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a b s t r a c t 

We apply the Z-control approach to a generalized predator–prey system and consider the specific case of 

indirect control of the prey population. We derive the associated Z-controlled model and investigate its 

properties from the point of view of the dynamical systems theory. The key role of the design parameter 

λ for the successful application of the method is stressed and related to specific dynamical properties of 

the Z-controlled model. Critical values of the design parameter are also found, delimiting the λ-range for 

the effectiveness of the Z-method. Analytical results are then numerically validated by the means of two 

ecological models: the classical Lotka–Volterra model and a model related to a case study of the wolf- 

wild boar dynamics in the Alta Murgia National Park. Investigations on these models also highlight how 

the Z-control method acts in respect to different dynamical regimes of the uncontrolled model. 

© 2016 The Authors. Published by Elsevier Inc. 
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1. Introduction 

In population dynamics, a large variety of mathematical models

[23,32] have been developed to capture – at least qualitatively –

the essential features of many complex phenomena involved in

community ecology. Population dynamics models can play a role

in the ecosystem services management perspective [15,25] . The

most popular current definition of ecosystem services (ES) is the

functions and products of ecosystems that benefit humans, or yield

welfare to society [1,27] . An ecological system can provide differ-

ent ecosystem services spanning from regulatory or provisional to

cultural ones, as defined e.g., by the Common International Clas-

sification of Ecosystem Services (CICES) [19] . In many protected

areas, according to their regulation framework, the exploitation of

such services produces a disturbance factor which demands for

counteractions in order to guarantee the equilibria of the areas

relevant ecological systems. A clear example is the introduction

of alien species, or a massive introduction of particular species,

even if autochthon, for leisure hunting/fishing purposes. These

activities, having a heavy impact on most fragile ecosystems, have

been permitted in the past, or even currently, in some protected

areas. The challenge the managing authority of the protected areas

has to face, is how to make the fruition of the natural capital
∗ Corresponding author. 
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ustainable, by balancing the immediate benefits it can provide

ith the conservation targets to make the natural capital still

vailable for future generations. That requires a number of actions

o be put in place to obtain, preserve and enforce equilibrium

tates for ecosystems. The dynamics of a given predator–prey pair

nfluences and is influenced by the ecosystem it is embedded

n. Since it constitutes a segment of a food chain, the system

quilibria and their stability is often relevant for the preservation

f the whole chain, especially if one of the species in the pair is

 keynote species, i.e. a species whose extinction may generate a

eavy and unpredictable effect on the environment. The main goal

f the population dynamics modeling is to describe the changes

n populations size and composition and, at the same time, to

tudy those biological or environmental factors that can influence

hese changes. Such factors are birth and death rates, immigration,

migration and, since ecological communities are often made up

y a large number of species, interspecific interactions such as

ompetition and predation. 

Since most of the interactions among species generally in-

olve nonlinear effects of the density of one species on the per

apita growth rate of other species [2] , a large class of models

n population dynamics can be described as nonlinear dynamical

ystems. As a consequence, dynamical systems theory [17,36] has

een extensively used to investigate such systems and has become

n important tool for addressing many fundamental questions in

opulation dynamics, [21,30,39] . 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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(

One of the main advantages of gaining insight into the dy-

amics of a certain dynamical system, is the possibility to provide

ualitative indications on the mechanisms that are responsible of

pecific system behaviors, hence suggesting possible management

trategies to avoid undesirable situations. Typical examples in

he ecological context are the capability to prevent species from

xtinction or to avoid periodic or chaotic regimes since dramatic

scillations can drive the ecological system towards extinction. 

On this line many studies have been concerned with the prob-

em to induce, by the means of ‘controls’, suitable changes into

he dynamics of Lotka–Volterra type models [29,41] , which are

till the most commonly used theoretical framework for modeling

ultispecies interactions. For example, in [33] and [16] a speed

radient method of adaptive control of oscillations was used to

ontrol the populations of a multispecies Lotka–Volterra system;

n [14] a general approach for the control of uncertain nonlinear

ynamical systems – known as induced internal feedback – was

pplied to a class of Lotka–Volterra systems; in [31] , the classical

otka–Volterra model was used as benchmark to compare different

pproaches for the control of nonlinear dynamical systems as the

tatic sliding-mode approach that was applied for nonlinear plant

ontrol [22] or the method based on the notions of system immer-

ion and manifold invariance that was presented in [3] to design

symptotically stabilizing and adaptive control procedures for non-

inear systems. Meza et al. [31] also proposed a control method

or Lotka–Volterra systems based on the application of the control

yapunov functions [35] , of the backstepping idea [34] and on the

oncept of real and virtual equilibria [10] . In [12] an impulsive

ontrol law was also derived for multiple Lotka–Volterra systems. 

Within the framework of the control procedures, a neural

ynamic approach – the Z-type dynamic method [42] – has

een proposed to solve dynamic problems [18,28,44] . The Z-type

ynamic method is an error-based dynamic approach in which the

ey element is the design formula which ensures that each ele-

ent of the error function converges to zero exponentially. Since

he Z-type control laws have exponential convergence perfor-

ances, the convergence time can be estimated and populations

ill converge to the desired state in a fast or predefined rate.

his feature enables the Z-type dynamic method to be particularly

fficient for specific time limited applications. 

In [43] , the Z-type dynamic method has been applied to the

lassical Lotka–Volterra predator–prey model to prevent species

rom extinction and to promote ecological coexistence. Two dif-

erent situations have been considered: (i) the case of direct

ontrol for both the species, namely when exogenous measures

re applied to both predator and prey for the simultaneous control

f their dynamics; (ii) the case of indirect control of predator

or prey) population, namely when the control measure is only

pplied to one species but it is the other species that needs to be

ontrolled. In [43] , the theoretical analysis of the convergence per-

ormance of the Z-type controller groups has been performed for

oth the direct and indirect control problems and then confirmed

y numerical simulations. 

In this paper, we apply the Z-type control to a generalized

otka–Volterra model expressed as 

˙ n = n [ H(n ) − βp] 

˙ p = pF (n ) (1) 

here n = n (t) and p = p(t) denote the populations of prey and

redator species; the coupling parameter β > 0 represents the

redation coefficient; H ( n ) is a positive function of n at least in

n interval. The Z-type control laws have the effect to change

he dynamics of the uncontrolled model (1) – that may admit the

redator–prey extinction equilibrium P 0 = (0 , 0) , the predator’s

xtinction equilibria P i = (n i , 0) , and the coexistence equilibrium

 = (n ∗, p ∗) – as to make the prey and predator populations con-
erge exponentially to a desired state P ∗ = (n d , p d ) . Our aim is to

nvestigate the dynamical properties of the resulting Z-controlled

redator–prey system and to show that the success as well as the

ailure of the Z-type approach can be related to specific dynamical

roperties (i.e. existence, uniqueness and stability of the coexis-

ence equilibrium; positiveness of solutions, etc) of the underlying

-controlled model. 

In the following, we show that a population model with a

-control can have two positive effects on the dynamics, which

urn out to be interesting in the perspective of ecosystem services

anagement. The first one is the stability: for some population

odels, the introduction of a control can lead to the same equilib-

ia of the original uncontrolled model, but with additional stability

roperties. A further advantage is the capability to generate new,

table equilibria, by construction. That might be interesting by an

cological point of view in the case the new equilibria turn out to

e more robust with respect to external, uncontrolled, disturbance

actors. 

The paper is organized as follows. In Section 2 , we briefly

ecall the theoretical framework of the Z-control approach and

erive the generalized predator–prey model (1) in the specific

ase of indirect control of the prey population. In Section 3 , the

esulting Z-controlled model is analyzed in terms of its equilibria,

tability properties and positiveness of solutions. In Section 4 ,

he effectiveness of the method is then explicitly tested on two

pecific predator–prey systems: the (more theoretical) classical

otka–Volterra model and the (more realistic) aggregated model

f the wolf-wild boar dynamics. In both these cases, we provide

onstraints on the design parameter λ ensuring the Z-control to

e successfully applied. In Section 5 , concluding remarks close the

aper. 

. Methods 

.1. The basic idea of the Z-type control approach 

In this section, we briefly recall the basic idea of the Z-type

ontrol method which will be the guide for the following Sections.

e refer to [42–44] for a detailed description of the approach.

iven a certain dynamical system, the goal of the Z-control prob-

em is to design an analytical expression for the system input, say

 ( t ), so that the actual system output n ( t ) is forced to achieve a

esired output n d ( t ). More precisely the Z-control is successful if

he error between the actual output of the system and its desired

tate approaches zero, namely if 

 (t) = n (t) − n d (t) → 0 . 

This goal is certainly achieved by forcing the error function e ( t )

o converge to zero exponentially which is obtained by requiring

hat the error function verifies the differential equation 

˙ 
 (t) = −λ e (t) . (2)

Eq. (2) is also named design formula and the strictly positive

arameter λ is the design parameter which indicates the conver-

ence rate. The control procedure by the Z-type dynamic method

s hence based on the following two steps: (i) define the error

unction(s); (ii) use the design formula whenever necessary to

btain an explicit expression for the input u ( t ). These two steps

ill be concretely applied in the next section for the indirect

ontrol of the prey population of model (1) . 

.2. The Z-controlled model 

By pursuing an indirect control on the prey population, model

1) becomes: 
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˙ n = n [ H(n ) − βp] 

˙ p = p [ F (n ) − u pred ] (3)

where u pred = u pred (t) denotes the indirect control variable for

the prey population, acting on the predator dynamics, that can be

both a positive and a negative quantity, [43] . Following the key

steps indicated in Section 2.1 , we apply the indirect Z-type control

procedure. Let n d = n d (t) the desired state for the prey population

and define the first error function as v 1 = n − n d . Suppose that v 1 
decays exponentially in time, namely 

˙ v 1 + λv 1 = 0 (4)

with λ > 0. Again, let v 2 = 

˙ v 1 + λv 1 and suppose that v 2 
behaves in time as v 1 , i.e. ˙ v 2 = −λv 2 . Therefore we have 

˙ v 2 + λv 2 = 0 . 

From the definition of v 2 and from (4) it follows that 

v̈ 1 + 2 λ ˙ v 1 + λ2 v 1 = 0 . (5)

Let us rewrite the above formula in terms of prey and predator

populations. Firstly, 

˙ v 1 = n [ H(n ) − βp] − ˙ n d ; (6)

then, 

v̈ 1 = n [ H(n ) − βp] 2 + n 

˙ H (n ) − β n pF (n ) + β n p u pred − n̈ d . (7)

Plugging (6) and (7) in (5) , and solving for u pred we get 

u pred = F (n ) − f (t; n, p) 

p(t) 
(8)

where 

f (t; n, p) = 

n [(H(n ) − βp + λ) 2 + 

˙ H (n )] − ( ̈n d + 2 λ ˙ n d + λ2 n d ) 

β n 

. 

(9)

From 

˙ H (n ) = 

∂H 

∂n 

˙ n = n 

∂H 

∂n 

(H(n ) − βp) , (10)

it follows that (9) can be written as 

f (t; n, p) = 

n 

[
(H(n ) − βp) 2 + 

(
2 λ + n 

∂H 

∂n 

)
(H(n ) − βp) + λ2 

]
−

β n 

The expression of u pred in (8) allows to rewrite the modified

system (3) as 

˙ n = n [ H(n ) − βp] 

˙ p = f (t; n, p) (12)

In the following we refer to model (12) as to the Z-controlled

system and specifically focus on the case n d (t) = n d , with n d 
strictly positive constant. 

3. Results 

3.1. Equilibria and local stability properties 

We search for the equilibria of the Z-controlled model (12) and,

by using linear stability analysis, we establish the related stability

J(n, p) = 

⎛ 

⎝ 

H(n ) − βp + n 

∂H 

∂n 

1 

β

[
2(H(n ) − βp + λ) 

∂H 

∂n 

+ 

∂ 

∂n 

˙ H (n ) 
]

+

 

+ 2 λ ˙ n d + λ2 n d ) 

. (11)

roperties. The following result explains – in terms of the dynam-

cal properties of the Z-controlled model (12) – why the Z-control

ethod ensures the system to achieve exponentially the desired

tate ( n d , p d ). 

heorem 3.1. The controlled equilibrium P ∗ = (n d , 
H(n d ) 

β
) , is the

nique equilibrium of (12) and is locally asymptotically stable, i.e. it

s a stable node. 

roof. We start by observing that since n d (t) = n d = constant,

n (11) f ( t ; n, p ) does not explicitly depend on time. Hence, the

quilibria of model (12) are the solutions of the system: 

 

∗[ H(n 

∗) − βp ∗] = 0 

f (n 

∗, p ∗) = 0 (13)

here f ( n ∗, p ∗) is given by (11) . Straightforward calculations allow

ence to conclude that the couple (n d , 
H(n d ) 

β
) , is the unique solu-

ion of system (13) . As far as the stability properties are concerned,

e observe that the Jacobian matrix of the Z-controlled system

12) , in correspondence of the generic constant desired prey state

 d (t) = n d > 0 , is given by: 

−β n 

 d 

 

2 
−2 

(
H(n ) − βp + λ

)
+ 

1 

β

∂ 

∂ p 
˙ H (n ) 

⎞ 

⎠ . 

By using (10) , let us evaluate 

∂ 

∂n 

˙ H (n ) = 

∂ 2 H 

∂n 

2 
n 

(
H(n ) − βp 

)
+ 

∂H 

∂n 

(
H(n ) − βp + n 

∂H 

∂n 

)

∂ 

∂ p 
˙ H (n ) = −β n 

∂H 

∂n 

. 

The Jacobian matrix, evaluated at P ∗ = (n d , 
H(n d ) 

β
) , is given by 

(P ∗) = 

⎛ 

⎝ 

n d 
∂H 

∂n 
(n d ) −β n d 

1 

β

[ 
2 λ

∂H 

∂n 
(n d ) + 

(
∂H 

∂n 
(n d ) 

)2 

n d 

] 
+ 

λ2 

βn d 
−2 λ − n d 

∂H 

∂n 
(n d ) 

⎞ 

⎠ 

It turns out that tr(J(P ∗)) = −2 λ < 0 and det(J(P ∗)) = λ2 > 0 .

s a consequence, the characteristic equation (μ + λ) 2 = 0

rovides the two eigenvalues μ1 / 2 = −λ so that the controlled

quilibrium P ∗ = (n d , 
H(n d ) 

β
) is locally asymptotically stable and,

ore precisely, it is a stable node. �

.2. Positiveness of solutions 

First observe that solving (5) with initial conditions in the

nterior of the first quadrant, i.e. n 0 = n (0) > 0 and p 0 = p(0) > 0 ,

e obtain the exact solution for the prey dynamics: 

 (t) = n d (t) + c 1 e 
−λ t − (c 2 − λc 1 ) t e 

−λ t , (14)

where 

 1 = n 0 − n d , c 2 = n 0 

(
β p 0 − H 0 

)
, (15)

and H 0 = H(n 0 ) . The following theorems provide conditions in

rder n ( t ) to be positive for all t ≥ 0. 

heorem 3.2. Suppose n d (t) = n d > 0 for all t ≥ 0 . If β p 0 − H 0 ≤ 0

r λ ≥ β p − H > 0 , then n ( t ) > 0 for all t ≥ 0 . 
0 0 
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Then n ( t ) > 0 and p ( t ) ≥ 0 for all t ≥ 0 . 
roof. By exploiting (14) , we search for conditions which verify

he following inequality: 

 d e 
λ t ≥ (c 2 − λc 1 ) t − c 1 . (16) 

Denote with y (t) = n d e 
λ t and z(t) = (c 2 − λc 1 ) t − c 1 . Notice

hat y (0) = n d > n d − n 0 = z(0) ; consequently, if the slope of z ( t )

s lower than the value of the derivative ˙ y (0) = λ n d , i.e. 

 2 − λc 1 − λ n d = c 2 − λn 0 ≤ 0 , (17) 

hen inequality (16) holds true for t ≥ 0 and n ( t ) is strictly positive

or all t ≥ 0. By (15) , it is easy to see that if β p 0 − H 0 ≤ 0 , then

 2 ≤ 0 and the inequality (17) is verified for all values of λ >

. On the contrary, if β p 0 − H 0 > 0 , then the inequality (17) is

erified provided that λ ≥ c 2 
n 0 

= β p 0 − H 0 . �

heorem 3.3. Suppose n d (t) = n d > 0 for all t ≥ 0 and

p 0 − H 0 > 0 . If 0 < λT ≤ λ < β p 0 − H 0 , where λT solves the

on linear equation 

og 

(
c 2 − λT c 1 

λT n d 

)
− c 2 

c 2 − λT c 1 
= 0 , 

hen n ( t ) ≥ 0 for all t ≥ 0 . 

roof. It is easy to see that, for values of λ < βp 0 − H 0 , the

nequality 
c 2 − λc 1 

λ n d 
> 1 is verified and, consequently, there exists

nd it is positive the time 

 = 

1 

λ
log 

(
c 2 − λc 1 

λ n d 

)

here ˙ y (T ) = ˙ z (T ) . In order to keep, for all t > 0, the exponential

unction y ( t ) above the straight line z ( t ), the value of λ can be

ecreased until the value λT which corresponds to the case when

 ( t ) overlaps the tangent line to y ( t ) at T where y (T ) = z(T ) . In

his case, the value of λT solves the nonlinear equation 

og 

(
c 2 − λT c 1 

λT n d 

)
= 

c 2 
c 2 − λT c 1 

nd the result follows. �

In real applications, prey density values are often required to be

ounded between a lower and upper bound. The following results

rovide conditions which guarantee n (t) ∈ [ A, K] ⊂ R + for all t . 

heorem 3.4. Suppose n 0 , n d ∈ [ A, K] ⊂ R + and 

> 

n 0 

(
β p 0 − H 0 

)
n 0 − A 

, if β p 0 − H 0 > 0 

> −
n 0 

(
β p 0 − H 0 

)
K − n 0 

, if β p 0 − H 0 < 0 . (18) 

hen n ( t ) ∈ [ A , K ] for all t ≥ 0 . 

roof. Set y A (t) = (n d − A ) e λ t , y K (t) = (n d − K) e λ t , and

(t) = −c 1 + (c 2 − λc 1 ) t . For assuring n ( t ) ∈ ( A , K ), the follow-

ng condition should be verified for all t ≥ 0: 

 K (t) < z(t) < y A (t) . (19) 

We follow a similar reasoning to the one adopted for prov-

ng the prey positiveness in Theorem 3.2 . Notice that y K (0) =
 d − K < n d − n 0 = z(0) < n d − A = y A (0) ; consequently, if the

lope of z ( t ) is bounded between the values of the derivatives

˙  K (0) = λ (n d − K) , and ˙ y A (0) = λ (n d − A ) i.e. if conditions 

 2 − λ(c 1 + n d − A ) = c 2 − λ(n 0 − A ) < 0 , (20) 

nd 

(c 1 + n − K) − c 2 = −c 2 − λ(K − n 0 ) < 0 , (21) 
d 
re both verified, then (19) is satisfied. We observe that condition

20) holds true if c 2 < 0 while it leads to the bound λ > 

c 2 
n 0 −A 

hen c 2 > 0. Similarly, condition (21) is always verified when c 2 
 0 whereas it leads to the bound λ > 

−c 2 
K−n 0 

when c 2 < 0. Hence,

ounds (18) can be set for λ accordingly to the sign of c 2 . �

heorem 3.5. Suppose n 0 , n d ∈ [ A, K] ⊂ R + and 

λT A ≤ λ < 

n 0 

(
β p 0 − H 0 

)
n 0 − A 

, if β p 0 − H 0 > 0 

T K ≤ λ < −
n 0 

(
β p 0 − H 0 

)
K − n 0 

, if β p 0 − H 0 < 0 . (22) 

here λT A 
and λT K 

solve the non linear equations 

og 

(
c 2 − λT A c 1 

λT A (n d − A ) 

)
− c 2 

c 2 − λT A c 1 
= 0 (23) 

og 

(
c 2 − λT K c 1 

λT K (n d − K) 

)
− c 2 

c 2 − λT K c 1 
= 0 , (24) 

ith T A , T K ≥ 0 satisfying 

(n d − A ) e λT A 
T A = −c 1 + (c 2 − λT A c 1 ) T A , 

(n d − K) e λT K 
T̄ K = −c 1 + (c 2 − λT K c 1 ) T K , 

hen n ( t ) ∈ [ A , K ] for all t ≥ 0 . 

roof. In case βp 0 − H 0 > 0 , for values of λ > 

n 0 

(
β p 0 − H 0 

)
n 0 −A 

there

xists and is positive the time T A where ˙ y A (T A ) = ˙ z (T A ) i.e. 

 A = 

1 

λ
log 

(
c 2 − λc 1 

λ (n d − A ) 

)
;

imilarly, in case when βp 0 − H 0 < 0 and λ < − n 0 

(
β p 0 − H 0 

)
K−n 0 

there

xists and is positive the time T K where y K (T K ) = ˙ z (T K ) , i.e. 

 K = 

1 

λ
log 

(
c 2 − λc 1 

λ (n d − K) 

)
. 

n order to keep for all t > 0, the exponential functions y A ( t )

nd y K ( t ) above and below, respectively, the straight line z ( t ),

he value of λ can be decreased until z ( t ) overlaps the tangent

ines at T K and T A , respectively, to y K ( t ) and y A ( t ). It follows that

 A (T A ) = z(T A ) , y K (T K ) = z(T K ) i.e. 

og 

(
c 2 − λT A c 1 

λT A (n d − A ) 

)
= 

c 2 
c 2 − λT A c 1 

nd 

og 

(
c 2 − λT K c 1 

λT K (n d − K) 

)
= 

c 2 
c 2 − λT K c 1 

, 

hould be verified and the result follows. �

However in the ecological context, taking initial conditions

n the interior of the first quadrant or in a subset of the first

uadrant, both prey and predator densities are required to be

ositive ∀ t > 0. The following results give sufficient conditions to

his aim. In the following we have set 

min = 

c 2 
c 1 

= 

n 0 

(
β p 0 − H 0 

)
n 0 − n d 

. (25) 

heorem 3.6. Suppose n 0 , p 0 ≥ 0 and H ( n ) ≥ 0 whenever n > 0 and

et: 

(i) n 0 > n d > 0 , 

(ii) β p 0 − H 0 > 0 , 

(iii) λ ≥ λmin . 



14 D. Lacitignola et al. / Mathematical Biosciences 280 (2016) 10–23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g

P  

t  

v

λ

B  

H  

f

 

p  

a  

λ  

t  

f

R  

t

s

|  

a  

u

 

t  

l  

a

4

4

 

c

 

 

r  

i  

a  

P  

P  

n  

q

V  

 

e  

p  

t  

A  

t

 

t

u  

 

Proof. We start by observing that, because of (i) and (ii), condition

(iii) implies that λ > β p 0 − H 0 . In fact 

λ ≥
n 0 

(
β p 0 − H 0 

)
n 0 − n d 

> β p 0 − H 0 . 

Therefore it follows from Theorem 3.2 that n ( t ) > 0 for all t > 0.

The predator dynamics p ( t ) can be evaluated by the prey evolution

equation in (1) , i.e. p = 

1 
β

(
H(n ) − ˙ n 

n 

)
. By using (14) , we have 

˙ n 

n 

= 

λt(c 2 − λc 1 ) − c 2 

n d e 
λt + c 1 − (c 2 − λc 1 ) t 

, 

so that p ( t ) can be equivalently described by: 

p = 

1 

β
[ H(n ) + g(t)] , (26)

with 

g(t ) = 

c 2 + λt (λc 1 − c 2 ) 

n d e 
λt + c 1 − (c 2 − λc 1 ) t 

. (27)

As far as the positiveness of p ( t ) is concerned, we observe that

p ( t ) in (26) turns out to be the sum of two positive quantities. In

fact since n ( t ) > 0 – recalling (16) – we have that the denominator

in (27) is positive. Recalling (15) , it also results that (i) implies c 1 >

0 and (ii) implies c 2 > 0. Moreover by (15) and (i)–(iii) it follows 

λc 1 − c 2 = λ(n 0 − n d ) − n 0 (β p 0 − H 0 ) ≥ 0 , 

so that also the numerator in (27) is positive for all t ≥ 0. �

Theorem 3.7. Suppose H ( n ) ≥ 0 whenever n > 0 and let: 

(i) 0 < n 0 < n d , 

(ii) β p 0 − H 0 < 0 , 

(iii) λ ≥ λmin . 

Then n ( t ) > 0 and p ( t ) > 0 for all values of λ such that

g(t) ≥ −H 

(
n (t) 

)
holds true for all t > 0 . 

Proof. From (ii) and Theorem 3.2 it follows that n ( t ) > 0 for all

t > 0 and H ( n ) ≥ 0. Moreover, conditions (ii) and (iii) imply that

c 2 < 0 and λ c 1 − c 2 < 0 . Consequently, the function g ( t ) in (27) is

negative for all t ≥ 0. From (26) , we have that p ( t ) > 0 for values

of λ > λmin such that g(t) ≥ −H 

(
n (t) 

)
for all t > 0 and the result

follows. �

Theorem 3.8. Suppose H ( n ) ≥ 0 whenever n ∈ 

[
A, K] ⊂ R + and let: 

(i) K > n 0 > n d > A , 

(ii) β p 0 − H 0 > 0 , 

(iii) λ ≥ λmin . 

Then n ( t ) ∈ [ A , K ] and p ( t ) ≥ 0 for all t ≥ 0 . 

Proof. It is enough to observe that conditions (i)–(iii) imply

that the relation in (18) which corresponds to β p 0 − H 0 > 0 , is

verified. Indeed, 

λ ≥
n 0 

(
β p 0 − H 0 

)
n 0 − n d 

≥
n 0 

(
β p 0 − H 0 

)
n 0 − A 

and from (ii) and by Theorem (3.4) it follows that n ( t ) ∈ [ A , K ].

Consequently, H ( n ) is positive and the positivity of p ( t ) follows as

in proof of Theorem 3.6 . �

Theorem 3.9. Suppose H ( n ) ≥ 0 whenever n ∈ 

[
A, K 

]
⊂ R + and let: 

(i) A < n 0 < n d < K , 

(ii) β p 0 − H 0 < 0 , 
(iii) λ ≥ λmin . β  
Then n ( t ) ∈ [ A , K ] and p ( t ) > 0 for all values of λ such that

(t) ≥ −H(n (t)) holds true for all t > 0 . 

roof. It is enough to observe that conditions (i)–(iii) imply

hat the relation in (18) which corresponds to β p 0 − H 0 < 0 , is

erified. Indeed, 

≥ n 0 (β p 0 − H 0 ) 

n 0 − n d 

≥ n 0 (β p 0 − H 0 ) 

n 0 − K 

, 

y Theorem (3.4) , it follows that n ( t ) ∈ [ A , K ] and, consequently,

 ( n ) is positive. Then the result of positivity of p ( t ) is obtained by

ollowing the same reasoning used in Proof of Theorem (3.7) . �

We observe that Theorems 3.7 and 3.9 provide a range of the

arameter λ, i.e. λ ∈ [ λmin , λmax ], ensuring the positiveness of n ( t )

nd p ( t ) for all t > 0. More precisely λmin is given by (25) whereas

max is the maximum value of λ such that g(t) ≥ −H(n (t)) for all

 ≥ 0. Further details on this critical value λmax are given in the

ollowing remark: 

emark 3.1. Let us assume the hypotheses of Theorems 3.7 and 3.9

o hold. Since g(0) + H 0 = βp 0 > 0 , the threshold value λmax 

olves 

 g(t λmax 
) + H(n (t λmax 

)) | = min 

λ
| g(t λ) + H(n (t λ)) | (28)

t the time t λ > 0 implicitly defined through ˙ g (t λ) + 

˙ H (n (t λ)) = 0 ,

nder the hypothesis that g(t) > −H(n (t)) for all t > t λ. 

In Section 4.1 and in Section 4.2 , we will detect numerically

he critical value λmax with reference to two examples of eco-

ogical interest: the classical Lotka–Volterra model [41] and the

ggregated model for the wolf-wild boar dynamics [24] . 

. Ecological applications 

.1. Z-control of the classical Lotka–Volterra model 

The case of indirect Z-control of the prey population for the

lassical Lotka–Volterra predator prey model [41] 

˙ n = n (α − βp) 

˙ p = p (γ n − δ) , (29)

was recently considered in [43] . In this section we revisit their

esults within the dynamical system framework we developed

n the previous Sections. Let us preliminary observe that, in the

bsence of control, system (29) admits the extinction equilibrium

 0 = (0 , 0) which is a saddle and the coexistence equilibrium

 e = (δ/γ , α/β) that is a center and hence Lyapunov stable but

ot asymptotically stable. The orbits of model (29) in the positive

uadrant correspond to the level set of the function 

 (n, p) = γ n − δ log n + β p − α log p (30)

and are a family of closed curves surrounding the coexistence

quilibrium P e , Fig. 1 . The aim of the indirect Z-control on the

rey population is to apply a control measure on the predators so

hat the prey population is forced to achieve the desired level n d .

s discussed in Section 2.2 , the related Z-controlled system takes

he form of model (12) with H(n ) = α and 

f (n, p) = 

1 

β
(α − βp + λ) 2 − λ2 n d 

β n 

since n d = constant . Moreover, the control measure exerted on

he predator population is given by 

 pred = γ n (t) − δ − f (n, p) 

p(t) 
. (31)

As in [43] we set the model parameters as α = δ = 0 . 6 ,

= γ = 0 . 01 , we choose the constant desired state n = 100 and
d 
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Fig. 1. The Lotka–Volterra model. First row: Phase-plane curves of predator ver- 

sus prey for both the uncontrolled (i.e. u pred = 0 , left) and the Z-controlled model 

(right) with λ = 0 . 8 . For both the models the initial conditions and the system pa- 

rameters are n (0) = p(0) = 40 , α = δ = 0 . 6 , β = γ = 0 . 01 . The system trajectory for 

the uncontrolled model is a closed orbit around the neutrally stable equilibrium 

P e = (60 , 60) , while the Z-control forces the system dynamics towards the asymp- 

totically stable equilibrium P ∗ = (100 , 60) . In the phase-plane, the initial point P 0 = 

(n (0) , p(0)) is plotted as a red full circle; the uncontrolled equilibrium P e is plot- 

ted as a yellow full circle; the Z-controlled equilibrium P ∗ is plotted as a green 

full circle. Second Row: Time dependent behavior of the prey and predator popula- 

tions. Third row: Temporal evolution for both the tracking error v 1 and the control 

measure u pred exerted on the predator population. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article). 
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onsider as initial state n (0) = p(0) = 40 . With this choice for the

arameters, the coexistence equilibrium of the uncontrolled system

29) is the neutrally stable equilibrium P e = (60 , 60) and, according

o Theorem 3.1 , the Z-controlled system admits the coexistence

quilibrium P ∗ = (n d , 
H(n d ) 

β
) = (100 , 60) as the unique attractor for

he system dynamics. Therefore the effect of the Z-control is to

estroy the undamped oscillations around the neutrally stable equi-

ibrium P e and to drive the system towards the desired state P ∗. 

In Fig. 1 we numerically validate the above analytical finding by

howing the dynamics of the Z-controlled Lotka–Volterra system

hen the design parameter λ is chosen λ = 0 . 8 . 
ig. 2. The Z-controlled Lotka–Volterra predator prey model. On the left: Plot of the funct

ecall that n ( t ) is given by (14) and n d = 100 . On the right: The related predator solution 
In Section 3.2 , we found that – in order the Z-control to ensure

he positiveness of the involved populations – the choice of the

esign parameter λ needs to be carefully calibrated. Numerical

xperiments also confirm this peculiar role of the design param-

ter λ on the dynamics of the Z-controlled model. In fact, by

ecreasing the value of λ the convergence towards the desired

quilibrium P ∗ is reached very slowly whereas by increasing the

alue of λ, the stronger and stronger indirect prey control may

nduce predator extinction. 

We will use the analytical results derived in Section 3.2 to

ain insight on the possible values of the parameter λ ensuring a

uccessful ecological application of the Z-control approach. 

The Z-controlled Lotka–Volterra system is in the condition of

heorem 3.7 . In fact, the function H(n ) = H 0 = α = 0 . 6 is always

trictly positive and it result c 1 = n 0 − n d = −60 < 0 , βp 0 − H 0 =
0 . 2 < 0 and λ = 0 . 8 verifies the inequality λ ≥ λmin = 0 . 1333 . The

unction g ( t ) defined in (27) is negative for all t ≥ 0 as shown

n Fig. 2 (left). Provided that its minimum value is greater than

H(n ) = −0 . 6 , the predator function in (26) stays positive for all t

0, Fig. 2 (right). As also shown in the same Figure, for λ > λmax 

1.4049, it results min t≥0 g(t) < −0 . 6 ( Fig. 2 , right) so that nega-

ive values for the predator dynamics p ( t ) are obtained ( Fig. 2 , left).

We conclude by observing that, for each set of initial con-

itions ( n 0 , p 0 ), one can detect a λ-range [ λmin , λmax ] ensuring

he Z-control approach to be ecologically meaningful. For the

lassical Lotka–Volterra predator-prey model, in respect to the

nitial conditions P 0 = (n 0 , p 0 ) = (40 , 40) , the parameter λ has to

e chosen such that λ < 1.4049. 

Fig. 3 shows the basin of attraction of the Z-controlled equilib-

ium P ∗ for increasing values of the parameter λ := 0.2; 0.8; 1.4.

e recall that the basin of attraction of a given attractor (i.e. a

table equilibrium, a stable limit cycle) is the set of initial condi-

ions which leads to the long-time behavior that approaches that

ttractor [17] . In Fig. 3 the set of initial conditions asymptotically

eading to the Z-controlled equilibrium P ∗ are inside the green

nd the yellow regions. However, only the green region (dark grey

n the printed version) is meaningful from the ecological point of

iew since the related trajectories preserve the positivity of both

redator and prey populations for all t > 0. For this reason we

ill call the green region ecological basin of attraction of P ∗. As

xpected by the theoretical analysis above, in the three cases in

ig. 3 , the initial point P 0 = (40 , 40) is inside the ecological basin

f attraction of P ∗. However, it is possible to observe that, with
ion g ( t ) and −H(n ) = −H 0 versus time for different choices of the parameter λ. We 

p ( t ). 
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Fig. 3. The Z-controlled Lotka–Volterra predator prey model: basin of attraction of the Z-controlled equilibrium P ∗ , for different values of the parameter λ. The green region 

(dark grey in the printed version) represents the ecological basin of attraction of the Z-controlled equilibrium P ∗ , i.e. the set of initial conditions leading to the Z-controlled 

equilibrium with trajectories that preserve the positivity of both predator and prey populations. The yellow region (light grey in the printed version) represents the set of 

initial conditions for which the Z-control approach still works but it is not ecologically meaningful because, although the related trajectories asymptotically tends towards 

P ∗ , the predator positivity is lost in the transient dynamics. The blue region (black in the printed version) represents the set of initial conditions for which the Z-control 

approach fails. This occurs because, for this set of initial conditions, the positivity of the prey is not guaranteed for all t > 0; hence a t ∗ exists such that n (t ∗) = 0 and 

(11) and has a singularity. From an ecological point of view, a t ∗ such that n (t ∗) = 0 would imply prey and hence predator extinction. The different panels are distinguished 

by the different numerical values assigned to parameter λ: first row (left), λ = 0 . 2 ; first row (right), λ = 0 . 8 ; second row, λ = 1 . 4 . In each panel, the stable equilibrium P ∗ is 

marked through a red filled circle. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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increasing the value of λ, the ecological basin of attraction of the

Z-controlled equilibrium P ∗ enlarges thus suggesting a situation of

higher ecological resilience [40] : in fact, a stochastic event could

eventually move the controlled system towards extinction less

likely for higher values of λ than for lower ones. 

4.2. Z-control of the wolf-wild boar dynamics 

In [24] , we used a modeling approach to gain qualitative

insights for the management of the wild boar and wolf population

dynamics in the italian Alta Murgia National Park. We introduced

a two-patch predator–prey model where both migration processes

between patches and prey control policies were taken into ac-

count and, by applying the aggregation method [4–7] , we derived

a reduced model that was able to mimic the dynamics of the full

model with respect to equilibria and stability properties. In this

section we want to apply the indirect Z-control of the prey to the
ggregated model of the wolf-wild boar dynamics: 

 

 

 

dn 

dt 
= n 

[ 
r 

(
1 − n 

k 

)(
n 

a 
− 1 

)
− a 1 dp − qE 

] 
, 

dp 

dt 
= p [ −μ + ea 1 dn − qEd ] , 

(32)

where n ( t ) and p ( t ) are the total prey (wild-boar) and predator

wolf) densities respectively. The choice of controlling the prey

opulation through a modified mortality of the predator is of

nterest in cases where the local protection status (e.g., a national

ark as in the case of Alta Murgia) prevents massive hunting on

he prey (the wild boar), while targeted removal (and possibly

ransplant) and/or introduction of predators from other parks can

e effectively managed by the park personnel. 

In [24] , we performed theoretical investigations on the dynami-

al behavior of model (32) . All the parameters involved are strictly

ositive. More precisely, the parameters d and E were considered

s bifurcation parameters and the others were fixed as in [24] . 
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Fig. 4. The aggregated model of the wolf-wild boar dynamics [24] : Scenario I. First 

row: Phase-plane curves of predator versus prey for the aggregated model with- 

out control (left) and with control (right). The design parameter of the Z-controlled 

model is λ = 0 . 5 . For both the models the initial conditions are n (0) = 14 , p(0) = 

0 . 0563 . The parameters E and d are chosen as E = 0 . 16 , d = 0 . 6446 . The other 

system parameters are chosen as a 1 = 0 . 1108 , r = 0 . 0484 , e = 0 . 0280 , μ = 0 . 12 , 

k = 120 , a = 0 . 6182 , q = 1 . The uncontrolled system dynamics asymptotically reach 

the stable equilibrium P e = (111 . 545 , 6 . 325) while the Z-control forces the system 

dynamics towards the desired equilibrium P ∗ = 

(
100 , 15 . 9124 

)
. In the phase-plane, 

the initial point P 0 = (n (0) , p(0)) is plotted as a red full circle; the uncontrolled 

equilibrium P e is plotted as a yellow full circle; the Z-controlled equilibrium P ∗ is 

plotted as a green full circle. Second row: Time-dependent behavior of the prey 

and predator populations of the aggregated model. Third row: Temporal evolution 

for the tracking error v 1 and for the control measure u pred exerted on the predator 

population. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article). 
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According to the specific choice for the bifurcation param-

ters, three kinds of equilibria were found: the predator–prey

xtinction equilibrium P 0 = (0 , 0) ; the predator’s extinction equi-

ibria P 1 = (n 1 , 0) and P 2 = (n 2 , 0) ; the coexistence equilibrium

 e = (n e , p e ) . We showed that the predator–prey extinction equi-

ibrium P 0 is stable for every parameter values whereas the

redator’s extinction equilibria P i and the coexistence equilibrium

 e can be stable or unstable according to the specific choice of the
ig. 5. The Z-controlled aggregated model of the wolf-wild boar dynamics: Scenario I. On

arameter λ. On the right: the related predator solutions p ( t ). 
arameter values. A remarkable feature related to the coexistence

quilibrium P e is that – when the bifurcation parameter E reaches

 threshold value – it can lose its stability by the means of a

upercritical Hopf bifurcation so that coexistence can also occur

y the means of self-sustained oscillations [23,24] . 

By applying the indirect Z-control of the prey population to the

ggregated model (32) , we get the Z-controlled model (12) with

(n ) = r(1 − n 
k 
)( n a − 1) − q E and, 

f (t; n, p) = 

∑ 5 

k =0 
C k (p) n 

k 

k 2 a 2 a 1 d n 

, (33) 

with the coefficients C k ( p ) given by: 

 5 = 3 r 2 ;
 4 = −5 r 2 (a + k ) ;
 3 = r [2 r(a 2 + k 2 ) + 2 a k (λ + 4 r) − a k (4 a 1 d p + 3 E q )] ;
 2 = a k r(3 a 1 d p + 2 E q − 2 λ − 3 r)(a + k ) ;
 1 = k 2 a 2 [(λ + r − a 1 d p)(λ + r − a 1 d p − E q ) − E q λ] ;
 0 = −k 2 a 2 (λ2 n d + 2 λ ˙ n d + n̈ d ) . 

However, since n d = constant, (33) reduces to 

f (n, p) = 

n 

[(
r 

(
1 − n 

k 

)(
n 

a 
− 1 

)
− q E − a 1 d p + λ

)2 

+ 

˙ H ( n ) 

]
− λ2 n d 

a 1 d n 
, 

with 

˙ 
 (n ) = 

n r 

k a 
( k + a − 2 n ) 

[ 
r 

(
1 − n 

k 

)(
n 

a 
− 1 

)
− q E − a 1 d p 

] 
. 

Moreover, 

 pred = −μ + e a 1 d n − qEd − f (n, p) 

p(t) 
. (34) 

In the following, we apply the Z-control approach to modify

wo different dynamical scenarios of the uncontrolled model

32) : (i) coexistence through a stable equilibrium P e ; (ii) coexis-

ence through self-sustained oscillations surrounding the unstable

quilibrium P e . 

.2.1. Scenario I: Coexistence via the stable equilibrium P e 
As a first step, we fix the E and d parameter values so that, in

he uncontrolled model (32) , populations coexistence is reached
 the left: plot of the functions g and −H(n ) versus time for different values of the 
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Fig. 6. The Z-controlled aggregated model of the wolf-wild boar dynamics: Scenario I. Basin of attraction of the Z-controlled equilibrium P ∗ , for different values of the 

parameter λ. The green region (dark grey in the printed version) represents the ecological basin of attraction of the Z-controlled equilibrium P ∗ . The yellow region (light 

grey in the printed version) represent the theoretical but not ecologically feasible basin of attraction of the Z-controlled equilibrium P ∗ . The blue region (black in the printed 

version) represents the set of initial conditions for which the Z-control approach fails. The different panels are distinguished by the different numerical values assigned to 

parameter λ: left, λ = 0 . 2 ; right, λ = 0 . 5 . In each panel, the stable equilibrium P ∗ is marked through a red filled circle. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article). 
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Fig. 7. The aggregated model of the wolf-wild boar dynamics [24] : Scenario II. First 

row: Phase-plane curves of predator versus prey for the aggregated model with- 

out control (left) and with control (right). The design parameter of the Z-controlled 

model is λ = 1 and the initial conditions are n (0) = 14 , p(0) = 0 . 0563 . The param- 

eters E and d are chosen as E = 0 . 0537 , d = 0 . 9 . The other system parameters are 

chosen as a 1 = 0 . 1108 , r = 0 . 0484 , e = 0 . 0280 , μ = 0 . 12 , k = 120 , a = 0 . 6182 , q = 1 . 

The uncontrolled system dynamics asymptotically reach a stable limit cycle sur- 

rounding the unstable equilibrium P e = (60 . 268 , 22 . 766) while the Z-control forces 

system dynamics towards the desired equilibrium P ∗ = (35 , 18 . 577) . In the phase- 

plane, the initial point P 0 = (n (0) , p(0)) is plotted as a red full circle; the uncon- 

trolled equilibrium P e is plotted as a yellow full circle; the Z-controlled equilibrium 

P ∗ is plotted as a green full circle. Second row: Time-dependent behavior of the prey 

and predator population for the aggregated model. Third row: Temporal evolution 

for both the tracking error v 1 and the control measure u pred exerted on the predator 

population. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article). 
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by the mean of a stable equilibrium. We hence choose E = 0 . 16 ,

d = 0 . 6446 and set the other model parameters as a 1 = 0 . 1108 ,

r = 0 . 0484 , e = 0 . 0280 , μ = 0 . 12 , k = 120 , a = 0 . 6182 , q = 1 .

Basing on field-data, the chosen initial conditions are: n (0) = 14 ,

p(0) = 0 . 0563 , [24] . As a consequence, for the uncontrolled

model (32) , system dynamics tends towards a stable coexistence

equilibrium P e = (111 . 545 , 6 . 325) , Fig. 4 . 
When applying the indirect Z-control on the prey population

according to Theorem 3.1 – the resulting Z-controlled system

dmits the coexistence equilibrium P ∗ = (n d , 
H(n d ) 

β
) . Hence by

electing n d = 100 , we have P ∗ = (100 , 15 . 9124) as the unique

ttractor for the system dynamics, Fig. 4 . 

Numerical experiments on the role of the parameter λ have

uggested that two thresholds for λ can be found, λmin and λmax 

uch that for λ > λmax and λ < λmin negative values of predator

opulation p ( t ) can be obtained. These results can be further

xplained by the means of the analytical results of Section 3.2 . 

In fact observe that we are in the condition of

heorem 3.9 since, in the aggregated model of the wolf-wild

oar dynamics, H(n ) = r(1 − n 
k 
)( n a − 1) − q E is positive whenever

 is bounded between A = 2 . 709 and K = 117 . 9 . Moreover, since

 1 = n 0 − n d = −86 < 0 , and β p 0 − H 0 = −0 . 7615 < 0 it follows

hat for values of λ ≥ λmin = 0 . 1240 , the function g assumes

egative values but, until g(t) ≥ −H(n (t)) for n ( t ), the predator

unction p ( t ) is positive for all t ≥ 0 as shown in Fig. 5 (left).

ig. 5 (right) also shows that for λ > λmax ≈ 0.6224 negative

alues of predator function p ( t ) are obtained. 

Hence, for the chosen parameter values and in respect to the

nitial conditions P 0 = (n 0 , p 0 ) = (14 , 0 . 0563) , the parameter λ has

o be chosen such that 0.1240 ≤ λ ≤ 0.6224 in order the Z-control

pproach to be ecologically meaningful for the aggregated model

f the wolf-wild boar dynamics. 

Fig. 6 shows the basin of attraction of the Z-controlled equi-

ibrium P ∗ for increasing values of the parameter λ := 0.2; 0.5. In

oth these cases, as expected, the initial point P 0 = (14 , 0 . 0563)

s inside the ecological basin of attraction of P ∗ that – similarly to

he case of the Lotka–Volterra system – considerably enlarges for

ncreasing values of λ. 

.2.2. Scenario II: Coexistence via self-sustained oscillations 

In this section, we fix the E and d parameter values so that, in

he uncontrolled model (32) , populations coexistence is reached

y the mean of self-sustained oscillations. We hence choose

 = 0 . 0537 , d = 0 . 9 and set the other model parameters as a 1 =
 . 1108 , r = 0 . 0484 , e = 0 . 0280 , μ = 0 . 12 , k = 120 , a = 0 . 6182 , q =
 . As in the previous example, the chosen initial conditions are:

 (0) = 14 , p(0) = 0 . 0563 . As a consequence, for the uncontrolled



D. Lacitignola et al. / Mathematical Biosciences 280 (2016) 10–23 19 

Fig. 8. The Z-controlled aggregated model of the wolf-wild boar dynamics: Scenario II. On the left: plot of the functions g and −H(n ) versus time for different values of the 

parameter λ. On the right: the related predator solutions p ( t ). 

Fig. 9. The Z-controlled aggregated model of the wolf-wild boar dynamics: Scenario II. Basin of attraction of the Z-controlled equilibrium P ∗ , for different values of the 

parameter λ. The green region (dark grey in the printed version) represents the ecological basin of attraction of the Z-controlled equilibrium P ∗ . The yellow region (light 

grey in the printed version) represents the portion not ecologically meaningful of the theoretical basin of attraction of P ∗ . The blue region (black in the printed version) 

represents the set of initial conditions for which the Z-control approach fails. The different panels are distinguished by the different numerical values assigned to parameter 

λ: first row (left), λ = 0 . 6 ; first row (right), λ = 1 ; second row: λ = 1 . 8 . In each panel, the stable equilibrium P ∗ is marked through a red filled circle. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article). 
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Table 1 

Approximation accuracy of λmax . 

Case λmax t λmax 
| ̇ g (t λmax 

) + 

˙ H (n (t λmax 
)) | | g(t λmax 

) + H(n (t λmax 
)) | 

Lotka-Volterra 1.4049 0.4241 0 2.585 10 −6 

WW: Scenario I 0.6224 0.0394 1.2212 10 −15 5.686 10 −7 

WW: Scenario II 1.8374 0.0290 0 5.894 10 −7 
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Fig. 10. Error in the preservation of the invariant V ( n, p ) for the uncontrolled Lotka–

Volterra model. Initial conditions and the system parameters are n (0) = p(0) = 40 , 

α = δ = 0 . 6 , β = γ = 0 . 01 . The system trajectory for the uncontrolled model is a 

closed orbit around the neutrally stable equilibrium P e = (60 , 60) . 
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model (32) , system dynamics tends towards a stable limit cycle

surrounding the unstable equilibrium P e = (60 . 268 , 22 . 766) , Fig. 7 .

As in the previous scenario, we are again in the condition

of Theorem 3.9 since, in the aggregated model of the wolf-wild

boar dynamics, H(n ) = r(1 − n 
k 
)( n a − 1) − q E is positive when-

ever n is bounded between A = 1 . 3116 and K = 119 . 3065 . We

choose n d = 35 so that P ∗ = (n d , 
H(n d ) 

β
) = (35 , 18 . 577) . The value

c 1 = n 0 − n d = −21 < 0 , and, from β = 0 . 0998 and H 0 = −0 . 0537 ,

it results β p 0 − H 0 = −0 . 7615 < 0 ; consequently, for values of λ ≥
λmin = 0 . 5774 , the function g assumes negative values but, until

g(t) ≥ −H(n (t)) , the predator function p ( t ) is positive for all t ≥ 0

as shown in Fig. 8 (left). Fig. 8 (right) also shows that for λ > λmax 

≈ 1.8374 negative values of predator function p ( t ) are obtained. 

Hence, for the parameter values chosen in this section and in

respect to the initial conditions P 0 = (n 0 , p 0 ) = (14 , 0 . 0563) , the

parameter λ has to be chosen such that 0.5774 ≤ λ ≤ 1.8374 for

the effectiveness of the Z-control approach. 

Fig. 9 depicts the basin of attraction of the Z-controlled equi-

librium P ∗ for increasing values of the parameter λ := 0.6; 1; 1.8.

Confirming the theoretical results, in all the three cases the initial

point P 0 = (14 , 0 . 0563) is inside the ecological basin of attraction

of P ∗ and, increasing values of λ, the ecological basin of attraction

of the Z-controlled equilibrium P ∗ considerably enlarges. 

4.3. Numerical details 

The main numerical integration scheme used to validate our

theoretical findings is the Dormand–Prince method [13] , imple-

mented in the MATLAB’s ode45 code. It is an explicit, variable

stepsize method of the Runge–Kutta family, here applied with

absolute and relative tolerance set at 10 −13 and 10 −15 , respec-

tively. The low dimension of the test dynamics, both in terms of

number of variables and length of temporal horizons, allowed us

to set tolerances close to machine precision, so achieving very

accurate approximations. As an example, for the uncontrolled

Lotka–Volterra dynamics discussed in Subsection 4.1 , the error

| V (n, p) − V (n 0 , p 0 ) | in preserving the level set (30) throughout

the evolution stays below 10 −13 , as plotted in Fig. 10 . For the

controlled Lotka–Volterra dynamics, we monitored the accuracy

by comparing the approximated solutions provided by the Matlab

code with the theoretical solutions given in (14) and ( 26 –27 ), see

Fig. 11 : the error is of order 10 −10 . Similar results were observed

for the wolf-wild boar controlled dynamics we considered in

Subsection 4.2 (results not showed). 

For detecting the threshold values λmax defined in (28) we

rely on the MATLAB solver fzero for finding a zero of a single-

variable nonlinear function, here applied with default tolerances.

We searched for λmax by spanning a meshgrid of values λk = k δλ

with stepsize δλ = 10 −5 . For each λk , by means of the solver,

we found t λk 
> 0 such that ˙ g (t λk 

) + 

˙ H (n (t λk 
)) = 0 , starting form

 0 = 0 . Finally, we selected λmax as the value λk which minimized

the quantity | g(t λk 
) + H(n (t λk 

)) | . In Table 1 we summarize the

detected values for the test examples in the previous sections

together with the values of the functions to be minimized. 

The basins of attraction were computed by taking a large

discrete set of initial conditions on a uniformly distributed mesh

with spatial stepsizes δn and δp in a rectangular domain (0, N ]
(0, P ] in the strictly positive octant R 

2 + . In details, to reproduce

he basins in Fig. 3 , we chose N = P = 500 and we used a spa-

ial mesh with stepsizes δn = δp = 1 ; for generating Figs. 6 and

 we used N = 118 , P = 70 and δn = 0 . 1 , δp = 0 . 5 . Again, the

ow dimensionality of the problem and the simple qualitative

ynamic of the systems (an unique stable equilibrium) allows this

direct’ approach; for richer dynamics the numerical detection of

asins of attraction would require more reliable and sophisticated

echniques as described in [9] . 

In our examples, for a fixed value of the parameter λ, we

iscriminate initial values that lead the solution of the controlled

ystem to the (unique) theoretical equilibrium P ∗, from starting

alues that lead to the blowing up of the solution. Once the time

ntegration interval [0, T ] has been set, the Matlab routine ode45
tops the integration and provides a warning if the solution blows

p before the final time T is reached; we verified this occurrence

or initial prey values n (t 0 ) = n 0 that force the solution in (14) to-

ards negative values; in this case since n 0 > 0, by continuity

here exists a t ∗ < T such that n (t ∗) = 0 . Consequently, the func-

ion f ( t, n, p ) in (11) has a singularity at t ∗ and the solution of the

ynamical system (12) blows up: in Figs. 3, 6 and 9 we plot the

orresponding areas with blue points (black in the printed version).

When the initial conditions allow for the convergence of the

olution, the integration is continued until the distance between

he approximated values ( n ( T ), p ( T )) and the theoretical equilib-

ium P ∗ goes down to a tolerance value of 10 −5 . Those initial

oints assure strictly positive values for the prey for the whole

ntegration interval; however, for the predators the convergence

oes not prevent the densities to take negative values during the

volution of the dynamics. In our figures, initial conditions that

ead the system to the equilibrium P ∗ for which there exists a

east a negative component of the approximated predator vector

 p j ( ≈p ( t j )) < 0)) were plotted in yellows (light grey in the printed
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Fig. 11. Error in the approximation of the controlled Lotka–Volterra model. Initial conditions and the system parameters are n (0) = p(0) = 40 , α = δ = 0 . 6 , β = γ = 0 . 01 . 

Z-control forces the system dynamics towards the asymptotically stable equilibrium P ∗ = (100 , 60) . 
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ersion). On the contrary, points that provide all positive approx-

mations of predator values ( p j ≥ 0 for all j ) were plotted in green

dark grey in the printed version). 

. Concluding remarks 

In this paper, we have applied the Z-control approach to a

eneralized predator–prey system in the specific case of indirect

ontrol of the prey population. This method was originally de-

eloped within the engineering context and has been recently

xtended to the ecological framework with reference to one of

he most popular models in population dynamics, the classical

otka–Volterra system. More precisely, in [43] , the effectiveness of

he Z-control method to the Lotka–Volterra predator-prey system

as been shown through a theoretical analysis of the convergence

f the method and then substantiated by numerical simulations

arried out for suitable choices of the design parameter λ. In this

egard, it is also qualitatively stressed that the value of the design

arameter cannot be too large and that a critical value of λ exists

bove which the control law is not effective. 

The goal of this paper has been to show that, in the ecological

ontext, the success as well as the possible failure of the Z-control

ethod can be strictly related to specific dynamical properties of

he resulting Z-controlled model. 

As far as the success is concerned, we have shown that the

apability of the Z-control approach to change the dynamics of

he uncontrolled system – that is driven towards the controlled

quilibrium P ∗ – is completely based on the fact that, by construc-

ion, P ∗ turns out to be the unique attractor for the Z-controlled

odel. Nevertheless, to avoid the failure of the Z-method within

he ecological framework, the value of the design parameter λ
eeds to be carefully calibrated. We have shown that this last

eature is essentially linked to the loss of positiveness for the so-

utions of the Z-controlled model and we have analytically derived

uantitative constraints on the value of the design parameter λ.

ore precisely, for each given set of initial conditions ( n 0 , p 0 ),

wo thresholds values λmin = λmin (n 0 , p 0 ) and λmax = λmax (n 0 , p 0 )

ave been found such that choosing λ ∈ [ λmin , λmax ] ensures

he success of the Z-control approach. This analytical result turns

ut to be perfectly consistent with the ecological evidence that

he control intensity which an ecological system can tolerate is

bviously limited. In fact, the value of the design parameter λ
epresents the strength of the control exerted on the system and

he two critical thresholds λ and λmax respectively indicate the
min 
inimum and maximum control intensity the system can sustain

n order to successfully obtain the desired species coexistence. 

Concerning the numerical approximation, in this paper we rely

n the Matlab code ode45 for the solution of differential systems,

ith absolute and relative tolerance close to machine precision.

his choice allows to reach high accuracy in order to minimize the

ffect of the numerical algorithm on the obtained results. Indeed,

e stress that a bad choice of the numerical algorithm (or not

nough request of accuracy to general purpose solvers) for the

pproximation of the system dynamics may induce in the long

un numerical behaviors that do not correspond to any theoretical

cenario. In this regard, we briefly remark that Lotka–Volterra

odel is a Poisson system that requires, for its numerical approxi-

ation, Poisson integrators [20] , [8] (e.g., Symplectic Euler method

nd composition of symplectic Euler steps) in order to show a

ood long-time approximation. Poisson integrators that, starting

rom positive values, also preserve positive solutions regardless

he value of the timestep and that is featured by an explicit

unctional form, are analyzed in [11] in the more general context

f population dynamics. 

To show the range of applicability of the Z-control approach

e have considered two different ecological models. The first one

s the classical Lotka–Volterra model for which we have revisited,

ithin a dynamical system perspective, the results presented

n [43] . Such results have also been enriched by quantitative

ndications about the range of the parameter λ ensuring the

uccess of the Z-control method. The second example is a more

ealistic ecological model related to a case study of the wolf-wild

oar dynamics in the Alta Murgia National Park in Italy, [24] . In

 protected area, the choice of controlling the predator density

hrough transplant/introduction by the park management is more

easible than massive removal/hunting of the prey. Also in this

ase, the Z-control turns out to be successful provided that the

esign parameter λ is chosen in a suitable range that we were

ble to estimate quantitatively. 

The study of this latter ecological model has also clarified how

he Z-control method can act in respect to different dynamical

egimes of the uncontrolled system. In fact, in Section 4.2 , two

ifferent dynamical behaviors have been considered for the un-

ontrolled model of the wolf-wild boar dynamics: (i) coexistence

hrough an asymptotically stable equilibrium and (ii) coexistence

hrough predator–prey self-sustained oscillations around an un-

table equilibrium. For the same set of initial conditions P 0 =
(n 0 , p 0 ) = (14 , 0 . 0563) , we have shown that λ has to be chosen
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such that 0.5774 < λ < 1.8374 to change the self-sustained oscil-

lations into the desired controlled equilibrium P ∗ whereas λ needs

to be such that 0.1240 < λ < 0.6224 to change the uncontrolled

stable equilibrium P e into the desired controlled equilibrium P ∗.

This seems to suggest that it is relatively easier for the Z-method

to turn oscillations of the uncontrolled model into the desired

controlled equilibrium rather than to change the uncontrolled equi-

librium P e into the desired controlled equilibrium P ∗. In fact, in this

latter case, a very small range of λ allow the method to be success-

ful whereas dynamical regimes as oscillations – allowing a larger

range of λ – seem to oppose less resistance to the efficacy of the

Z-method. This result may hence enable a preventive analysis of

the Z-method feasibility in respect to different ecological models. 

Moreover, investigations on the basin of attraction of the

controlled equilibrium P ∗ in the two different ecological models

have allowed: (i) to identify the ecological basin of attraction of

P ∗, i.e. the portion of the theoretical basin of attraction of P ∗ cor-

responding to initial conditions such that the related trajectories

keep positive for all time; (ii) to better highlight the role of the

parameter λ; in fact higher values of λ have the effect of enlarging

the ecological basin of attraction of the Z-controlled equilibrium

leading to situations of higher ecological resilience [40] . 

We stress that the Z-control laws – that we have applied in

this paper to two-species predator–prey models – can be easily

generalized to the case of multispecies systems. This point is

particularly crucial in order the Z-control to be potentially applied

in ecosystem services management since in many contexts it could

be enough difficult – if not impossible – to isolate just two species.

This is the reason why in mathematical ecology the generalization

of Lotka–Volterra type models to the case of N species has been

widely studied [26,32,37,38] and a number of methods have

been developed for solving non-traditional control problems of

nonlinear networks models [12,33] . 

As a further remark on the potential applications of the Z-

control in the management of protected areas, we consider the

fish-zooplankton dynamics in alpine lakes, which will be object of

further studies. This is typical cases where a control can be more

easily applied on the predator than on the prey. As an example,

we report the case of the Gran Paradiso National Park (GPNP) and

a conservation issue the managing authority of the park have to

face. In some GPNP lakes, the introduction of an allochthonous fish

species, the brook trout ( Salvelinus fontinalis ) for leisure fishing

purposes, performed in years when such fishing activities were

permitted, is currently harming the lake ecosystem, by dramati-

cally reducing the zooplankton populations, which include the rare

species Daphnia middendorffiana , as well as the invertebrate and

Rana temporaria populations, thus reducing biodiversity. To restore

some of the original lake ecosystems present before the introduc-

tion of the brooke trout, the ongoing European Life+ BIOAQUAE

project has allowed to attempt the eradication of this fish from

three test lakes. In GPNP, the eradication of the brook trout has

profound ecological motivations. According to the International

Union for the Conservation of Nature (IUCN) view, the introduc-

tion of non-indigenous species is the second greatest cause of the

drastic loss of biodiversity that is affecting our planet, since the

fast proliferation of alien species alters the delicate balance of the

colonized ecosystems. Being fishery currently banned in the area,

and for the above reason, in GPNP lakes there is no need for a

controlled coexistence of allochthonous fishes and zooplankton.

However, in some protected areas, where similar conditions apply

and conservation issues are less severe, the managing authorities

might be dealing with a trade-off between biodiversity preser-

vation and the maintenance of provisional/cultural ecosystem

services. For those cases, a solution may come from a control

action on the predators, which might be implemented through a

well designed deployment of traps. 
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