitory balance in the brain. Conversely, loss-of-function 
mutations lead to DISC1 aggregates, which impair both neurotrans
mission and the autophagy flux by co-recruiting endogenous DISC1 and 
other synaptic proteins, such as DTNBP1/dysbindin (Atkin et al., 2012; 
Dahoun et al., 2017). In mice models featuring DISC1 deficiency, METH 
administration dramatically reduces GABA and potentiates DA release 
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while increasing the expression of D1DR in the ventral striatum 
compared with METH-treated controls (Nakai et al., 2014). Mutations of 
DISC1 in the striatum are associated with METH-induced behavioral 
sensitization and abnormal expression of AKT and GSK3-β (Pogorelov 
et al., 2012). This suggests that DISC1 may bridge alterations in auto
phagy and DA-related molecular mechanisms that modulate reward and 
sensitization. DISC1 deficiency may impair autophagy through upre
gulation of Akt–mTOR pathway, in a way reminiscent of METH-induced 
abnormal D1DR stimulation (Kim et al., 2009; Zhou et al., 2013a, b). 
Remarkably, mTOR inhibition reverses the behavioral alterations that 
are produced by repeated stimulation of D1DR, as well as those occur
ring in DISC1-deficient and METH-treated mice (Gangarossa et al., 
2014; Huang et al., 2018; Zhou et al., 2013a, b). This suggests that 
disruption of DISC1 activity, including loss-of function-related genera
tion of DISC-1 aggregates, produces behavioral alterations that are 
bound to an enhanced D1DR-Akt-mTOR signaling, and likely, depressed 
autophagy (Ryskalin et al., 2018). 

An additional susceptibility gene for mental disorders is 
dihydropyrimidinase-like 2 (DPYSL2), which codes for collapsin 
response mediator protein-2 (CRMP2), a microtubule-associated protein 
implicated in cytoskeletal dynamics and axonal growth (Liu et al., 
2015). Altered CRMP2 levels occur in the brain of mice models exposed 
to prenatal stress (Lee et al., 2015) and METH (Kobeissy et al., 2008), 

which is accompanied by increased LC3 levels indicating altered auto
phagy. Remarkably, the activity of CRMP2 is under the control of two 
key messengers involved in METH-induced behavioral sensitization, 
namely cyclin-dependent kinase 5 (CDK5), and GSK3- β (Benavides and 
Bibb, 2004; Jin et al., 2016; Xu et al., 2011). CDK5 and GSK3- β gene 
expression and protein levels are bound to METH-related D1DR stimu
lation, which, at the molecular level, is associated with increased den
dritic spine density and tau hyper-phosphorylation (Ferreras et al., 
2017; Lebel et al., 2009). In line with this, chronic hyperdopaminergic 
activity is associated with increased CDK5 signaling and ΔFosB levels in 
the striatum (Cantrup et al., 2012). Remarkably, besides GSK3- β, which 
is known to act as an upstream autophagy inhibitor, CDK5 also impairs 
autophagosome formation by phosphorylating Vps34 and decreasing its 
activity, thereby leading to impaired PI3P formation (Furuya et al., 
2010). This suggests a role for autophagy in 
CDK5-CRMP2-tau-dependent cytoskeletal alterations and DA trans
mission in psychiatric behavior. As support, compounds that counteract 
DA-related behavioral sensitization meanwhile acting as autophagy in
ducers, downregulate CRMP2 and hyper-phosphorylated tau levels. This 
is likely to involve inhibition of GSK3-β or CKD5 (Beaulieu et al., 2004, 
2009; Cleary et al., 2008; Kara et al., 2013, 2018; Kedracka-Krok et al., 
2015; Kim et al., 2017, 2018; Li et al., 2017; Ryskalin et al., 2018; Yan 
et al., 2019; Zhang et al., 2007). These include lithium, rapamycin, and 

Fig. 4. The effects of METH-induced auto
phagy impairment within DA presynaptic 
and post-synaptic neurons. In a way remi
niscent of the effects of METH, autophagy 
impairment at the presynaptic dopamine (DA) 
terminal induces a hyperdopaminergic state 
through unrestrained DA release along with 
decreased DA re-uptake. This leads to abnormal 
stimulation of type-1 DA receptors (DRD1) that 
are coupled to adenylate cyclase (AC) and 
phospholipase C (PLC) pathways, fostering non- 
canonical biochemical cascades which sustain 
both METH-induced sensitization and auto
phagy impairment within postsynaptic neurons. 
These include cyclic Adenosine Monophosphate 
(cAMP), phosphorylated ERK1/2, phosphory
lated dopamine- and cAMP-regulated neuronal 
phosphoprotein (DARPP32), cyclin-dependent 
kinase 5 (CDK5), and mammalian target of 
rapamycin (mTOR), as well as inositol tri
sphosphate/Calcium (IP3/Ca2+), protein ki
nase C (PKC), and glycogen synthase kinase 3 
beta (GSK3-β). While contributing to autophagy 
impairment, these pathways also promote 
phosphorylation and abnormal activation of 
glutamate (GLUT) receptors, which in turn, 
foster Ca2+-related excitotoxicity converging 
into autophagy flux blockade. In turn, impaired 
autophagy occludes the degradation of AMPA 
receptors, meanwhile impairing the membrane 
availability of GABAA receptors on the plasma 
membrane. This impairs excitatory-inhibitory 
balance, potentially leading to decreased 
inhibitory GABA input onto DA and GLUT 
neurons. While contributing to protein aggre
gation and accumulation of damaged mito
chondria, which may aggravate synaptic 
dysfunctions, these effects converge into 
epigenetic and transcriptional changes that 
sustain METH-induced maladaptive plasticity, 
sensitization, and addiction. This is evident as 
an increase of transcriptional regulators and 
early immediate genes, including CREB, c-fos, 
c-jun, delta FosB, as well as NMDA and AMPA 
receptors.   
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antipsychotic drugs such as fluspirilene, trifluoperazine, pimozide, 
chlorpromazine, sertindole, and clozapine. 

In summary, autophagy impairment is bound to synaptic and 
biochemical events that are produced by METH at both pre-and post- 
synaptic levels. These include increased extracellular DA activity asso
ciated with enhanced DA release and abnormal stimulation of D1DR, 
decreased DA reuptake, along with impaired GABA release, and 
abnormal GLUT receptor activity. This suggests that autophagy 
impairment within the mesolimbic system may contribute to METH- 
induced behavioral sensitization, mostly through abnormal extracel
lular DA activity. While altering behavior through a hyperdopaminergic 
state via enhanced DA release and decreased DA reuptake, autophagy 
blockade has deleterious effects at both synaptic terminals and cell 
bodies of DA neurons, driving p62-positive protein aggregation, cellular 
neuropathology, and cell death (Fig. 5, Hunn et al., 2019). This may 
extend to post-synaptic neurons as well. In fact, increased expression of 
p62 and alpha-synuclein occurs in the SNpc and prefrontal cortex of 
murine models featuring an increased risk of developing psychiatric-like 
behavior or early-onset PD due to 22q11.2 chromosomal deletions 
(Sumitomo et al., 2018b). This suggests impaired autophagy, which is 
likely bound to mTOR hyper-activation. In fact, rapamycin administra
tion in these models reverses both psychiatric- and PD-like signatures at 
molecular and behavioral levels (Sumitomo et al., 2018b). Thus, auto
phagy appears seminal for METH-induced behavioral alterations and 
neurotoxicity overlapping in part with PD-like neurodegeneration, 
which is dealt with in Section 4. 

4. Methamphetamine toxicity and autophagy: past 
controversies and novel insights 

When administered chronically and/or at high doses, METH may 
produce toxicity in specific brain regions or even in peripheral organs, 
mostly those receiving dense sympathetic innervation (Albertson et al., 

1999; Darke et al., 2008; Ferrucci et al., 2019; Matsumoto et al., 2014; 
Volkow et al., 2010a). Although METH neurotoxicity was initially 
considered to be relevant only for DA axon terminals, the occurrence of 
METH-induced toxicity has been documented at the level of neuronal 
cell bodies within the SNpc, and also the ventral tegmental area (VTA) 
(Ares-Santos et al., 2014; Biagioni et al., 2019; Fornai et al., 2003; 
Granado et al., 2010; Kitamura et al., 2007; Kitamura, 2009; Liu and 
Dluzen, 2006; Hirata and Cadet, 1997; Sonsalla et al., 1996; O’Dell et al., 
1991; Wagner et al., 1980). To our experience, a certain amount of cell 
loss is detectable only when very high doses of METH are administered, 
which corresponds to a loss of nigrostriatal DA terminals ranging over 
80 % (Biagioni et al., 2019; Fornai et al., 2003). This is in line with the 
original article by Ares-Santos et al. where cupric silver staining 
(modified according to Beltramino and de Olmos) was employed to 
assess neuronal loss (Ares-Santos et al., 2014). 

The neurotoxic effects of high doses of METH in both experimental 
models and human abusers are due to abnormal, mostly DA-related, 
oxidative events, which are known to alter proteostasis while impair
ing both autophagy and the proteasome system (Fig. 5, Da Luz et al., 
2015; Fornai et al., 2006; Limanaqi et al., 2018b, 2019; Moratalla et al., 
2017). The neurotoxic effects of METH within DA terminals and cell 
bodies are consistent with an increased risk to develop neuro
degeneration overlapping with PD, which is now quite well established 
in METH abusers (Callaghan et al., 2012; Morrow et al., 2011; Rumpf 
et al., 2017). In fact, in catecholamine-containing cells, and within SNpc 
neurons of mice, METH produces neuronal inclusions reminiscent of 
Lewy bodies (Castino et al., 2008; Ferrucci et al., 2017; Fornai et al., 
2003, 2004, 2006; Lazzeri et al., 2007, 2006; Lin et al., 2012). These are 
also documented in catecholamine-containing brainstem neurons of 
human METH abusers (Quan et al., 2004). METH-induced inclusions 
appear as multilamellar whorls which further develop as cytoplasmic 
inclusions staining for ubiquitin, alpha-synuclein, parkin, UchL1, and 
HSP70 (Castino et al., 2008; Ferrucci et al., 2017; Fornai et al., 2006, 

Fig. 5. METH-related effects of autophagy 
blockade within presynaptic DA terminals: 
from hyperdopaminergic state to protein 
aggregation and neurotoxicity. The neuro
toxic effects of high doses of METH in both 
experimental models and human abusers are 
due to abnormal, mostly DA-related, oxidative 
events which are known to alter proteostasis 
while impairing both autophagy and the pro
teasome system. METH-induced alterations of 
DA metabolism generate toxic quinones and 
highly reactive chemical species that react with 
sulfhydryl groups to promote mitochondrial 
damage, along with structural modifications of 
lipids, nucleic acids, and proteins. Coupled with 
a decrease in the antioxidant defense systems, 
the burden of oxidized substrates and oxidative 
species contributes to impairing autophagy- and 
proteasome-mediated degradation. While 
altering behavior through a hyperdopaminergic 
state via enhanced DA release and decreased 
DA reuptake, this has deleterious effects at both 
synaptic terminals and cell bodies of DA neu
rons, driving p62-positive protein aggregation, 
cellular neuropathology, and cell death.   
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2003; Lazzeri et al., 2007, 2006; Lin et al., 2012). Most of these proteins 
are substrates of autophagy and the ubiquitin-proteasome system (UPS), 
which in fact, are both impaired in experimental models of METH and 
PD (Fig. 5, Fornai et al., 2006, 2003; Castino et al., 2008; Ferrucci et al., 
2017; Lazzeri et al., 2006, 2007; Lin et al., 2012; Limanaqi et al., 2019, 
2020a). In detail, in experimental models, pharmacological or genetic 
inhibition of either autophagy or the proteasome within DA neurons 
reproduces behavioral alterations and key pathological features of PD 
(Barroso-Chinea et al., 2015; Fornai et al., 2006; Lazzeri et al., 2006, 
2007; Sato et al., 2018). The occurrence of multilamellar whorls, which 
is a witness of impaired autophagy, is similarly bound to lipid and 
cholesterol abnormalities in both PD and METH administration (Li et al., 
2017; García-Sanz et al., 2018). In PD, this is related to mutations in the 
GBA1 gene, which encodes an essential lysosomal enzyme called 
β-glucocerebrosidase (GCase) (García-Sanz et al., 2020). Similar to 
METH, which downregulates GCase, PD-related GBA1 mutations cause 
GCase dysfunction fostering the accumulation of cholesterol and 
alpha-synuclein (Li et al., 2017; García-Sanz et al., 2020). This is asso
ciated with altered autophagosome trafficking and autophagy-lysosome 
function in both METH and PD models. 

As mentioned above, the occurrence of neuronal inclusions and cell- 
clearance impairment, which similarly occurs in both METH and 
parkinsonism, is bound to alterations of DA metabolism via the gener
ation of toxic quinones and highly reactive chemical species. These 
species react with sulfhydryl groups to promote structural modifications 
of lipids, nucleic acids, and proteins within DA axon terminals and 
surrounding compartments (Cadet et al., 1994; Cubells et al., 1994; 
Jayanthi et al., 1998; LaVoie and Hastings, 1999; Sulzer and Zecca, 
1999; O’Dell et al., 1991; Gluck et al., 2001; Guillot et al., 2008; Lazzeri 
et al., 2007; Miyazaki et al., 2006). The burden of cytosolic catechol
amine overwhelming vesicular storage, as it occurs during METH 
administration, may lead to catecholamine self-oxidation and subse
quent formation of toxic by-products contributing to protein peroxida
tion and aggregation, along with mitochondrial and autophagy/UPS 
dysfunctions (Da Luz et al., 2015; Ferrucci et al., 2017; Jinsmaa et al., 
2020; Kang et al., 2020). Reactive DA by-products are key to generating 
free radicals and producing mitochondrial damage, protein aggregation, 
and impairment of autophagy-lysosomal function. This occurs through 
either impaired fusion of autophagosomes with lysosomes, or engulf
ment of autophagy compartments by protein aggregates (Fig. 4, Muñoz 
et al., 2012; da Luz et al., 2015; He et al., 2018; Kang et al., 2020). 
Autophagy and the UPS represent the most powerful intracellular de
fense to counteract oxidative damage, which instead is generated by 
METH through inhibition of both clearing pathways. In fact, METH 
disassembles the proteasome and inhibits UPS activity, while UPS in
hibitors produce subcellular alterations and neurotoxicity that overlap 
with those produced by METH (Barroso-Chinea et al., 2015; Fornai 
et al., 2006; Lazzeri et al., 2006; Limanaqi et al., 2019; Lin et al., 2012; 
Moszczynska and Yamamoto, 2011). On the other hand, autophagy is 
quickly recruited during METH in catecholamine-containing PC12 cells 
and rat DA cells (Cubells et al., 1994; Larsen et al., 2002; Lin et al., 2012) 
and in vivo, within catecholamine and striatal cells (Fornai et al., 2003; 
Lazzeri et al., 2007; Weinshenker et al., 2008). Being originally docu
mented by Cubells et al. (Cubells et al., 1994), and further confirmed by 
Larsen et al. (Larsen et al., 2002), this was first suggested to produce 
autophagy-mediated cell damage. Increased levels of autophagy-related 
genes and proteins indicating abnormal autophagy recruitment have 
been documented in the brain of both METH-treated animals and human 
abusers (Khoshsirat et al., 2020; Lin et al., 2012; Subu et al., 2020; Xie 
et al., 2018). However, despite a massive engagement of autophagy, 
which should sort neuroprotection, autophagy inhibition in vitro was 
shown to exacerbate the effects of METH, which suggests that METH 
impairs autophagy instead (Castino et al., 2008; Lazzeri et al., 2018). 
This has been related to either the high amount of substrates (ROS, 
misfolded proteins, and damaged mitochondria) engulfing this clearing 
system (Castino et al., 2008; Da Luz et al., 2015; Lin et al., 2012; Xie 

et al., 2018) or to METH-induced collapse in vesicles acidification 
impairing fusion of autophagosomes with lysosomes (Tallóczy et al., 
2008). Therefore, despite autophagy vacuoles and markers being over
expressed following METH administration/intake (Cubells et al., 1994; 
Larsen et al., 2002; Subu et al., 2020; Khoshsirat et al., 2020; Xie et al., 
2018), autophagy activity may not be effective due to a lack of auto
phagy flux progression. Nonetheless, the largest amount of data on 
METH-induced autophagic changes are obtained mostly in cell culture 
systems, leaving unanswered the question of whether similar occur
rences might be evident in human abusers or animal models that better 
mimic human MUD. In this frame, it is worth mentioning that differ
ences in terms of METH-induced, cytopathologic and neurotoxic effects 
may be observed depending on the experimental conditions of METH 
treatment. Besides in vitro vs in vivo METH administration, METH 
dosage, and timing, these differences also concern the cellular models or 
animal species employed (mice vs rats), as well as experimenter- or 
self-administered METH paradigms (Gesi et al., 2001; Marshall and 
O’Dell, 2012; Subu et al., 2020). An increase in the expression and 
protein levels of both autophagy and apoptotic markers has been 
recently detected both in the prefrontal cortex of post-mortem METH 
users (Khoshsirat et al., 2020), as well as rodent models of 
experimenter-administered, and compulsive, self-administered METH 
paradigm (Xie et al., 2018; Subu et al., 2020). Intriguingly, within the 
striata of METH-treated rats, a marked overproduction of p62 occurs 
despite the over-expressions of BECN1 and LC3-II, which is a witness of 
deficient autophagy vesicle turnover and impaired autophagy flux (Xie 
et al., 2018). In line with this, enhancing autophagy via mTOR or GSK-β 
inhibition has been shown to protect against METH toxicity both in vitro 
and in vivo (Lazzeri et al., 2018; Li et al., 2017; Xie et al., 2018). Occa
sionally, evidence has been provided showing that autophagy inhibition 
may instead abolish METH-induced cell death, though most reports 
converge in that autophagy represents a compensatory defense mecha
nism in the early stress response induced by METH (Cao et al., 2016, 
2017; Lin et al., 2012; Ma et al., 2014; Pitaksalee et al., 2015). Further in 
vivo studies employing autophagic modulators are needed to elucidate 
such an issue, which is currently under investigation in our Lab. 

Autophagy recruitment as an early compensatory response to cope 
with protein overload, as it occurs following METH administration, may 
be bound to UPS inhibition (Kageyama et al., 2014; Li et al., 2019; 
Minoia et al., 2014). However, autophagy activation following UPS 
impairment appears to be only transient, as long-lasting UPS dysfunc
tion impedes mitophagy and the recruitment of autophagosome markers 
(Ugun-Klusek et al., 2017). This fits with recent evidence showing that 
UPS activity, rather than inhibition, promotes autophagy by fostering 
both the nuclear translocation of TFEB and mTOR degradation, which 
eventually leads to mTOR downregulation and its detachment from the 
lysosomes (Follo et al., 2019). 

METH-induced impairment of autophagy flux is evident by the dra
matic increase in LC3 immunofluorescent puncta that have been inter
preted as stagnant autophagy vacuoles (Castino et al., 2008). However, a 
recent study documented that METH administration, rather than a mere 
engulfment of autophagy compartments, produces a 
miss-compartmentalization of LC3 particles from autophagy vacuoles to 
the cytosol or non-canonical membranous compartments (Lazzeri et al., 
2018). In fact, following METH administration, LC3 particles increase 
way more in the cytosol than within vacuoles, as measured through 
stochiometric count at transmission electron microscopy. While 
providing a novel insight into the mechanisms of action of METH on 
autophagy, this leads to reconsider the significance of the abundant, 
densely fluorescent LC3 spots that are detected at confocal microscopy; 
indeed, the greatest contribution is provided by LC3 that is stochasti
cally distributed in cytosolic compartments other than autophagy vac
uoles (Fig. 6, Lazzeri et al., 2018). In these same experimental 
conditions, the effects of the mTOR inhibitor and autophagy inducer 
rapamycin are demonstrated to be neuroprotective against cell death, 
meanwhile reinstating vacuolar compartmentalization of LC3. On the 
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other hand, co-administration of METH and asparagine, an mTOR 
inducer that also impairs the merge between autophagosomes and ly
sosomes, produces a dramatic effect on both LC3 compartmentalization 
and METH-induced cell damage. In such an experimental frame, the 
occurrence of autophagy vacuoles was further dissected for the 
concomitant presence of the P20S proteasome (Lazzeri et al., 2018). This 
was done in light of a recently described cell clearing organelle hosting 
both autophagy and proteasome components, which corresponds to the 
“autophagoproteasome” as being defined in “Guidelines for the Use and 
Interpretation of Assays for Monitoring Autophagy (3rd Edition)” 
(Klionsky et al., 2016). As described in the same guidelines, the 
convergence of proteasome within autophagy vacuoles has also been 
documented by Cohen-Kaplan et al. (2019), which is defined as “pro
teaphagy” to indicate autophagy-dependent degradation of inactive 
proteasomes. If this is the case, then one should expect a dramatic in
crease of autophagy vacuoles hosting proteasome subunits following 
METH administration, since METH disassembles and inactivates the 
proteasome. Instead, such a specific cell compartment (corresponding to 
LC3 + P20S-positive vacuole) is dramatically impaired by METH, while 
it is rescued by mTOR inhibition, which correlates with cell survival. 
When coupled with evidence that mTOR inhibition potentiates overall 
UPS activity besides autophagy (Zhao et al., 2015), this suggests that a 
concomitant acceleration of catalytic activity may concur to provide 
neuroprotection within such a unique cell compartment merging auto
phagy and proteasome systems (Fig. 6). The co-occurrence of 
alpha-synuclein and p62 within the autophagoproteasome, as 

documented by immunoprecipitation experiments, strengthens the 
potentially synergistic neuroprotective effect of autophagy-proteasome 
merging. This is liley to counteract both protein aggregation and 
impaired mitophagy that are triggered by METH. In fact, besides the 
well-known role of autophagy in the removal of damaged mitochondria, 
some key steps in mitochondrial removal are carried out by UPS com
ponents acting early during autophagosome formation (Lenzi et al., 
2012; Song et al., 2016). This is in line with increasing evidence pin
pointing the plethora of cross-talk mechanisms that occur between 
autophagy and the UPS (Limanaqi et al., 2020a). 

In summary, since both UPS and autophagy blockers worsen METH 
toxicity, and in turn, METH impairs the merging of autophagy and 
proteasome (Castino et al., 2008; Fornai et al., 2006; Lazzeri et al., 2006, 
2018; Limanaqi et al., 2019), a combined defect in both autophagy and 
proteasome likely paves the way to deleterious effects induced by 
DA-related oxidative species, which are abundantly produced by such a 
drug of abuse. 

4.1. Autophagy and METH toxicity beyond DA neurons 

Besides DA terminals/neurons, METH-induced neuronal inclusions, 
and even neurotoxicity may extend to postsynaptic GABA neuronal cell 
bodies throughout the striatum (Deng and Cadet, 2000; Jayanthi et al., 
2005; Lazzeri et al., 2007; Tulloch et al., 2011; Zhu et al., 2006a, 2006b), 
making it reminiscent of specific striatal neurodegenerative disorders 
such as Huntington disease (HD). In this frame, key events which are 

Fig. 6. METH impairs autophagy, the pro
teasome, and the “autophagoproteasome”. 
METH impairs proteasomal degradation 
through oxidative-related proteasome damage 
and disassembly/inactivation of proteasome 
subunits. Ubiquitin- and p62-positive sub
strates, including the proteasome itself, are thus 
directed to autophagosomes merging with ly
sosomes, where cargo degradation is expected 
to take place. However, METH impairs 
autophagy-dependent protein degradation at 
several levels, and it also occludes the shuttling 
of proteasomes within autophagy compart
ments known as “autophagoproteasomes”. 
METH-induced autophagy impairment may be 
due to engulfment of autophagy vacuoles by the 
burden of altered substrates, impaired auto
phagy flux due to vesicle alkalization, or METH- 
induced miscompartmentalization of LC3 par
ticles (insert). In fact, METH displaces LC3 
particles from autophagy vacuoles to the 
cytosol or non-canonical membranous com
partments such as mitochondria and endo
plasmic reticula, which suggests that METH- 
induced autophagy vacuoles correspond to 
immature autophagosomes.   
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triggered by METH might all converge to accelerate neuronal cell loss 
within striatal neurons, encompassing the extracellular, paracrine 
diffusion of DA and DA-derived oxidative species, abnormal activation 
of D1DR and GLUT receptors, as well as GLUT-induced excitotoxicity 
(Jakel and Maragos, 2000; Wersinger et al., 2004). Remarkably, auto
phagy fosters GLUT receptor internalization and degradation, which is 
key to preventing both behavioral alterations, and Ca2+-related exci
totoxicity that is related to abnormal GLUT receptor stimulation induced 
by METH (Fig. 4, Kulbe et al., 2014; Scheyer et al., 2016; Shehata et al., 
2018, 2012). In fact, while sustaining drug addiction, enhanced GLUT 
release may produce Ca2+-related excitotoxicity by promoting abnormal 
stimulation of AMPAR/NMDAR, which is coupled to enhanced PKC 
signaling pathway, and autophagy flux suppression (Battaglia et al., 
2002a, b; Velásquez-Martinez et al., 2012; Kulbe et al., 2014). This is 
remarkable since enhanced PKC signaling is related to METH-induced 
neurotoxicity associated with both autophagy and UPS impairment 
(Huang et al., 2015; Lin et al., 2012). This configures PKC as a hub in the 
autophagy-related addictive and neurotoxic effects of METH. 

Again, autophagy is seminal for the survival of norepinephrine (NE)- 
containing neurons of the A1/C1 cell group of the rostral ventrolateral 
medulla (RVLM) (Du et al., 2017), which are affected by METH to 
produce hypertension and cardiovascular collapse (Li et al., 2012). In 
detail, rescuing autophagy prevents excitotoxicity in the RVLM neurons, 
which produces a hypotensive effect with attenuated neuro
inflammation compared with stress-induced hypertensive animals (Du 
et al., 2017). These autophagy-related effects are accompanied by 
reduced GLUT release and restoration of GABA levels. This is key since 
RVLM neurons are markedly affected by METH-induced cell death, 
which is associated with biochemical events that are related to auto
phagy dysfunctions (Lai et al., 2020; Li et al., 2012). These include 
mitochondrial failure, oxidative damage, and GLUT-related excitotox
icity through PKC hyper-activation (Lai et al., 2020; Li et al., 2012). 
These findings potentially extend the role of autophagy to the delete
rious systemic effects of METH, which are bound to damage within 
sympathetic catecholamine neurons of the brainstem. 

Although confirmatory studies are needed, one might speculate that 
autophagy impairment within NE neurons may occur following METH- 
induced accumulation of oxidative catecholamine by-products. In fact, 
in brain areas where NE terminals are more abundant compared with DA 
terminals, such as the hippocampus and prefrontal cortex, most of the 
extracellular DA is taken-up by the NET. However, when DA β hydrox
ylase (DβH) becomes saturated and rate-limiting, not all of the DA in the 
vesicle is converted to NA, which might provide a rationale for early 
oxidative-related alterations occurring within NE-containing neurons 
(Taylor et al., 2014). In fact, the burden of cytosolic catecholamine 
overwhelming vesicular storage may lead to both DA and NE 
self-oxidation and subsequent formation of toxic by-products contrib
uting to neuroinflammation, protein peroxidation, and aggregation, up 
to organelles dysfunctions and autophagy impairment (Jinsmaa et al., 
2020; Kang et al., 2020). This is key since the preservation of NA neu
rons plays a key role in neuroprotection against METH by modulating 
the sensitivity of striatal DA terminals (Fornai et al., 1995, 1998, 1999; 
Weinshenker et al., 2008). In fact, damage to NE-containing neurons, as 
obtained through the administration of N-(2-chloroethyl)-N-ethyl-2-
bromobenzylamine (DSP-4) within the locus coeruleus (LC), exacerbates 
METH-induced damage to nigrostriatal DA terminals (Fornai et al., 
1995, 1998, 1999; Weinshenker et al., 2008). Genetic deletion of DBH 
and acute treatment of wild-type mice with a DBH inhibitor (fusaric 
acid) recapitulates the effects of DSP-4 lesions on METH responses. 
Remarkably, cytoplasmic and nuclear whorls and autophagy-like 
structures are observed in striatal neurons after NA depletion, which is 
enhanced following METH treatment (Weinshenker et al., 2008). 
Coupled with evidence documenting that NE induces protective auto
phagy (Aránguiz-Urroz et al., 2011; Farah et al., 2014; Campos et al., 
2020), a potential role of autophagy in the neuroprotective effects of NE 
against METH toxicity emerges, which deserves to be investigated. 

5. Autophagy, neuroinflammation, and METH 

METH-induced potentiation of DA release plays a key role in neu
roinflammation by stimulating surrounding glial cells while triggering 
neurotoxic cascades (Ares-Santos et al., 2013, 2014; Granado et al., 
2011; Moratalla et al., 2017; Thomas et al., 2008). GLUT-mediated 
mechanisms are also involved in the neuroinflammatory cascades 
accompanying progressive nigrostriatal degeneration in PD models 
(Ambrosi et al., 2010). Early activation and microglia and astrocytes 
rapidly occur after METH administration in DA-innervated areas, as 
shown by an increase in glial fibrillary acidic protein (GFAP) and 
microglial integrin-αM immunoreactivity in the striatum, hippocampus, 
and prefrontal cortex of METH-treated animals (Ares-Santos et al., 2013; 
Krasnova et al., 2010; LaVoie et al., 2004; Moratalla et al., 2017; 
Namyen et al., 2020; Tehrani et al., 2019; Thomas et al., 2008). 
Remarkably, impaired autophagy is correlated with increased neuro
inflammation, augmented astrogliosis, apoptosis, and histological al
terations occurring in the prefrontal cortex of METH-treated rats 
(Tehrani et al., 2019). 

Within glial cells, METH activates nuclear factor-kappa B (NF-κB) to 
promote the transcription of pro-inflammatory cytokines and mediators, 
including the Nod-like Receptor Protein 3 (NLRP3) inflammasome (Du 
et al., 2019; Namyen et al., 2020; Shah et al., 2012; Snider et al., 2012). 
This leads to the release of various pro-inflammatory factors that 
perpetuate METH-induced neuroinflammation, such as interleukin 6 
(IL-6), interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), monocyte 
chemo-attractant protein 1 (MCP-1), matrix metalloproteinase-9 
(MMP-9) enzyme, cellular adhesion molecule (ICAM-1), vascular cell 
adhesion molecule 1 (VCAM-1) and NAD(P)H oxidase 2 (NOX2) (Du 
et al., 2019; Gonçalves et al., 2008; Namyen et al., 2020; Shah et al., 
2012; Snider et al., 2012). 

Microglial activation following METH exposure is also bound to the 
neuronal release of damage-associated molecular patterns (DAMPs). 
This is the case of high-mobility group box-1 (HMGB1), which is up- 
regulated by METH in experimental animals and promotes neuro
inflammatory responses in the VTA, nucleus accumbens, and prefrontal 
cortex (Frank et al., 2016). In basal conditions, HMGB1 promotes 
autophagy, while in the presence of high amounts of misfolded 
alpha-synuclein, as it occurs during METH administration, HMGB1 
contributes to autophagy impairment (Song et al., 2014). Autophagy 
failure may in turn promote the extracellular release of DAMPs and 
pro-inflammatory factors. In fact, when a failure in the 
autophagy-lysosome pathway occurs, the extracellular release of indi
gested autophagy substrates represents an unconventional solution to 
avoid the intracellular accumulation of DAMPs, including oxi
dized/glycated/aggregated proteins, depolarized mitochondria leaking 
ROS, HMGB1, and NLRP3 inflammasome (Han et al., 2019; Rubinsztein 
et al., 2015; Zhang and Schekman, 2013). DAMPs are released extra
cellularly either as free compounds or via exosomes that derive from the 
fusion of autophagy-lysosome vacuoles with the plasma membrane. In 
neighboring cells, including neurons and glia, these DAMPs bind to 
toll-like receptors (TLRs) and AGE receptors (RAGEs), thus activating 
downstream oxidative and inflammatory signaling pathways which 
converge to impairing autophagy, such as nuclear factor 
(NF)-κB/NLRP3, PKC, PI3K/Akt/ mTOR (Lai et al., 2018; Limanaqi 
et al., 2020a; Pla et al., 2014; Song et al., 2014). In this way, indigested 
DAMPs may perpetuate oxidative and inflammatory damage meanwhile 
impinging on autophagy in the surrounding neuronal/glial milieu. 

Remarkably, METH-induced microglial activation is bound to the 
formation of DA-quinones and subsequent activation of Toll-like re
ceptor 4 (TLR4), as well as sigma-1 receptor-induced activation of the 
mitogen-activated protein kinase (MAPK) and PI3K/Akt pathways 
(Chao et al., 2017; Thomas et al., 2008). Besides the MAPK and 
PI3K/Akt pathways, which are both bound to autophagy inhibition, 
TLR4 stimulation also impairs autophagy and the UPS (Lai et al., 2018; 
Pla et al., 2014). For instance, NLRP3, which is implicated in 
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METH-induced microglial activation (Du et al., 2019), inhibits auto
phagy through TLR4 stimulation in microglial cells, which enhances the 
processing and release of mature IL-1β (Lai et al., 2018). Abnormal 
activation of the HMGB1/RAGE axis within NE-containing neurons of 
the RVLM impairs microglial autophagy and mitophagy, to promote 
neuroinflammation in mice models of stress (Zhang et al., 2020). Again, 
autophagy inhibition in microglia aggravates neurotoxin-induced neu
rodegeneration within DA neurons by promoting NLRP3 inflammasome 
activation (Qin et al., 2020). These findings indirectly suggest that 
METH-induced autophagy impairment may be implicated in the 
neuro-inflammatory events bridging the abnormal release of DA and 
DAMPs with microglial activation (Fig. 7). 

METH-induced release of pro-inflammatory factors also promotes 
disruption of the blood-brain barrier (BBB), as documented by the loss of 
zonula occludens (ZO)-1, occludin, and claudin-5 tight junction proteins 
in rats (Namyen et al., 2020). Besides the upregulation of NF-κB-related 
pro-inflammatory genes and proteins, this is bound to the suppression of 
the anti-oxidative signaling factor Nrf2 (Namyen et al., 2020). Nrf2 
deficiency potentiates METH-induced DA axonal damage, gliosis, and 
the release of pro-inflammatory cytokines in the mouse striatum 
(Granado et al., 2011). Remarkably, Nrf2 activation is known to bridge 
autophagy/mitophagy induction with reduction of oxidative stress, and 
inhibition of neuronal apoptosis. In fact, in the brain of mice featuring 
impaired autophagy due to Atg7 ablation, increased oxidative stress 
occurs, which promotes p53 activation and neurodegeneration (Yang 
et al., 2020a, b). When Atg7 is deleted concomitantly with Nrf2, animals’ 
death rapidly occurs, indicating an interdependency between auto
phagy, apoptotic, and Nrf2 stress response mechanisms (Yang et al., 
2020a, b). Again, among a variety of ubiquitinated proteins, the adaptor 
protein p62 also binds to the Nrf2 inhibitor Keap1 (Ichimura et al., 2013; 
Taguchi et al., 2012). This leads to Keap1 degradation via autophagy, 
thus leaving Nrf2 free to accumulate and translocate in the nucleus 
where it promotes the transcription of antioxidant and detoxifying genes 
(Ichimura et al., 2013; Taguchi et al., 2012). In METH-treated animals, 
administration of melatonin, which has been shown to induce protective 
autophagy through SIRT-1 activation or mTOR inhibition (Boga et al., 

2019), counteracts neuroinflammation and BBB leakage by rescuing 
Nrf2 (Namyen et al., 2020). Similar effects are produced by lithium, 
which attenuates METH-induced apoptosis, oxidative stress, and 
inflammation in the rat hippocampi (Mehrafza et al., 2019). 

The involvement of autophagy in METH-induced disruption of the 
BBB has been confirmed in vitro in human brain microvascular endo
thelial cells (HBMECs) and human umbilical vein endothelial cells 
(HUVECs) (Ma et al., 2014). Within these cells, acute METH exposure 
induces autophagy as an early prosurvival response via inactivation of 
Akt/mTOR and upregulation of the ERK1/2 pathway. Remarkably, 
despite the inactivation of Akt/mTOR, and the increase in Beclin1 and 
LC3 recruitment, treatment with autophagy inhibitors accelerates 
METH-induced apoptosis instead of providing protection within brain 
endothelial cells (Ma et al., 2014). This confirms a beneficial effect for 
autophagy recruitment during METH-induced neuroinflammation and 
apoptosis. 

6. Conclusions 

In the present review, we discussed evidence suggesting that METH- 
induced alterations in neurotransmission and neurotoxicity may be 
bound to impaired autophagy and subsequent mishandling of neuro
transmitter release and unfolded/misfolded proteins. Altered autophagy 
following METH exposure is likely to be due to the joined contribution of 
oxidative DA by-products and non-canonical biochemical cascades that 
are triggered by abnormal stimulation of post-synaptic DA and GLUT 
receptors. Recent insights provided into the mechanisms of action of 
METH suggest that such a drug of abuse may early affect the autophagy 
machinery by impairing the recruitment of key components that are 
required for autophagosome formation and maturation (Lazzeri et al., 
2018). Considering the role of autophagy in the modulation of 
DA-related behavior, this appears as a key for METH-induced behavioral 
sensitization beyond neuroinflammation and neurotoxicity. It is fasci
nating that METH takes away the identity of specific synaptic com
partments, by acting on both strictly degradative, autophagy-dependent 
mechanisms, and those involved in neurotransmitter release and 

Fig. 7. Autophagy bridging DA-related and 
neuroinflammatory effects of METH. Within 
DA presynaptic terminals, autophagy impair
ment, which may include the impaired merging 
of autophagosomes and multivesicular bodies 
with lysosomes, leads to increased exocytosis 
promoting the extracellular release of both DA 
and substrates acting as danger-related molec
ular patterns (DAMPs). These include high- 
mobility group box-1 (HMGB1), NLRP3 
inflammasome, Reactive Oxygen Species (ROS) 
and depolarized mitochondria leaking ROS, and 
altered protein substrates. Similar to DA, these 
promote glial activation through toll-like re
ceptor 4 (TLR4) and receptors for advanced 
glycation end-products (RAGE). The binding of 
these receptors to DAMPs and DA is coupled to 
intracellular pathways such as mitogen- 
activated protein kinase (MAPK), mTOR, PKC, 
and nuclear factor (NF)-kB, which converge to 
promoting both the expression of pro- 
inflammatory factors and autophagy impair
ment. In turn, autophagy flux impairment con
tributes to the glial release of pro-inflammatory 
mediators acting as DAMPs, which perpetuates 
METH-induced inflammation in the surround
ing milieu.   
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re-uptake crossing back again autophagy. The impressive overlap that 
emerges between the effects of METH and autophagy impairment upon 
DA system alterations, suggests that autophagy dysfunction may bridge 
drugs of abuse, psychiatric signs, and neurodegeneration. In fact, auto
phagy alterations following METH intake/administration are inter
mingled with a chain of events starting from synaptic insults up to 
neuronal damage, which could predispose to maladaptive behavioral 
changes and neurodegenerative phenomena. This is key since psychi
atric symptoms and signs are often overrepresented and may even pre
cede the onset of neurodegeneration. Joined with evidence that 
autophagy dysfunctions occur in both mental disorders, and early on, 
during neurodegeneration, we propose that autophagy may serve as a 
gateway to understanding the psychiatric manifestations and neurode
generative phenomena associated with MUD-related addiction and 
neurotoxicity. 
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Muñoz, P., Huenchuguala, S., Paris, I., Segura-Aguilar, J., 2012. Dopamine oxidation and 
autophagy. Parkinsons Dis. 2012, 920953 https://doi.org/10.1155/2012/920953. 

Murdoch, J.D., Rostosky, C.M., Gowrisankaran, S., Arora, A.S., Soukup, S.F., Vidal, R., 
Capece, V., Freytag, S., Fischer, A., Verstreken, P., Bonn, S., Raimundo, N., 
Milosevic, I., 2016. Endophilin-a deficiency induces the Foxo3a-Fbxo32 network in 
the brain and causes dysregulation of autophagy and the ubiquitin-proteasome 
system. Cell Rep. 17, 1071–1086. https://doi.org/10.1016/j.celrep.2016.09.058. 

Nakai, T., Nagai, T., Wang, R., Yamada, S., Kuroda, K., Kaibuchi, K., Yamada, K., 2014. 
Alterations of GABAergic and dopaminergic systems in mutant mice with disruption 
of exons 2 and 3 of the Disc1 gene. Neurochem. Int. 74, 74–83. https://doi.org/ 
10.1016/j.neuint.2014.06.009. 

Namyen, J., Permpoonputtana, K., Nopparat, C., Tocharus, J., Tocharus, C., 
Govitrapong, P., 2020. Protective effects of melatonin on methamphetamine- 
induced blood–Brain barrier dysfunction in rat model. Neurotox. Res. 37, 640–660. 
https://doi.org/10.1007/s12640-019-00156-1. 

Narita, M., Akai, H., Nagumo, Y., Sunagawa, N., Hasebe, K., Nagase, H., Kita, T., 
Hara, C., Suzuki, T., 2004. Implications of protein kinase C in the nucleus accumbens 
in the development of sensitization to methamphetamine in rats. Neuroscience 127, 
941–948. https://doi.org/10.1016/j.neuroscience.2004.06.017. 

Natale, G., Lenzi, P., Lazzeri, G., Falleni, A., Biagioni, F., Ryskalin, L., Fornai, F., 2015. 
Compartment-dependent mitochondrial alterations in experimental ALS, the effects 
of mitophagy and mitochondriogenesis. Front. Cell. Neurosci. 9, 434. https://doi. 
org/10.3389/fncel.2015.00434. 

Neasta, J., Barak, S., Hamida, S.Ben, Ron, D., 2014. MTOR complex 1: a key player in 
neuroadaptations induced by drugs of abuse. J. Neurochem. 130, 172–184. https:// 
doi.org/10.1111/jnc.12725. 

Nestler, E.J., 2001. Molecular basis of long-term plasticity underlying addiction. Nat. 
Rev. Neurosci. 2, 119–128. https://doi.org/10.1038/35053570. 

Niwa, M., Kamiya, A., Murai, R., Kubo, K., Gruber, A.J., Tomita, K., Lu, L., Tomisato, S., 
Jaaro-Peled, H., Seshadri, S., Hiyama, H., Huang, B., Kohda, K., Noda, Y., 
O’Donnell, P., Nakajima, K., Sawa, A., Nabeshima, T., 2010. Knockdown of DISC1 by 
in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal 
cortex and leads to adult behavioral deficits. Neuron 65, 480–489. https://doi.org/ 
10.1016/j.neuron.2010.01.019. 

Northrop, N.A., Yamamoto, B.K., 2015. Methamphetamine effects on blood-brain barrier 
structure and function. Front. Neurosci. 9, 69. https://doi.org/10.3389/ 
fnins.2015.00069. 

O’Dell, S.J., Weihmuller, F.B., Marshall, J.F., 1991. Multiple methamphetamine 
injections induce marked increases in extracellular striatal dopamine which 
correlate with subsequent neurotoxicity. Brain Res. 564, 256–260. https://doi.org/ 
10.1016/0006-8993(91)91461-9. 

Okamoto, K., 2014. Organellophagy: eliminating cellular building blocks via selective 
autophagy. J. Cell Biol. 205, 435–445. https://doi.org/10.1083/jcb.201402054. 

Okerlund, N.D., Schneider, K., Leal-Ortiz, S., Montenegro-Venegas, C., Kim, S.A., 
Garner, L.C., Waites, C.L., Gundelfinger, E.D., Reimer, R.J., Garner, C.C., 2018. 
Erratum: bassoon controls presynaptic autophagy through Atg5. Neuron 2017 (93), 
897–913. https://doi.org/10.1016/j.neuron.2018.01.010 e7, S0896627317300508.  

Palikaras, K., Tavernarakis, N., 2020. Regulation and roles of mitophagy at synapses. 
Mech. Ageing Dev. 187, 111216 https://doi.org/10.1016/j.mad.2020.111216. 

Palmisano, N.J., Rosario, N., Wysocki, M., Hong, M., Grant, B., Meléndez, A., 2017. The 
recycling endosome protein RAB-10 promotes autophagic flux and localization of the 
transmembrane protein ATG-9. Autophagy 13, 1742–1753. https://doi.org/ 
10.1080/15548627.2017.1356976. 

Parra, L.A., Baust, T.B., Smith, A.D., Jaumotte, J.D., Zigmond, M.J., Torres, S., Leak, R.K., 
Pino, J.A., Torres, G.E., 2016. The molecular chaperone Hsc70 interacts with 
tyrosine hydroxylase to regulate enzyme activity and synaptic vesicle localization. 
J. Biol. Chem. 291, 17510–17522. https://doi.org/10.1074/jbc.M116.728782. 

Pasquali, L., Busceti, C.L., Fulceri, F., Paparelli, A., Fornai, F., 2010. Intracellular 
pathways underlying the effects of lithium. Behav. Pharmacol. 21, 473–492. https:// 
doi.org/10.1097/FBP.0b013e32833da5da. 

Perreault, M.L., Hasbi, A., Alijaniaram, M., Fan, T., Varghese, G., Fletcher, P.J., 
Seeman, P., O’Dowd, B.F., George, S.R., 2010. The dopamine D1-D2 receptor 
heteromer localizes in dynorphin/enkephalin neurons: increased high affinity state 
following amphetamine and in schizophrenia. J. Biol. Chem. 285, 36625–36634. 
https://doi.org/10.1074/jbc.M110.159954. 

Pietrocola, F., Mariño, G., Lissa, D., Vacchelli, E., Malik, S.A., Niso-Santano, M., 
Zamzami, N., Galluzzi, L., Maiuri, M.C., Kroemer, G., 2012. Pro-autophagic 
polyphenols reduce the acetylation of cytoplasmic proteins. Cell Cycle 11, 
3851–3860. https://doi.org/10.4161/cc.22027. 

Pigulevskiy, I., Lieberman, O.J., Sulzer, D., 2020. Autophagic bias in the striatum. 
Autophagy 16, 1148–1149. https://doi.org/10.1080/15548627.2020.1743070. 

Pitaksalee, R., Sanvarinda, Y., Sinchai, T., Sanvarinda, Pantip, Thampithak, A., 
Jantaratnotai, N., Jariyawat, S., Tuchinda, P., Govitrapong, P., Sanvarinda, Pimtip, 
2015. Autophagy inhibition by caffeine increases toxicity of methamphetamine in 
SH-SY5Y neuroblastoma cell line. Neurotox. Res. 27, 421–429. https://doi.org/ 
10.1007/s12640-014-9513-9. 

Pla, A., Pascual, M., Renau-Piqueras, J., Guerri, C., 2014. TLR4 mediates the impairment 
of ubiquitin-proteasome and autophagy-lysosome pathways induced by ethanol 
treatment in brain. Cell Death Dis. 5 https://doi.org/10.1038/cddis.2014.46 
e1066–e1066.  

Pogorelov, V.M., Nomura, J., Kim, J., Kannan, G., Ayhan, Y., Yang, C., Taniguchi, Y., 
Abazyan, B., Valentine, H., Krasnova, I.N., Kamiya, A., Cadet, J.L., Wong, D.F., 
Pletnikov, M.V., 2012. Mutant DISC1 affects methamphetamine-induced 
sensitization and conditioned place preference: a comorbidity model. 
Neuropharmacology 62, 1242–1251. https://doi.org/10.1016/j. 
neuropharm.2011.02.003. 
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Juhász, G., Sass, M., 2014. Rab11 facilitates cross-talk between autophagy and 
endosomal pathway through regulation of Hook localization. Mol. Biol. Cell 25, 
522–531. https://doi.org/10.1091/mbc.E13-10-0574. 

Taguchi, K., Fujikawa, N., Komatsu, M., Ishii, T., Unno, M., Akaike, T., Motohashi, H., 
Yamamoto, M., 2012. Keap1 degradation by autophagy for the maintenance of redox 
homeostasis. Proc. Natl. Acad. Sci. U. S. A. 109, 13561–13566. https://doi.org/ 
10.1073/pnas.1121572109. 
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