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a b s t r a c t

By considering a simple thermodynamic system, in thermal equilibrium at a temperature
T and in the presence of an external parameter A, we focus our attention on the particular
thermodynamic (macroscopic) relation dU = TdS + δW . Using standard axioms from
information theory and the fact that the microscopic energy levels depend upon the
external parameter A, we show that all usual results of statistical mechanics for reversible
processes follow straightforwardly, without invoking the Maximum Entropy principle. For
the simple system considered herein, two distinct forms of heat contributions appear
naturally in the Clausius definition of entropy, TdS = δQ (T ) + δQ (A) = C (T )A dT + C

(A)
T dA.

We give a special attention to the amount of heat δQ (A) = C (A)T dA, associated with an
infinitesimal variation dA at fixed temperature, for which a ‘‘generalized heat capacity’’,
C (A)T = T (∂S/∂A)T , may be defined. The usefulness of these results is illustrated by
considering some simple thermodynamic cycles.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The first and second laws of thermodynamics are two most important statements of physics [1]. They constitute strong
pillars of our present understanding of nature. Of course, statistical mechanics (SM) adds an underlying microscopic
substratum that is able to explain not only these two laws but the whole of thermodynamics itself [2–11]. One of the basic
ingredients of SM is a microscopic probability distribution (PD) that controls the population of microstates of the system
under consideration [5–8,11]. Restricting our considerations to equilibrium situations, here we will be mainly concerned
with designing – from a perspective to be explained immediately below – a detailed SM-picture. This picture exemplifies a
way inwhichmany important equilibrium results from SM can be obtained from a few simple assumptions,without the need
of invoking theMaximum Entropy principle (MaxEnt) of Jaynes [12]. This approach illustrates that MaxEnt or the alternative
hypothesis for the equiprobability of microstates of an isolated system is not a necessary condition to derive the essential
results of SM (see examples of this in Refs. [13–15]).
Just four ingredients are needed for this development:
• (i) the macroscopic and phenomenological relation,

dU = TdS + δW ; (1.1)
• (ii) Kinchin’s first axiom of information theory: the information measure depends only on the pertinent probability
distribution [16];
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• (iii) the concavity of the entropy with respect to its associated probabilities;
• (iv) the fact that the analytical form εi({A}) of the systemof interest’s energy eigenvalues εi is a function of a set of external
parameters {A}.

Herein we will show that such ingredients are sufficient for recovering the equilibrium results of SM. In other words,
Eq. (1.1), supplemented by a minimum of microscopic information [items (ii)–(iv)], is all one needs in order to build
the mighty edifice of equilibrium SM. Most of our analysis is restricted to a simple thermodynamic system, in thermal
equilibrium at a temperature T and in the presence of a single external parameter A. We show that two distinct forms
of heat contributions appear naturally in the macroscopic entropy, TdS = δQ (T ) + δQ (A) = C (T )A dT + C

(A)
T dA. Through this

approach, we derive an important relation for the ‘‘generalized heat capacity’’ C (A)T , associatedwith an infinitesimal variation
dA in the thermodynamically independent parameter A of the system. Such a relation involves correlations between the
energy eigenvalues and their derivatives with respect to the parameter A – is original to our knowledge – providing a direct
way to calculate heat exchanges in given thermodynamic transformations. A preliminary illustration of the usefulness of
this relation was presented in Ref. [15], where the heat exchanges in the isothermal transformations of a simple ideal-gas
Carnot cycle were calculated directly. This should be contrasted with the standard procedure employed to calculate such a
quantity (cf., e.g., Refs. [2,4,6,7]): (a) One uses the fact that dU = 0 in an ideal-gas isothermal transformation; (b) Then, one
applies the ideal-gas equation of state in order to calculate the work done by the gas in the corresponding transformation;
(c) The amount of absorbed heat equals the work done by the gas. Such a procedure may become tedious in some cases,
mainly for those thermodynamic transformations where dU 6= 0; herein we discuss in detail a direct – and much simpler –
way of calculating heat exchanges.
In Section 2 we revise the main results of the above formalism [14,15], deriving general expressions for the different

forms of heat. We present three different procedures of calculating C (A)T for a given physical system (where the two last ones
represent original contributions of the present work): (i) From the microscopic point of view, if the energy eigenvalues of
the corresponding Hamiltonian are known, the heat capacity C (A)T is directly related to the correlations involving the energy
eigenvalues, as well as their derivatives with respect to A; (ii) Also microscopically, using standard statistical mechanics
procedures, from the knowledge of the canonical-ensemble partition function; (iii) Macroscopically, from the parameter
thermodynamically conjugate to A. The relations deduced herein provide direct ways of to calculate heat exchanges in
thermodynamic transformations, particularly in isothermal processes. Additionally, we analyze adiabatic transformations
in view of the new form of heat δQ (A) and conclude that for such a transformation to occur, it is necessary that at least
two parameters of the system should vary, leading to more than one form of heat that cancel each other. For the simple
system considered herein, characterized by the parameters T and A, both forms of heat exchanges occur, but restricted to
δQ (T ) = −δQ (A) at each stage of the adiabatic transformation. In Section 3 we apply these results to study some magnetic
thermodynamic cycles; in such cases, the external parameter consists in an applied magnetic field H , for which the heat
capacity C (H)T may be calculated within the present formalism and then, the amount of heat δQ (H) = C (H)T dH is computed
for isothermal transformations in several thermodynamic cycles. Finally, in Section 4 we present our main conclusions.

2. Forms of heat exchanges

For completeness, in this section we will revise some of the results obtained in a previous publication [15]. Let us
start by considering a simple, one-component system [3], that is, composed by a single chemical species, macroscopically
homogeneous, and isotropic. The system is composed by a number of particles N , and it is found in thermal equilibrium at
a temperature T . Although the following discussion may be easily generalized for an arbitrary set of external parameters,
{A}, herein, for simplicity’s sake, we will consider just one (generic) external parameter, denoted from now on by A. The
macroscopic equilibrium thermal state of such a one-component system is described in self-explanatory notation by the set
of thermodynamically independent parameters, T , A, N [3]. We shall here consider a quite general information measure S
that, according to Kinchin’s first axiom for information theory [16], depends exclusively on the PD {pi}, i.e., S ≡ S({pi}); in
addition to that we also assume that S({pi})may be written in the simple form [17–20],

S({pi}) =
W∑
i=1

r(pi); [r(0) = r(1) = 0], (2.1)

where W represents the total number of microstates and r(pi) is a concave function of each pi, implying the concavity of
S({pi}) (see, e.g., [19]). The energy eigenvalues of the Hamiltonian εi are functions of A and N , namely, {εi} = {εi(A,N)}.
In the present analysis, we take N as fixed, in such a way that the dependence of the energy eigenvalues on N disappears,
i.e., {εi} = {εi(A)}. The associated PD that describes the system depends, then, on the external parameters in the way

pi = pi(T , εi(A)). (2.2)

The mean energy U is given by [21–23,20,24]

U =
W∑
i=1

piεi, (2.3)
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where the sum runs over a set of quantum numbers, that serves to enumerate the microstates (W represents the total
number of microstates) and characterize the corresponding levels of energy εi. Now, in view of Eqs. (2.2) and (2.1), we can
write

dpi =
∂pi
∂T
dT +

W∑
j=1

∂pi
∂εj

∂εj

∂A
dA, (2.4)

TdS = T
W∑
i=1

∂S
∂pi

∂pi
∂T
dT + T

W∑
i,j=1

∂S
∂pi

∂pi
∂εj

∂εj

∂A
dA ≡ δQ (T ) + δQ (A), (2.5)

where from the heat forms above, one readily identifies the standard heat capacity, C (T )A ,

δQ (T ) = C (T )A dT ; C (T )A = T
(
∂S
∂T

)
A
= T

W∑
i=1

∂S
∂pi

∂pi
∂T
, (2.6)

as well as a ‘‘generalized heat capacity’’, C (A)T ,

δQ (A) = C (A)T dA; C (A)T = T
(
∂S
∂A

)
T
= T

W∑
i,j=1

∂S
∂pi

∂pi
∂εj

∂εj

∂A
. (2.7)

It should be mentioned that the above concept of generalized heat capacity is hardly explored within thermodynamics
textbooks (for an exception, see Ref. [4]); herein, we will analyze further this quantity from the microscopic point of view
of Refs. [14,15] and calculate it for some simple physical systems.
In a similar way, using Eqs. (2.2) and (2.3), one gets for the internal energy,

dU =
W∑
i=1

∂pi
∂T

εi dT +
W∑
i,j=1

∂pi
∂εj

∂εj

∂A
εi dA+

W∑
i=1

pi
∂εi

∂A
dA. (2.8)

If one considers the key thermodynamic relation,

dU = TdS + δW = δQ (T ) + δQ (A) + δW , (2.9)
within the present scenario, by making use of Eq. (2.5), we can recast Eq. (2.9) in the microscopic fashion (involving the
microstates’ PD),

dU = T

(
W∑
i=1

∂S
∂pi

∂pi
∂T
dT +

W∑
i,j=1

∂S
∂pi

∂pi
∂εj

∂εj

∂A
dA

)
+ δW , (2.10)

which is to be compared with Eq. (2.8). It should be stressed that although δQ (A) and δW are both associated with variations
in the external parameter A, they are related to different forms of energy; as will be shown in the next section, these
quantities correspond to the last two terms on the r.h.s. of Eq. (2.8), respectively. Only in exceptional cases, these two
quantities may be related in a simple way, e.g., in an isothermal transformation of an ideal gas, where dU = δQ (T ) = 0
and then, from Eq. (2.9), one gets that δQ (A) = −δW . In what follows, wewill explore the fact that Eqs. (2.8) and (2.10) must
be equal for arbitrary changes in T and A.

2.1. Changes in the temperature

Let us now consider changes in the temperature only, i.e., A fixed. Enforcing equality in the coefficients of dT appearing
in Eqs. (2.8) and (2.10), we obtain

W∑
i=1

∂pi
∂T

εi dT = T
W∑
i=1

∂S
∂pi

∂pi
∂T
dT , (2.11)

where we are assuming, as it is obvious, that the mechanical work δW appearing in Eq. (2.10) does not depend explicitly on
the temperature. The equation above must be satisfied together with the normalization condition [cf. Eq. (2.4)],

W∑
i=1

dpi =
W∑
i=1

∂pi
∂T
dT = 0, (2.12)

leading to the result [15],

εi − T
∂S
∂pi
≡ K = constant; (i = 1, 2, . . . ,W ). (2.13)

Eq. (2.13) yields an expression for any of theW probabilities pi’s, as shown in an earlier publication, recovering exactly the
PD that is obtained using the MaxEnt principle [14].
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As an illustration, if we consider the Shannon entropy,

S = −kB
∑
i

pi ln pi, (2.14)

Eq. (2.13) leads to the Boltzmann–Gibbs factor

pi =
1
Z
e−βεi , [β = 1/(kBT )], (2.15)

where the partition function Z reads

Z =
W∑
i=1

e−βεi = e1−βK , (2.16)

yielding a relation between K and Z . These results entail
∂pi
∂εj
= −βpi(δi,j − pj), (2.17)

−
∂ ln Z
∂β
=

W∑
i=1

piεi = U, (2.18)

∂ ln Z
∂A
= −β

W∑
i=1

pi
∂εi

∂A
= −β

〈
∂ε

∂A

〉
, (2.19)

∂2 ln Z
∂β∂A

= −

〈
∂ε

∂A

〉
+ β

〈
ε
∂ε

∂A

〉
− β 〈ε〉

〈
∂ε

∂A

〉
, (2.20)

∂2 ln Z
∂β∂A

−
1
β

∂ ln Z
∂A
= β

[〈
ε
∂ε

∂A

〉
− 〈ε〉

〈
∂ε

∂A

〉]
= βΓε,δε, (2.21)

where we have used 〈a〉 ≡
∑
i piai and 〈a b〉 ≡

∑
i piaibi, as usual. From now on, we shall call the factor of beta on the r.h.s

of Eq. (2.21), i.e., Γε,δε , the energy–energy displacement correlation. It is important to notice that no information about the pi
has thus far been invoked. Next, we analyze changes in both temperature and external parameter.

2.2. Changes in both temperature and external parameter

Let us now analyze the second term on the r.h.s. of Eq. (2.8); using Eq. (2.13), one gets that
W∑
i,j=1

∂pi
∂εj

∂εj

∂A
εi dA =

W∑
i,j=1

[
T
∂S
∂pi
+ K

]
∂pi
∂εj

∂εj

∂A
dA

= T
W∑
i,j=1

∂S
∂pi

∂pi
∂εj

∂εj

∂A
dA+ K

W∑
i,j=1

∂pi
∂εj

∂εj

∂A
dA. (2.22)

Now using that

∂

∂A

∑
i

pi = 0 ⇒

W∑
i,j=1

∂pi
∂εj

∂εj

∂A
dA = 0, (2.23)

one gets,
W∑
i,j=1

∂pi
∂εj

∂εj

∂A
εi dA =

(
T

W∑
i,j=1

∂S
∂pi

∂pi
∂εj

∂εj

∂A

)
dA = δQ (A) = C (A)T dA, (2.24)

where we have used the definition of generalized heat capacity [cf. Eq. (2.7)]. By comparing Eqs. (2.8) and (2.10) in view of
the above result, one concludes that the mechanical work associated with an infinitesimal variation dA is given by

δW =
W∑
i=1

pi
∂εi

∂A
dA =

〈
∂ε

∂A

〉
dA. (2.25)

Now, if one uses Eq. (2.19), onemay introduce the ‘‘generalized force’’,F (A), conjugated to the parameterA, in such away that

δW = F (A)dA; F (A)
=

〈
∂ε

∂A

〉
= −

1
β

∂ ln Z
∂A

, (2.26)

as defined in some textbooks (see, e.g., Refs. [7,8]).
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Making use of Eqs. (2.13) and (2.17) the generalized heat capacity of Eq. (2.7)maybe alsowritten, for the case of Shannon’s
entropy,

C (A)T = −β
W∑
i,j=1

(εi − K)pi(δi,j − pj)
∂εj

∂A

= −β

[
W∑
i=1

pi εi
∂εi

∂A
−

(
W∑
i=1

pi εi

)(
W∑
j=1

pj
∂εj

∂A

)]

= −β

[〈
ε
∂ε

∂A

〉
− 〈ε〉

〈
∂ε

∂A

〉]
= −βΓε,δε . (2.27)

Therefore, the generalized heat capacity is directly related to the energy–energy displacement correlation; combining the
above result with the one of Eq. (2.21), one has that

C (A)T = −βΓε,δε =
1
β

∂ ln Z
∂A
−
∂2 ln Z
∂β∂A

. (2.28)

It is important to point out that whereas the standard heat capacity C (T )A should be always positive within the canonical
ensemble, from the equations above one sees that there is not such a restriction for the heat capacity C (A)T . Moreover, using
the above relation together with the definition of generalized force in Eq. (2.26), one obtains,

C (A)T = β
∂F (A)

∂β
= −T

∂F (A)

∂T
. (2.29)

As a simple illustration of this result, we consider the ideal gas, for which δW = −PdV (F (V )
= −P), and so,

C (V )T = T
∂P
∂T
= T

∂[(NkBT )/V ]
∂T

= P, (2.30)

which agrees with the result of Ref. [15] [cf. Eq. (41)], where such a quantity was calculated through the correlation function
Γε,δε .
Therefore, whenever an external parameter A changes quasi-statically, heat is generated or absorbed, in such a way that

one may define an associated generalized heat capacity C (A)T . We have shown above three equivalent ways of calculating
this quantity for a given physical system, two of them being original contributions of this paper: (i) Microscopically,
through the correlation between the energy eigenvalues and their corresponding shift originated by the A-variation
[cf. Eq. (2.27)] [14,15]; (ii) Also microscopically, using standard SM procedures, from the knowledge of the canonical-
ensemble partition function [cf. Eq. (2.28)]; (iii) Macroscopically, by considering the derivative of its associated generalized
force with respect to the temperature [cf. Eq. (2.29)]. It should be emphasized, at this point, that Eqs. (2.28) and (2.29)
represent two important newequations (as far aswe know) that allowus to calculate heat exchanges explicitly; in particular,
Eq. (2.28) will be used in the next section for some physical illustrations of the present results. Obviously, the relation of
Eq. (2.29) is the one relevant for physical measurements. It should be mentioned at this point that although the concept of
a generalized force, F (A), may be found in some textbooks (see, e.g., Refs. [7,8]), the above-presented relation with the heat
capacity C (A)T is original. The quantity C (A)T contributes to a rather unfamiliar term in the Clausius relation,

TdS = δQ = δQ (T ) + δQ (A) = C (T )A dT + C
(A)
T dA, (2.31)

which is usually formulated in terms of the first contribution only, i.e., the contribution associated with the variation in
temperature.
In fact, in adiabatic transformations, one sees that this new form of heat, δQ (A), is essential for such a transformation to

take place, since it is necessary that at least two parameters of the system should vary, leading to more than one form of
heat that cancel each other. Therefore, for the system considered above, both forms of heat exchanges occur, but restricted
to δQ (T ) = −δQ (A) at each stage of the adiabatic transformation.
In what follows we analyze some simple magnetic models, for which we choose the external magnetic field H as the

thermodynamically independent parameter. Considering an adiabatic transformation in such systems, one sets dS = 0 in
Eq. (2.5) to yield,∑

i

∂S
∂pi

∂pi
∂T
dT = −

∑
i,j

∂S
∂pi

∂pi
∂εj

∂εj

∂H
dH, (2.32)

and using Eqs. (2.6) and (2.7), one may write,

dT
dH
= −

(∑
i,j

∂S
∂pi

∂pi
∂εj

∂εj

∂H

)/(∑
i

∂S
∂pi

∂pi
∂T

)
, ⇒

dT
dH
= −

C (H)T
C (T )H

. (2.33)

The equation above will be used in the adiabatic transformations of the thermodynamic cycles to be considered below.
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The models to be considered are the ideal Ising paramagnet (IP) and the one-dimensional Ising model (1DIM) in the
presence of an external magnetic field. The heat capacity C (H)T may be calculated within the present formalism, as well as
the corresponding amount of heat associated with given thermodynamic transformations. The IP and 1DIM will represent
the working substances of the thermodynamic cycles to be considered below. From now on, we assume that S corresponds
to the Shannon informationmeasure [cf. Eq. (2.14)], associatedwith the Boltzmann–Gibbs factor [Eq. (2.15)], forwhich some
of the results of the previous section [essentially those following Eq. (2.14)] apply.

3. Thermodynamic cycles of the Ising paramagnet

In this section we consider the IP as the working substance; the concomitant Hamiltonian associated with N localized
Ising spins reads

H = −µH
N∑
i=1

σi; (σi = ±1), (3.1)

where µ represents the Bohr magneton (µ = 9.27× 10−24 J/T). The corresponding partition function is given by [5,7,8],

Z(T ,H) = [2 cosh(βµH)]N; ⇒
1
N
log Z(T ,H) = log[2 cosh(βµH)], (3.2)

leading to the internal energy,

U = 〈H〉 = −
∂ log Z
∂β

= −NµH tanh(βµH), (3.3)

and its associated fluctuations,

〈(∆U)2〉 ≡ 〈H2
〉 − 〈H〉2 = N[µH sech(βµH)]2. (3.4)

The total magnetization and the internal energy are related in a simple way,

M =
1
βµ

∂ log Z
∂H

= Nµ tanh(βµH); ⇒ U = −MH. (3.5)

It is clear that for the IP,
∂εi

∂H
=
εi

H
, (3.6)

from which one may calculate the mechanical work of Eq. (2.25),

δW =
W∑
i=1

pi
∂εi

∂H
dH =

W∑
i=1

pi
εi

H
dH =

U
H
dH = −MdH, (3.7)

as well as the heat capacities of Eqs. (2.6) and (2.7),

C (T )H = kBβ
2
〈(∆U)2〉, (3.8)

C (H)T = −
β

H
〈(∆U)2〉. (3.9)

From the equations above one sees that the standard heat capacity C (T )H (usually denoted by CH in the literature), related to
changes in temperature at fixed H , is always a positive quantity; in contrast, the heat capacity C (H)T , associated with field
changes at fixed temperature, presents a sign opposite to the one of the applied field.
One may now compute the heat exchanges in the following reversible thermodynamic transformations:
(a) Isofield transformation, from an initial state with a given temperature Ti [βi = (kBTi)−1] to a final state with a

temperature Tf [βf = (kBTf )−1], at fixed field H:

Q (T ) =
∫ Tf

Ti
C (T )H dT = NµH

[
tanh (βiµH)− tanh

(
βfµH

)]
, (3.10)

which corresponds to the standard way of calculating the heat exchange on such a transformation.
(b) Isothermal transformation, from an initial state characterized by a field Hi to a final state with a field Hf , at a fixed

temperature T :

Q (H) =
∫ Hf

Hi
C (H)T dH =

N
β

{
− log [cosh (βµHi)]+ log

[
cosh

(
βµHf

)]}
+NµHi tanh (βµHi)− NµHf tanh

(
βµHf

)
, (3.11)

corresponding to an original (as far as we know) way of calculating directly the heat exchange on such a transformation.
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H (T)

M
 /N

µ

c

d
a

b

Fig. 1. The Carnot cycle for an ideal paramagnet as a working substance, represented in the plane magnetization versus magnetic field. The cycle operates
between the temperatures T1 = 2 K (upper curve) and T2 = 4 K (lower curve). The transformations a→ b and c→ d are isothermal, whereas b→ c and
d→ a are adiabatic. In the abscissa, the magnetic field H is given in Tesla, and in the ordinate one has a dimensionless quantity, i.e., the magnetization per
spin scaled in units of the Bohr magneton.

(c) For an adiabatic transformation, substituting Eqs. (3.8) and (3.9) in Eq. (2.33) one gets that

dT
dH
= −

C (H)T
C (T )H
=
T
H
. (3.12)

Integrating the equation above from and initial state (T1,H1) to a final state (T2,H2)we obtain the well-known relation

T1
H1
=
T2
H2
= constant, (3.13)

used to lower the temperature of a paramagnetic system in an adiabatic transformation, simply by lowering the intensity
of the magnetic field (cf., e.g., Ref. [7]). Conversely, if one assumes Eq. (3.12), i.e., dT/dH = T/H , then, using Eqs. (3.8) and
(3.9) one gets that

δQ (T )

δQ (H)
=
C (T )H dT

C (H)T dH
= −kBβH

dT
dH
= −

H
T
dT
dH
= −1, (3.14)

showing that in the adiabatic transformation both forms of heat are nonzero, but they are restricted to δQ (T ) = −δQ (H) in
each stage of the transformation.
Considering the thermodynamic transformations above, one can construct several thermodynamic cycles, as discussed

below.
(i) The Carnot cycle (cf. Fig. 1): This cycle is defined in terms of two isothermal, intercalated by adiabatic transformations.

Herein, we start the cycle from state a, and follow the thermodynamic path a → b → c → d → a, according to Fig. 1. It
is important to mention that, due to the peculiar property (T/H) = constant of Eq. (3.13), the magnetization [cf. Eq. (3.5)]
remains constant in the adiabatic transformations b → c and d → a. Moreover, once the two temperatures T1 and T2
are defined (herein we have chosen T1 = 2 K and T2 = 4 K), as well as one value for the field at each of the adiabatic
transformations (herein we have chosen Ha = 5 T and Hc = 1 T), the remaining values for the fields are obtained from
Eq. (3.13): Hb = 2 T and Hd = 2.5 T. The efficiency of the Carnot cycle depends only on temperatures T1 and T2,

η = 1−
T1
T2
, (3.15)

which, for the temperatures chosen, yields η = 0.5. As an illustration of the present formalism, we calculated directly the
heat exchanges in the isothermal transformations of this cycle using Eq. (3.11), and have obtained,Q (H)cd ≈ −5.65262×10

−24

Joules (temperature T1) and Q
(H)
ab ≈ 1.13052 × 10

−23 Joules (temperature T2), which may be substituted in the general
definition of efficiency of a given thermodynamic cycle,

η = 1−
|total heat lost|
|total heat absorbed|

= 1−
|Q (H)cd |

|Q (H)ab |
, (3.16)

leading to η ≈ 0.50000177, where the discrepancy from the exact value is due to computer numerical roundings. One
should remind that the calculation of the amounts of heat Q (H)ab and Q

(H)
cd through standard methods is done indirectly,

i.e., computing the work and variation of internal energy for each of the transformations a→ b and c→ d.
(ii) The Brayton cycle (cf. Fig. 2): This cycle is useful from the technological point of view (see, e.g., Ref. [25]) and is defined

in terms of two isofield (which were chosen herein to occur at fields Ha = 5 T and Hb = 1 T, respectively), intercalated by
adiabatic transformations. The cycle starts from state a and follows the thermodynamic path a → b → c → d → a of
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H (T)

M
 /N

µ

c
d

ab

Fig. 2. The Brayton cycle for an ideal paramagnet as a working substance, represented in the plane magnetization versus magnetic field. Four isothermal
curves are shown, namely, T1 = 0.4 K, T2 = 0.8 K, T3 = 2 K, and T4 = 4 K, from top to bottom. The transformations a → b and c → d are adiabatic,
whereas b→ c and d→ a are isofield, at Hb = 1 T and Ha = 5 T, respectively. In the abscissa, the magnetic field H is given in Tesla, and in the ordinate
one has a dimensionless quantity, i.e., the magnetization per spin scaled in units of the Bohr magneton.

H (T)

M
 /N

µ

c

d

a

b

Fig. 3. The cycle-3 for an ideal paramagnet as a working substance, represented in the plane magnetization versus magnetic field. The cycle operates
between the temperatures T1 = 2 K (upper curve) and T2 = 4 K (lower curve). The transformations a→ b and c→ d are isothermal, whereas b→ c and
d→ a are isofield, atHb = 1 T andHa = 5 T, respectively. In the abscissa, themagnetic fieldH is given in Tesla, and in the ordinate one has a dimensionless
quantity, i.e., the magnetization per spin scaled in units of the Bohr magneton.

Fig. 2. The adiabatic transformations obey Eq. (3.13), leading to paths of constant magnetization. Now, one has the standard
heat exchanges for the isofield transformations, given by Eq. (3.10). One gets, Q (T )bc ≈ −2.29099 × 10

−24 Joules (field Hb)
and Q (T )da ≈ 1.14550× 10

−23 Joules (field Ha), leading to η ≈ 0.8.
(iii) For completeness, we introduce now a thermodynamic cycle defined by two isothermal, intercalated by isofield

transformations, as shown in Fig. 3, to be called herein, cycle-3. Like the previous cycles, cycle-3 starts from state a,
following the transformations a → b → c → d → a. Since there is no adiabatic transformation, one should have
heat exchanges in all four thermodynamic transformations of cycle-3, i.e., the standard heat exchanges given by Eq. (3.10)
in the isofield transformations, as well as the heat exchanges at constant temperature, given by Eq. (3.11), in the isothermal
transformations. For the isofield transformations one gets that Q (T )bc ≈ −1.45920 × 10

−24 Joules (field Hb) and Q
(T )
da ≈

1.14550× 10−23 Joules (field Ha), whereas for the isothermal ones, Q
(H)
cd ≈ −1.35983× 10

−23 Joules (temperature T1) and
Q (H)ab ≈ 1.34840× 10

−23 Joules (temperature T2). In this case, the efficiency of Eq. (3.16) becomes

η = 1−
|Q (H)cd | + |Q

(T )
bc |

|Q (H)ab | + |Q
(T )
da |

, (3.17)

leading to η ≈ 0.396226. Comparing this resultwith the one of Carnot’s engine (η = 0.5), one gets a confirmation of Carnot’s
theorem [6], which states that no thermodynamic cycle operating between two given temperatures is more efficient than a
Carnot engine.

4. Thermodynamic cycles of the one-dimensional Ising model

Let us now analyze the 1DIM as the working substance, for which the Hamiltonian consists of N interacting spins in a
chain, under the presence of a uniform external magnetic field H ,

H = −J
N∑
i=1

σiσi+1 − µH
N∑
i=1

σi; (σi = ±1), (4.1)

where J denotes a uniform positive coupling constant andwe are assuming periodic boundary conditions, σN+1 ≡ σ1. Notice
that taking J = 0, one recovers the IP discussed in the previous section.
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It should be mentioned that most of the analytic results that appear below were obtained through a standard program
for algebraic calculations. Let us then, define the quantities,

c1(T ,H) = exp(βJ) cosh(βµH), (4.2)

c2(T ,H) = exp(βJ) sinh(βµH), (4.3)

c3(T ,H) = exp(4βJ)− 1, (4.4)

ξ(T ,H) = exp(−βJ)[1+ exp(4βJ) sinh2(βµH)]1/2. (4.5)

The partition function of this model is well known (see, e.g., Ref. [6]),

1
N
log Z(T ,H) = log{c1(T ,H)+ ξ(T ,H)} . (4.6)

The corresponding internal energy and magnetization are given by

U = −
N

c1(T ,H)+ ξ(T ,H)

{
Jc1(T ,H)+ µHc2(T ,H)+

1
2ξ(T ,H)

[exp(−2βJ)

× (−2J + exp(4βJ)(2J sinh2(βµH)+ µH sinh(2βµH)))]
}
, (4.7)

M = Nµ
c2(T ,H)
ξ(T ,H)

. (4.8)

For the heat capacities, one has

C (T )H = NkBβ
2 b1(T ,H)
b2(T ,H)

, (4.9)

b1(T ,H) = exp(−βJ)
{
−
[
4J2 (−2+ exp(4βJ))− (2+ exp(4βJ)) µ2H2

]
cosh(βµH)

+ exp(4βJ)(4J2 + µ2H2) cosh(3βµH)− 4JµH (−2+ exp(4βJ)) sinh(βµH)
+ 2 exp(3βJ)

[(
−4J2 + µ2H2

)
ξ(T ,H)+

(
4J2 + µ2H2

)
cosh(2βµH)ξ(T ,H)

+ 2JµH (2ξ(T ,H) sinh(2βµH)+ exp(βJ) sinh(3βµH))
]}
, (4.10)

b2(T ,H) = 2ξ(T ,H)
[
1+ exp(4βJ) sinh2(βµH)

]
[c1(T ,H)+ ξ(T ,H)]2 , (4.11)

C (H)T = −
Nβµ exp(3βJ)[µH cosh(βµH)+ 2J sinh(βµH)]ξ(T ,H)[

1+ exp(4βJ) sinh2(βµH)
]2 . (4.12)

Using the heat capacities above, one can (in principle) calculate the heat exchanges Q (T ) and Q (H), associated with the
isofield and isothermal transformations, respectively. However, we did not succeed in obtaining an analytic expression
for the integral Q (T ) =

∫ Tf
Ti
C (T )H dT ; therefore, for the thermodynamic cycles that follow, such a quantity was computed

numerically, for given values of Ti and Tf . In what concerns Q (H) one has

Q (H) =
∫ Hf

Hi
C (H)T dH =

N
β

a1(T ,Hi)
a2(T ,Hi)

−
N
β

a1(T ,Hf )
a2(T ,Hf )

(4.13)

a1(T ,H) = exp(2βJ){−2βJ cosh(βµH)+ βµHc3(T ,H) sinh(βµH)− exp(βJ)ξ(T ,H)
× c3(T ,H) log[

√
2 (exp(2βJ) cosh(βµH)+ exp(βJ)ξ(T ,H))]}, (4.14)

a2(T ,H) = exp(βJ)ξ(T ,H)c3(T ,H). (4.15)

Let us now use the quantities defined above by considering the same thermodynamic cycles of the previous section
for the 1DIM as a working substance. If not specified explicitly, in the following applications we have chosen the coupling
constant J = 4 × 10−24 Joules, which is typically of the same order of magnitude of µH . Additionally, for the adiabatic
transformations, given an initial state one can follow its thermodynamic path bymaking use of Eq. (2.33), with C (T )H and C (H)T
given by Eqs. (4.9) and (4.12), respectively. From Eq. (2.33) one may compute a new thermodynamic state, infinitesimally
close to the initial one, and repeat this procedure to calculate further states, up to the final state of the transformation.
(i) The Carnot cycle: For the 1DIM this cycle is qualitatively analogous to the one exhibited in Fig. 1, except for the

adiabatic transformations that show slight deviations from perfect straight lines. Considering T1 = 2 K and T2 = 4 K, as
well as Ha = 5 T and Hc = 1 T, the remaining values for the fields were obtained from the procedure described above, using
Eq. (2.33):Hb ≈ 2.379805 T andHd ≈ 2.202979 T. The heat exchanges, using Eq. (4.13)–(4.4), areQ

(H)
cd ≈ −5.72096×10

−24

Joules (temperature T1) andQ
(H)
ab ≈ 1.14460×10

−23 Joules (temperature T2), whichmay be substituted in Eq. (3.16) to yield
η ≈ 0.500178, reproducing up to three decimal digits, the exact value given by Eq. (3.15).
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(ii) The Brayton cycle: As before, the adiabatic transformations exhibit slight deviations fromperfect straight lines, in such
away that the four isothermal curves in Fig. 2 become now T1 = 0.614282 K, T2 = 1.127570 K, T3 = 2 K, and T4 = 4 K, from
top to bottom. Considering the isofield transformations at the same values for the fields, namely, Ha = 5 T andHb = 1 T, the
heat exchangeswere calculated by integrating numerically Eq. (4.9) in the corresponding temperature intervals. In this case,
one gets, Q (T )bc ≈ −3.47678×10

−24 Joules (field Hb) and Q
(T )
da ≈ 1.18497×10

−23 Joules (field Ha), leading to η ≈ 0.706593.
Comparing this result with the one obtained for the IP, one notices that the Brayton cycle becomes less efficient in the case
of interacting spins. In order to confirm this, we have calculated the efficiency of the Brayton cycle for a 1DIM characterized
by a coupling constant J = 8× 10−24 Joules, i.e., twice the one considered above, leading to η ≈ 0.637072.
(iii) Let us now analyze cycle-3 for the 1DIM, considering the same values of temperature and magnetic fields of Fig. 3.

For the isofield transformations one gets that Q (T )bc ≈ −2.76770×10
−24 Joules (fieldHb) and Q

(T )
da ≈ 1.18497×10

−23 Joules
(field Ha), whereas for the isothermal ones, Q

(H)
cd ≈ −1.37929×10

−23 Joules (temperature T1) and Q
(H)
ab ≈ 1.56307×10

−23

Joules (temperature T2). Substituting these results in Eq. (3.17), one gets an efficiency that is typically the same of the IP
case. In order to investigate further the dependence of the efficiency of cycle-3 with respect to the interaction between
spins, we have repeated the calculations above for a 1DIM characterized by the coupling constants J = 8×10−24 Joules and
J = 4 × 10−23 Joules, leading to η ≈ 0.392479 and η ≈ 0.226880, respectively. These results suggest that the efficiency
of cycle-3 is less sensitive to the presence of interactions between spins than Brayton’s cycle; only for a sufficiently large
coupling constant (typically when J ∼ µH) one gets a significant decrease in the efficiency of cycle-3.

5. Conclusions

We have considered a simple thermodynamic system, in thermal equilibrium at a temperature T and in the presence
of an external parameter A. Using the thermodynamic relation dU = TdS + δW , as well as the first axiom from
information theory, the information measure depends only on the pertinent probability distribution, assuming the concavity
of the entropy with respect to its associated probabilities and using the fact that the microscopic energy levels depend
upon the external parameter A, we have shown that all usual results of statistical mechanics for reversible processes follow
straightforwardly, without invoking theMaximumEntropy principle. In particular, we have discussed the two distinct forms
of heat contributions that appear naturally in the Clausius definition of entropy, TdS = δQ (T ) + δQ (A) = C (T )A dT + C

(A)
T dA.

A special attention has been given to the amount of heat δQ (A) = C (A)T dA, associated with an infinitesimal variation dA at
fixed temperature, for which a ‘‘generalized heat capacity’’, C (A)T = T (∂S/∂A)T , was defined. We have found three different
ways of calculating this quantity for a given physical system: (i) From themicroscopic point of view, if the energy eigenvalues
of the corresponding Hamiltonian are known, the heat capacity C (A)T is directly related to the correlations involving the
energy eigenvalues, as well as their derivatives with respect to A [14,15]; (ii) Also microscopically, using standard SM
procedures, from the knowledge of the canonical-ensemble partition function; (iii) Macroscopically, from the parameter
thermodynamically conjugate to A (denominated herein as generalized force). The results described in (ii) and (iii) are
expressed in terms of two important new equations (as far as we know) that allow us to calculate heat exchanges explicitly.
In particular, procedure (ii) was used herein in simple physical illustrations, whereas the one of (iii) is relevant for physical
measurements. These relations provide direct ways to calculate heat exchanges in thermodynamic transformations, e.g., in
isothermal processes.We have analyzed adiabatic transformations in view of the new form of heat δQ (A) and concluded that
for such a transformation to occur, it is necessary that at least two parameters of the system should vary, leading to more
than one form of heat that cancel each other.
As illustrations of our formalism, simple thermodynamic cycleswere considered, with the followingworking substances:

(a) The Ising paramagnet, i.e., Ising spins in the presence of an external magnetic field H; (b) The one-dimensional Ising
model (i.e., a chain of interacting spins with a coupling constant J > 0) in the presence of an external magnetic field H .
For these simple systems, defined in terms of the thermodynamically independent parameters T and H , both forms of heat
exchanges, δQ (T ) and δQ (H), were considered in several thermodynamic transformations. In particular, for the isothermal
transformations, the amount of exchanged heat Q (H) has been calculated directly by integrating C (H)T dH . This procedure
should be contrasted with the indirect – standard method – for calculating this quantity, i.e., by computing both the work
and the variation of internal energy for the transformation. Inwhat concerns the adiabatic transformations, we have verified
that δQ (T ) = −δQ (H) at each stage of these transformations. In what concerns the efficiencies of the thermodynamic cycles
considered, the Carnot engine presented an efficiency that is independent of the working substance, in agreement with
thermodynamics. The other cycles presented higher efficiencies in the case of non-interacting (or weakly-interacting) spins,
suggesting that better magnetic cycles should be constructed from weakly-interacting magnetic substances.
The results presented within the approach described above corroborate and enhance the powerful formalisms of

thermodynamics and statistical mechanics for an appropriate description of natural phenomena.

Acknowledgements

EMFC and FDN thank the partial financial supports from Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Coordenação de Aperfeiçoamento de
Pessoal de Ensino Superior (CAPES), Brazilian scientific agencies.



980 E.M.F. Curado et al. / Physica A 389 (2010) 970–980

References

[1] R.B. Lindsay, H. Margenau, Foundations of Physics, Dover, NY, 1957.
[2] H.B. Callen, Thermodynamics, J. Wiley, NY, 1960.
[3] E.A. Desloge, Thermal Physics, Holt, Rhinehart and Winston, NY, 1968.
[4] C.J. Adkins, Equilibrium Thermodynamics, 2nd ed., McGraw-Hill Book Company, London, 1975.
[5] R.K. Pathria, Statistical Mechanics, Pergamon Press, Exeter, 1993.
[6] K. Huang, Statistical Mechanics, 2nd ed., J. Wiley, New York, 1987.
[7] F. Reif, Statistical and Thermal Physics, McGraw-Hill, NY, 1965.
[8] R. Balian, From Microphysics to Macrophysics, Volume I, Springer-Verlag, Berlin, 1991.
[9] E.T. Jaynes, Phys. Rev. 106 (1957) 620; 108, 171 (1957);
R.D. Rosenkrantz (Ed.), Papers on Probability, Statistics and Statistical Physics, Reidel, Dordrecht, Boston, 1987;
A. Katz, Principles of Statistical Mechanics, The Information Theory Approach, Freeman and Co., San Francisco, 1967.

[10] B.H. Lavenda, Statistical Physics, J. Wiley, New York, 1991;
B.H. Lavenda, Thermodynamics of Extremes, Albion, West Sussex, 1995.

[11] J.W. Gibbs, Elementary Principles in Statistical Mechanics, in: Collected Works, Yale University Press, New Haven, 1948.
[12] E.T. Jaynes, Phys. Rev. 106 (1957) 620. 108, 171 (1957).
[13] J. Naudts, E.V. der Straeten, J. Stat. Mech. (2004) P12002.
[14] A. Plastino, E.M.F. Curado, Phys. Rev. E 72 (2005) 047103.
[15] E.M.F. Curado, A. Plastino, Physica A 386 (2007) 155.
[16] A.Y. Kinchin, Mathematical Foundations of Information Theory, Dover, NY, 1957.
[17] A.R. Plastino, A. Plastino, Phys. Lett. A 226 (1997) 257.
[18] R.S. Mendes, Physica A 242 (1997) 299.
[19] E.M.F. Curado, Braz. J. Phys. 29 (1999) 36.
[20] E.M.F. Curado, F.D. Nobre, Physica A 335 (2004) 94.
[21] M. Gell-Mann, C. Tsallis (Eds.), Nonextensive Entropy: Interdisciplinary Applications, Oxford University Press, Oxford, 2004;

V. Latora, A. Rapisarda, C. Tsallis, Physica A 305 (2002) 129 (and references therein);
S. Abe, Y. Okamoto (Eds.), Nonextensive Statistical Mechanics and its Applications, Springer Verlag, Berlin, 2001;
A.R. Plastino, A. Plastino, Phys. Lett. A 193 (1994) 140.

[22] E.M.F. Curado, C. Tsallis, J. Phys. A 24 (1991) L69.
[23] C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261 (1998) 534.
[24] R. Rossignoli, N. Canosa, Phys. Rev. Lett. 88 (2002) 170401.
[25] L. Chen, Z. Yan, J. Appl. Phys. 75 (1994) 1249.


	Computation of energy exchanges by combining information theory and a key thermodynamic relation: Physical applications
	Introduction
	Forms of heat exchanges
	Changes in the temperature
	Changes in both temperature and external parameter

	Thermodynamic cycles of the Ising paramagnet
	Thermodynamic cycles of the one-dimensional Ising model
	Conclusions
	Acknowledgements
	References


