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Bile acids are a family of atypical steroids generated at the interface of liver-intestinal microbiota acting
on a ubiquitously expressed family of membrane and nuclear receptors known as bile acid activated
receptors. The two best characterized receptors of this family are the nuclear receptor, farnesoid X re-
ceptor (FXR) and the G protein-coupled receptor, G protein-coupled bile acid receptor 1 (GPBAR1). FXR
and GPBAR1 regulate major aspects of lipid and glucose metabolism, energy balance, autophagy and
immunity and have emerged as potential pharmaceutical targets for the treatment of metabolic and
inflammatory disorders. Clinical trials in non-alcoholic fatty liver disease (NAFLD), however, have shown
that selective FXR agonists cause side effects while their efficacy is partial. Because FXR and GPBAR1
exert additive effects, dual FXR/GPBAR1 ligands have been developed for the treatment of metabolic
disorders and are currently advanced to clinical trials. Here, we will review the role of FXR and GPBAR1
agonism in NAFLD and how the two receptors could be exploited to target multiple components of the
disease.
© 2021 The Third Affiliated Hospital of Sun Yat-sen University. Publishing services by Elsevier B. V. on
behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent
human disorder affecting approximately one quarter of the world
population and characterized by an excessive accumulation of
lipids in hepatocytes (hepatic steatosis).1 NAFLD is categorized
histologically into non-alcoholic fatty liver (NAFL) and non-
alcoholic steatohepatitis (NASH). Because of the NAFLD terminol-
ogy is widely established and the term of metabolic-associated
fatty liver disease (MAFLD) do not allow a better definition of pa-
tients subgroups, in the present review we will maintain the cur-
rent terminology. In the last two decades, NAFLD has become the
leading cause of liver disease on a global scale and it is projected to
increase further over the next 10e15 years, becoming the main
determinant of liver-related mortality.2 To date, there is no
approved drug for NAFLD treatment although several candidate
drugs have been advanced to Phase II and III.
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One growing class of candidate treatments for NAFLD are the
ligands of the farnesoid X receptors (FXRs), a member of the bile
acid activated receptor (BAR) family. BARs are a family of ubiqui-
tously expressed cell membrane and nuclear receptors.3,4 In addi-
tion to FXR (NR1H4), that is activated essentially by primary bile
acids (Fig. 1) chenodeoxycholic acid (CDCA) and colic acid (CA).3,5

Secondary bile acids, deoxycholic acid (DCA) and litocholic acid
(LCA) function as the physiologic ligands of a cell membrane re-
ceptor known as G protein-coupled bile acid receptor 1 (GPBAR1),
also known as G-protein-coupled receptor (GPCR) 19, membrane-
type receptor for bile acids (M-BAR) or Takeda G-protein-coupled
receptor 5 (TGR5).3,6

FXR and GPBAR1 are ubiquitous receptors expressed in the
gastrointestinal tract, liver and pancreas, but also in the cardio-
vascular system, white and brown adipose tissue (WAT and BAT),
skeletal muscle andmultiple cells of the immune system, especially
cells of innate immunity.3 The bile acids/FXR and GPBAR1 system
integrates signals originated from multiple sources including the
intestinal microbiota and host and is central to various entero-liver
and entero-endocrine axes that validated targets in the treatment
of liver and metabolic disorders. In this review, we will examine
rvices by Elsevier B. V. on behalf of KeAi Communications Co., Ltd. This is an open
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Fig. 1. Bile acids biosynthesis. Bile acids are synthesized in the liver from cholesterol by two main metabolic pathways known as the classical and the alternative pathways. The
rate-limiting enzyme in the classical pathway is cholesterol 7 alpha-hydroxylase (CYP7A1), while the sterol 27-hydroxylase (CYP27A1) initiates the alternative pathway. The two
pathways generate primary bile acids in the liver: colic acid (CA) and chenodeoxycholic acid (CDCA). The two primary bile acids are amidated by conjugation with glycine (G-) or
taurine (T-), giving rise to bile salts (G/TCA and G/TCDCA), before their secretion in the intestine. Intestinal bacteria perform two major biotransformations: the deamidation
operated by bile salt hydrolase (BSH) e expressing bacteria that catalyzes the hydrolysis of the amide bond and releases free bile acids (CA and CDCA), and the 7a-dehydroxylation
that leads to the generation of secondary bile acids, deoxycholic acid (DCA) from CDCA and litocholic acid (LCA) from CA. In addition, intestinal bacterial endowed with
hydroxysteroid dehydrogenase activities (HSDH) carry on oxidation/reduction of hydroxy groups at the 3-, 7-, and 12- carbons of primary and secondary bile acids generating 3-, 7-
or 12-oxo DCA, LCA, CDCA and CA.
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preclinical and clinical data that support the advancement of FXR
and GPBAR1 ligands in the treatment of NAFLD.

2. Pathogenetic mechanisms of NAFLD

NAFLD is a clinicopathological entity that comprehends various
liver diseases, spanning from isolated steatosis (NAFL) to steato-
hepatitis (NASH), a potentially progressive form of the disease,
characterized by hepatocytes ballooning, inflammatory changes
and fibrosis.7,8 The pathogenesis of NAFLD is multifactorial
involving environmental and genetic factors as well as extrahepatic
and intrahepatic events.9 A major contribution to the pathogenesis
of NAFLD is made up by dysregulation of lipid metabolism and the
activation of immune system (Fig. 2).

2.1. Lipid metabolism

NAFLD arises in individuals with a liver lipid imbalance, leading
to hepatocyte lipid accumulation, hepatotoxicity and inflamma-
tion/fibrosis.10 The liver is central in lipid metabolism and regulates
fatty acid (FA) synthesis, transport and redistribution to other or-
gans and their use as substrates for energy production.11 All these
processes are finely modulated through multiple mechanisms and
2

the alteration or destruction of one or more of these pathways
promote the accumulation of lipids in the liver.12 The acquisition
and disposal of FA by the liver is regulated by four main pathways:
uptake of circulating lipids, de novo lipogenesis (DNL), fatty acid
oxidation (FAO) and the export in the form of very-low-density li-
poprotein (VLDL) (Fig. 2).

2.1.1. Uptake of circulating lipids
The uptake of circulating FA by the liver is mainly mediated by

three FA transporters: the fatty acid transport proteins (FATP), the
cluster of differentiation 36 (CD36), and caveolins (Fig. 2).13 Only a
marginal contribution is provided by passive diffusion.13,14 Of the
six FATP isoforms, the liver expresses FATP2 and FATP5.13 FATP2 or
FATP5 knockout mice have reduced hepatic uptake of FA and
develop less steatosis when fed a high-fat diet (HFD).15e17 Human
data on FATPs are partly conflicting: one study has shown an
increased expression of both FATP2 and FATP5 in adolescents with
NASH compared to normal controls,18 while others have found no
difference in FATP5 expression.19

Another mechanism involved in FA uptake by hepatocytes is
CD36 (Fig. 2). This protein facilitates the import of long-chain FAs
by hepatocytes and its expression is regulated by multiple mech-
anisms including the peroxisome proliferator-activated receptor



Fig. 2. Pathogenic mechanisms in NAFLD. Lipid accumulation in the liver parenchymal cells (hepatocytes) is propelled by an increased lipid synthesis (lipogenesis). When the
amount of lipid in the hepatocytes exceed the ability of these cells to dispose of the triglycerides by excretion (after incorporation into the VLDL) and /or the b-oxidation, the
triglycerides aggregate in vacuoles that growth in size leading to cell injury and death (lipotoxicity), which promotes recruitment of inflammatory cells and hepatic stellate cells
leading to excessive extracellular matrix (ECM) deposition and fibrosis. One mechanism that leads to the accumulation of triglycerides in the hepatocytes is the de novo lipogenesis
(DNL), a pathway that is up-regulated in response to insulin resistance and hyperglycemia through the activation of regulatory factors such as the sterol regulatory element-binding
protein (SREBP) 1c and the cyclic adenosine monophosphate (cAMP) response element-binding protein (ChREBP) leading to the synthesis of fatty acids (FAs) from glucose. The
hepatocytes can dispose the FAs through several mechanisms: (i) synthesis of triglycerides, (ii) export of triglycerides through their incorporation in the VLDL and, (iii) b-oxidation.
Abbreviations: ApoB100, apolipoprotein B 100; CPT1, carnitine palmitoyltransferase 1; ER stress, endoplasmic reticulum stress; FATP, fatty acid transport proteins; PAI-1, plas-
minogen activator inhibitor-1; PPAR, peroxisome proliferator-activated receptor; ROS, reactive oxygen species; TNF-a, tumor necrosis factor-alpha; VLDL, very-low-density
lipoprotein.
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(PPAR)g, the pregnane X receptor (PXR) and the liver X receptor
(LXR).20 The expression of CD36, mRNA and protein, is increased in
mice on an HFD, while CD36�/�mice develop less fatty liver disease
when feeding an HFD.21,22 These animal data have been confirmed
in obese NAFLD. Thus, in comparison to control individuals, obese
NAFLD subjects show and increased liver expression of CD36mRNA
along with a predominant membrane localization of this protein,
suggesting that CD36 translocation from the cytoplasm to the
membrane of hepatocytes might be functionally linked to an
increased FAs uptake.23,24,25

After their uptake by hepatocytes, hydrophobic FAs do not
diffuse freely in the cytosol but are transported by specific fatty acid
binding proteins (FABP) of which FABP1, also known as liver FABP, is
the predominant isoform in the liver.14 FABP1 exerts a protective
role against the lipotoxicity exerted by free FAs by facilitating their
oxidation or incorporation into triglycerides.26 In mice ablation of
the gene encoding FABP1 decreases lipid disposal (FA export and
oxidation) and worsens the severity of steatohepatitis.27,28 In
NAFLD individuals, an increase in FABP1 expression has been
documented in the early stages of NAFLD likely representing a
compensatorymechanism to copewith the increased lipid flowand
to decrease hepatic lipotoxicity (Fig. 2). As the disease progresses,
however, the levels of FABP1 decreases as observed in animal
studies.29,30

2.1.2. DNL
The DNL is a process by which the liver synthesizes FA from

acetyl-CoA. The initial step involves the conversion of acetyl-CoA
into malonyl-CoA by acetyl-CoA carboxylase (ACC). The newly
3

synthesized FAs are then subjected to numerous successive steps
(elongation, desaturation and esterification) before being either
stored as triglycerides or exported as VLDL (Fig. 2).

Studies using stable isotope tracers suggest that the DNL is
abnormally increased in obese individuals with NAFLD in whom
approximately 26% of hepatic triglycerides were derived from this
pathway. Further on, obese NAFLD subjects seem to be unable to
regulate the DNL in the fast to fed transition, suggesting that the
inability to repress the DNL is a central feature of NAFLD.31e33 The
transcriptional regulation of genes involved in the DNL is regulated
by two key transcription factors: the sterol regulatory element-
binding protein 1c (SREBP1c), which is activated by insulin and
LXRa, and by the carbohydrate regulatory element-binding protein
(ChREBP), which is activated by glucose.34e36 NAFLD individuals
show an up-regulation of the liver expression of SREBP1c and in
mousemodels of NAFLD, SREBP1c overexpression increases hepatic
triglycerides contents, while SREBP1c�/� mice show a down-
regulation of expression of lipogenic enzymes.37e39 The insulin
resistance, that typically occurs in NAFLD, prevents the suppression
of gluconeogenesis but insulin still retains its ability to induce the
DNL by activating SREBP1c.34 Furthermore, SREBP1c indirectly
contributes to insulin resistance by promoting the liver accumu-
lation of harmful lipid species, such as diacylglycerides, that further
deteriorate insulin signaling.

ChREBP, a glucose regulated factor, increases the DNL in
response to hyperglycemia and its liver expression is increased by
carbohydrates, but not by HFD. ChREBP knockout mice show a
strong reduction in hepatic FA content compared towild-typemice,
but are insulin resistant and therefore show a delayed glucose
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clearance and intolerance to simple carbohydrates due to the
inability to dispose fructose through the glycolysis.40 An increase in
ChREBP expression has been documented in biopsies from NASH
individuals, although the ChREBP levels decrease in patients with
severe insulin resistance suggesting that ChREBP may segregate
hepatic steatosis from insulin resistance. However, insulin sensi-
tivity and glucose tolerance were maintained, likely owing to an
increased conversion of saturated FAs (known to cause insulin
resistance) to monounsaturated FAs via the stearoyl-CoA desatur-
ase-1 (SCD1).41

ACC1, a key gene in the DNL and its regulatory factor, SREBP1c, is
up-regulated along with FA synthesis in both patients and animal
models of NAFLD.18,38,39,42e46 The liver-specific deletion of ACC1
decreases the hepatic lipids content and the DNL, althoughmice are
not completely protected from hepatic steatosis because a
compensatory up-regulation of ACC2 which inhibits the b-oxida-
tion.47 Therefore, inhibition of both isoforms could be required to
improve hepatic steatosis in NAFLD individuals.48

Insulin resistance is a common feature in MAFLD individuals.
Diacylglycerides are considered to be possible mediators of insulin
resistance. These lipid species are the precursors of triglycerides
and their accumulation in the liver is associated with the induction
of protein kinase Cε, a known driver of insulin resistance.49 Hepatic
over-expression of the diglyceride acyltransferase 2, which cata-
lyzes the conversion of diglycerides to triglycerides, increases the
hepatic content of triglycerides without inducing insulin resis-
tance.50 Furthermore, silencing of protein kinase Cε protects from
diet-induced insulin resistance.51 The liver biopsy from NAFLD
patients has confirmed that only the cytoplasmic content of diac-
ylglyceride, and not total or membrane-associated diacylglycerides,
predicts hepatic insulin resistance suggesting that hepatic diac-
ylglyceride content is a relevant predictor of insulin resistance in
NAFLD.52,53 In this scenario, the accumulation of triglycerides in the
liver can be considered a compensatory mechanism to reduce the
levels of the more harmful lipid species. However, hepatic steatosis
cannot be considered beneficial because it predisposes to long-
term complications such as dyslipidemia and hypertension and
correlates with patient survival.54

2.1.3. FA oxidation
The FA oxidation occurs in the mitochondria of hepatocytes and

generates ATP (Fig. 2). The use FAs as substrates occurs especially
when circulating glucose levels are low.55e59 This process is
controlled by PPARa. The entry of FAs into the mitochondria is
mediated by the carnitine palmitoyltransferase 1 (CPT1) located in
the outer mitochondrial membrane.58 In the event that the mito-
chondria lose the ability to oxidize very-long-chain FAs, they can be
metabolized via peroxisomal b-oxidation. Furthermore, FAs can
also undergo u-oxidation in the cytochromes, which however
produces a high amount of reactive oxygen species (ROS), oxidative
stress, and toxic dicarboxylic acids, potentially promoting inflam-
mation and disease progression.56 Activation of PPARa induces the
transcription of FAs oxidation-related genes and reduces the he-
patic lipid content.55,58e60 Accordingly, PPARa knockout mice
develop severe hepatic steatosis.61 In human liver biopsies, PPARa
levels do not differ between NAFLD patients and healthy controls,
while PPARa is down-regulated in patients with NASH.62,63 A
decreased PPARa might also contribute to liver inflammation by
increasing the DNA-binding capacity of c-Jun N-terminal kinase 1
(JNK1) and nuclear factor kappa-light-chain enhancer of activated B
cells (NF-kB).64

Studies on FAs oxidation in patients with NAFLD/NASH have
yielded mixed results. The expression of genes related to mito-
chondrial b-oxidation and peroxisomes as well as the levels of b-
hydroxybutyrate, one of the products of b-oxidation, are higher in
4

patients with severe steatosis compared to those with moderate
steatosis or healthy individuals.65,66 This increase in FAs oxidation
can be considered a compensatory mechanism since, although in
addition to reducing the hepatic lipid content, the FA oxidation
promotes an excessive production of ROS. In patients with NAFLD
and in mouse models of NAFLD, the liver content of glutathione,
glutathione peroxidase and superoxide dismutase is decreased.64,67

Therefore, the induction of FA oxidation as a mechanism to reduce
the hepatic lipid content is a double edge sword because it pro-
motes increase in oxidative stress and the progression toward an
inflammatory state.

2.1.4. Lipid export from the liver
In addition to FA oxidation, the export of triglycerides is the only

other mechanism available to reduce the hepatic lipid content. To
be exported, the triglycerides are complexed together with
cholesterol, phospholipids and apolipoproteins to form water-
soluble VLDL particles.68 VLDLs are assembled in the endoplasmic
reticulum (ER) by the microsomal triglyceride transfer protein
(MTTP) which binds lipids to apolipoprotein B100 (apoB100).
Consequently, hepatic steatosis is common in patients who have
genetic defects in the apoB100 or MTTP gene.69,70 Exposure to
moderate levels of FAs increases the production of apoB100 and
therefore the export of lipids. On the contrary, prolonged exposure
to lipids induces stress on the ER with degradation of apoB100 and
impaired secretion (Fig. 2).71,72 The transcription of the MTTP gene
is positively regulated by PPARa. Conversely, both apoB100 and
MTTP are negatively regulated by insulin, which reduces hepatic
lipid export.73 The compensatory mechanism of export of hepatic
lipids through VLDL proceeds in line with increasing exposure to
lipids until it reaches a plateau: when the hepatic lipid content
exceeds 10%, the export capacity of hepatocytes through VLDL de-
creases dramatically leading to lipids accumulation.68 The liver
MTTP expression is decreased in NAFLD individuals compared to
controls, suggesting that liver lipid export is impaired in these
patients. On the other hand, MTTP overexpression in mice reduces
the hepatic triglyceride content and improves liver histopathology.

2.2. Immune system

The liver is a metabolic tissue but also an immunological
organ.74e77 Immune cells, such as liver resident macrophages
(Kupffer cells, KCs), blood-derived monocytes and macrophages
and lymphocytes represent approximately 15% of total liver
cells.78,79 The liver immune system might be activated by a variety
of mechanisms (Fig. 3A). In NAFLD/NASH, the liver immune system
becomes activated to cope with hepatocyte injury, since the
damaged hepatocytes release a variety of damage-associated mo-
lecular patterns (DAMPs) that trigger an immune response. In this
setting, the recruitment of inflammatory cells, not only produces
the typical lobular inflammation that characterizes NASH, but is a
potent driver for disease progression towards fibrosis, cirrhosis and
hepatocellular carcinoma. Furthermore, inflammation contributes
to the development of extrahepatic complications such as cardio-
vascular disease and chronic kidney disease.80 While there is a
consensus that cells of innate immunity are the main driver of
immune dysfunction in NAFLD/NASH (Fig. 3B),81,82 it is increasingly
appreciated that lymphocytes might contribute to disease pro-
gression (Fig. 3C).

2.2.1. Innate immune system
2.2.1.1. Neutrophils. Neutrophils are cells of innate immunity that
are recruited at inflammatory sites at the early stages in response to
injury. Despite, NAFLD is a slowly progressing inflammation, results
from rodent models, have shown that neutrophils are recruited in



Fig. 3. Immune mechanisms in NAFLD. The liver in recent years has assumed an increasing role not only as a metabolic organ but also as an immunological organ and numerous
studies indicated that immune cells in the liver played critical roles in the pathogenesis of NAFLD and NASH. (A) Excess lipid intake induces on the one hand an increase in hepatic
deposition of lipids with consequent induction of apopotosis and release of DAMPs, and on the other hand an increase in intestinal permeability which leads to a greater passage of
bacteria and bacterial products from the intestinal lumen to the circulation and then to the liver. Both DAMPs and bacterial products that reach the liver are able to activate Kupffer
cells (KCs) by binding on toll-like receptors (TLRs). The activation of KCs represents the key event that leads to the activation first of (B) the innate immune response and then of (C)
the adaptive immune response. (B) Activated KCs produce pro-inflammatory cytokines (i.e. IL-6, IL-1b and TNF-a) which induce up-regulation of chemokines with consequent recall
of immune cells in the liver. Neutrophils reaching the liver produce high levels of MPO, elastase and lipocalin 2 (LCN2) which induce further up-regulation of chemokines and
activation of HSCs. The macrophages deriving from the circulation by means of pro-inflammatory stimuli present in the liver polarize towards the M1 phenotype, also producing
pro-inflammatory cytokines. In NAFLD, the excessive caloric intake instead reduces the cytotoxic capacity of NK cells which show a reduced capacity to kill activated HSCs with a
consequent increase in collagen deposition. The dendritic cells (DCs), which are recruited in the liver, function as antigen presenting cells (APCs), inducing the consequent activation
of the adaptive immune system. (C) In NAFLD, an increase in the recruitment of DCs at the level of the hepatic sinusoids is observed. These cells differentiate more towards a CXCR1þ

phenotype that produces TNF-a and induces the activation of the adaptive immune response. On the contrary, there is a reduction in the subgroup of CD103þ DCs which perform
the function of removing dead cells and limiting inflammation with a consequent increase in DAMPs. NKT cells in NAFLD exert a protective role by improving insulin resistance and
steatosis, but their number decreases due to the reduction of CD1d expression. On the contrary, in NASH there is an increase in the number of hepatic NKT cells that release
osteopontin (OPN) which activates the HSCs with collagen deposition, and LIGHT which increases the hepatic uptake of lipids, worsening steatosis. APCs also recall CD4þ T
lymphocytes which preferentially differentiate towards Th1 and Th17 subgroups producing IFN-g and IL-17, respectively. In NAFLD, there is also an increase in CD8þ T lymphocytes
and B lymphocytes. Abbreviations: CCL2, CeC motif chemokine ligand 2; CXCR, CeXeC motif chemokine receptor; DAMPs, damage-associated molecular patterns; HSCs, hepatic
stellate cells; IFN-g, interferon-gamma; IL, interleukin; MoDCs, monocyte-derived dendritic cells; MPO, myeloperoxidase; NAFLD, non-alcoholic fatty liver disease; NASH, non-
alcoholic steatohepatitis; NK, natural killer; NKT, natural killer T; TCR, T cell receptor; Th cell, T helper cell; TNF-a, tumor necrosis factor-alpha.
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the liver at early stages in response to hepatocytes injury and that
this step is essential for disease progression. Results from mice
models have confirmed that mice strains deficient in neutrophils or
lacking the expression of neutrophils-derived enzymes, such as
elastase and the myeloperoxidase (MPO), are protected against
NASH development.83e85 In addition to inflammation, neutrophils
and MPOs alone directly activate the hepatic stellate cells (HSCs),
suggesting a role for neutrophils and/neutrophils-derived factors in
fibrosis development at least in models of NASH.86,87 Lipocalin 2
(LCN2), another neutrophil factor, promotes the expression of
CXCR2 and mice lacking LCN2 show less neutrophils and macro-
phages accumulation and reduced liver damage in NASH models.88

The liver expression of chemokines, CXCL1, CXCL2 and interleukin
(IL)-8, which are known to promote the neutrophils recruitment, is
increased in models of NASH and their inhibition protects/attenu-
ates the severity of liver damage in these models.89,90 These data
have been partially validated in clinical settings. In NASH patients,
5

the stage of liver inflammation correlates with the elastase/a1-
antitrypsin ratio while the circulating levels of elastase and
proteinase-3 are increased in obese individuals compared to
healthy controls and their levels correlate with the stage of liver
fibrosis.91

2.2.1.2. KCs/infiltrated macrophages. The transition from simple
steatosis to steatohepatitis and fibrosis is mediated by the liver
resident macrophages, the KCs.92 The KCs are “professional antigen
presenting cells (APCs)” strategically located in the liver sinusoids
and are the first liver cells that enter in contact with immunore-
active materials absorbed in the intestine and perform their func-
tion by phagocytosing and processing antigens. Once activated, KCs
release various pro-inflammatory mediators including cytokines
and chemokines, prostanoids, nitric oxide (NO) and reactive oxygen
intermediates.93,94 The KCs express several members of the toll-like
receptors (TLRs) superfamily and sense both exogenous and
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endogenous antigens.78 There is a consensus that KCs activation is a
key step in promoting transition from simple steatosis to steato-
hepatitis at least in experimental animal models. In the fat liver,
hepatocytes injury and death caused by lipotoxicity promotes the
release of DAMPs, including mitochondrial DNA (mtDNA) by dead
hepatocytes, which directly activate TLR9 in KCs and trigger an
inflammatory cascade.95,96 In animal models of NAFLD and NASH,
the expression of TLR4 is robustly increased.97 The high dietary
lipids intake that occurs in NAFLD increases the intestinal perme-
ability and the passage of bacterial products from the intestinal
lumen to the portal circulation and then to the liver, where they are
recognized by the KCs. Animal models have shown that binding of
lipopolysaccharide (LPS) to the TLR4 on the surface of KCs promotes
the production of IL-6, tumor necrosis factor-alpha (TNF-a) and IL-
1b and contributes to the inflammatory process.97e101 The role of
TLRs in the pathogenesis of NAFLD has been extensively investi-
gated through the use of TLRs deficient mice. TLR4 or TLR9 knockout
mice are protected from the development of inflammation and
fibrosis and similar results have been observed in KCs depleted
mice.95,96,100,102

In addition to KCs, other macrophage subsets are recruited in
the liver from the bloodstream in response to liver injury. These
macrophages can be distinguished from KCs by surface markers:
infiltrating macrophages are CD11bhighF4/80lowClec4F�, while KCs
are CD11blowF4/80highClec4Fþ.103 In addition, infiltrating macro-
phages express high levels of CeC motif chemokine receptor 2
(CCR2), which allows the recruitment of macrophages to the
liver.104 The expression of CeC motif chemokine ligand 2 (CCL2),
the CCR2 ligand, is strongly up-regulated in the models of hepatic
steatosis and this chemokine has proven essential for promoting
inflammation and fibrosis.104e106 Drugs targeting CCL2/CCR2 axis,
such as cenicriviroc, have been investigated for their efficacy in
treating liver fibrosis in NASH patients.107e109 In addition to CCL2/
CCR2, the CeXeCmotif chemokine receptor (CXCR) 2 and 3 are also
required for hepatic recruitment of macrophage in models of NASH
and CXCR2 or CXCR3 knockout mice are protected from inflam-
mation and fibrosis caused by an HFD.88,110

2.2.1.3. Dendritic cells (DCs). The DCs are the main APCs in the liver
and are critical in initializing an adaptive immune response. In
rodent models of NASH, the number of phenotypically activated
DCs recruited in the liver microcirculation increases significantly.111

There are two major DCs subpopulations in the liver: the classic
CD103þ DCs that help remove dead cells and limit inflammation
and a population of CXCR1þ monocyte-derived dendritic cells
(MoDCs), that supports inflammation by secreting TNF-a. While
removing classic CD103þ DCs worsens inflammation,111,112 MoDCs
promote inflammation and fibrosis and are very abundant in the
liver with NASH individuals.113

2.2.1.4. Natural killer (NK) cells. NK cells are the most abundant
leukocyte population in the liver and represent 10e20% of total
hepatic lymphocytes in mice and 40e50% in humans.114,115 NK cells
function as effectors of the innate immune system and primarily
fighting against viral infections and tumor growth.116 In compari-
son to peripheral NK cells, the liver NK cells display a specific
immunophenotype since, in addition to conventional NK cells
(NK1.1þ CD49bþCD49a�), a population of liver resident NK cells
(NK1.1þCD49b�CD49aþ) that corresponds to humans NK cells
(CD49aþCD56þ) has been identified in mouse liver.117e119 The
number of liver NK increases significantly in rodent models of
NASH, although their functional role is poorly defined. In obese
individuals, liver NK cells while showing an activated phenotype
characterized by high levels of CD69 expression, have a lower
cytotoxic and cytokine release capacity than cells isolated from
6

control subjects.120e122 NK cells derived tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) and NKG2D are critical
in killing activated HSCs and resolving liver fibrosis. In fact, the
exogenous administration of TRAIL improves liver fibrosis.123,124

These data indicate that the reduced cytotoxic capacity of NK
cells might contribute to liver fibrosis and highlight the need for
further investigations to clarify the role of NK cells in NAFLD/NASH.

2.2.2. Adaptive immune system
2.2.2.1. Natural killer T (NKT) cells. NKT cells are a unique immune
cell subtype that expresses specific NK cell surface receptors as well
as an antigen receptor (TCR) characteristic of conventional T
cells.76,125 Similar to NK cells, NKT cells are enriched in the liver.
NKT cells reside in the sinusoids providing intravascular immune
surveillance.126 NKT cells can recognize self and foreign lipids and
glycolipids antigens presented by the non-classical major histo-
compatibility complex (MHC) class I-like molecule CD1d. CD1d-
restricted NKT cells can be further divided into two main subsets:
type I (classic or invariant) NKT cells (iNKT) and type II NKT cells
(diverse or non-classical NKT).125 The two cell subtypes also differ
for their specificity in antigen recognition. Several iNKT subtypes
have been identified and named as NKT1, NKT2, NKT17, IL17RB,
NKTfh, and FOXP3þiNKT, which perform activities and release
cytokine patterns that are comparable to their T helper cell (Th)
counterparts in T lymphocytes (i.e., Th1, Th2, and Th17).127,128 In
addition, an IL-10-secreting, regulatory subtype of NKTcells, named
NKT10, has been recently identified.129,130 The role and behavior of
these cell types vary consistently from one stage to another of
NAFLD. Hepatic NKTs are reduced in mouse models of steatosis,131

likely because an increased production of IL-12 by macrophages
and KCs, and because of a reduced expression of CD1d in hep-
atocytes.132e134 This loss of NKT cells is accompanied by an
increased production of pro-inflammatory cytokines and NKT cell
transfer to ob/ob mice ameliorates the insulin resistance and stea-
tosis scores.132,135 A decrease in the number of NKT cells has been
observed in the liver of NAFLD individuals.136 Further confirming
the role of NKT cells in liver steatosis, administration of probiotics
to mice fed an HFD protects against NKT depletion and improves
glucose tolerance and liver histopathology.137,138 In contrast, NKT
cells accumulate in the liver of NASH individuals.139,140 Animals
studies suggest that NKT cells promote liver fibrosis by producing
osteopontin (OPN) which directly activates HSCs.140,141 Confirming
these data, mice lacking NKT cells are resistant to the development
of liver fibrosis in NASH models.140e143 Furthermore, NKT cells can
directly induce steatosis by promoting the lipids uptake by hepa-
tocytes. This effect is mediated by the release of the LIGHT (also
known as tumor necrosis factor superfamily member 14, TNFSF14)
which directly promotes the development of NASH.144 Taken
together, NKT cells are reduced and skewed to a proinflammatory
Th1 cytokine profile in the early stage of NAFLD, but in the
advanced stage of NAFLD, such as NASH, NKT cells are increased in
the liver and contribute to the development of liver fibrosis.

2.2.2.2. T lymphocytes. A typical histopathology feature of NASH is
the diffuse lobular infiltration by lymphocytes.145,146 In approxi-
mately 60% of patients with NASH, B cells and T cells form focal
aggregates. Recruitment of CD4þ helper T lymphocytes with a Th1
polarization has been observed in both mouse models and patients
with NASH.144,147e151 Th1 cells are characterized by an increased
expression of the characteristic transcription factor T-bet and the
production of the interferon-gamma (IFN-g).132,147 Consistent with
these findings, IFN-g knockout mice on a methionine-choline-
deficient diet develop less steatohepatitis and liver fibrosis than
wild-type mice.149 Histopathology data from both pediatric and
adult livers confirm an increase in the percentage of IFN-g
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producing CD4þ T cells in NASH individuals.150,151 In addition to
Th1, the Th17 subtype also appears to be involved in the patho-
genesis of NAFLD.152,153 The possible involvement of this subgroup
emerges from the increase of hepatic and circulating Th17 cells
observed in patients with NAFLD and/or NASH, together with the
increase in Th1 cells.154 Interestingly, the progression from NAFLD
to NASH is associated with a robust accumulation of Th17 cells in
the liver, and this change normalizes one year after bariatric sur-
gery in conjunctionwith the alleviation of NASH features. In mouse
models of NASH, removal of IL-17A, IL-17F or the IL-17 receptor (IL-
17R) worsens the severity of steatosis while progression toward
steatohepatitis is reduced.155,156 In mice feed a methionine-choline
deficient diet (that is an imperfect model of NAFLD), the percentage
of Th17 cells fluctuates over time with two peaks: one in the initial
stages of steatohepatitis and one in the last stages of the disease.157

Opposite variations have been observed in another intrahepatic
subpopulation of T helper cells, known as Th22, which produce
high levels of IL-12. This cell population increases in the liver be-
tween the first and second expansion of Th17 cells.157 IL-17�/� mice
subjected to a methionine-deficient diet show a greater hepatic
infiltrate of Th22 cells and develop mild steatohepatitis suggesting
a possible antagonist action between Th17 and Th22 lymphocytes
in modulating NASH development.153,157 Taken together, these data
indicate that the hepatic inflow of Th1 and Th17 lymphocytes
contributes to the pathogenesis and evolution of NASH, while an
opposite role seems to be exerted by Th22 cells.

Progression of NAFLD in both mice and humans is also accom-
panied by an increase in the number of cytotoxic CD8þ T lympho-
cytes.144,147,158,159 These cells are recruited in the liver in response to
IFN-a, exacerbating insulin resistance.159 Accordingly, b2m�/� mice
that lack CD8þ T lymphocytes and NKT cells are protected from the
development of NASH. Furthermore, selective ablation of CD8þ T
cells in wild-type mice improves steatohepatitis, suggesting a
direct role of these cells in the pathogenesis of NASH.142 However,
further studies are required to better elucidate the function of these
cells.

2.2.2.3. B lymphocytes. B cells are specialized adaptive immune
cells producing antibodies. In addition to T cells, B cells are
detectable in liver biopsy obtained from patients with NASH.158,160

Inmousemodels of NASH, B cells were activated in parallel with the
onset of steatohepatitis and matured to plasma blasts and plasma
cells.160 While only few studies have investigated the role of B
lymphocytes in the pathogenesis of NAFLD, there is evidence that
the number of liver-infiltrating B lymphocytes increase in mice fed
an HFD along with IL-6 and TNF-a and might contribute to the
differentiation of T lymphocytes into Th1 cells.161 Furthermore, the
B cell-activating factor (BAFF) increases as NAFLD severity pro-
gresses and high serum levels of BAFF are considered a risk factor
for NAFLD progression toward NASH.160,162

2.2.3. Non-immune cells involved in hepatic immune response
Due to the anatomical position of the liver located between the

intestine and the systemic circulation, all the substances absorbed
in the intestine necessarily pass through the liver. As a result, the
liver has developed the ability to receive, process and store nutri-
ents without developing an inflammatory response but also to
respond to exogenous antigens when this is necessary. Therefore,
the liver, has the ability to modulate both the local and systemic
immune response by interacting with the cells of the immune
system. In this view, it is important to remember that both
parenchymal and non-parenchymal liver cells participate in im-
mune response. The hepatocytes express some TLRs and the TLR2
and TLR4 are up-regulated in several inflammatory settings, mak-
ing hepatocytes able to respond to inflammation.163,164 Hepatocytes
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are also able to remove LPS from the circulation.165 The liver si-
nusoidal endothelial cells (LSECs) are the cells that make up the
hepatic sinusoids. These cells express a variety of receptors for
adhesionmolecules, chemokines and TLR1e9 and their exposure to
LPS, activates the NF-kB signaling.165,166

Biliary epithelial cells (cholangiocytes) are the cells that form
the biliary tree. Murine biliary cells express CD14, MD-2, and
TLR2e5 and after exposure to LPS activate the NF-kB pathway and
release TNF-a.167 Instead, human biliary epithelial cells express
TLR1e10.168 Several studies have shown an involvement of chol-
angiocytes in the development of liver fibrosis either in models of
liver damage and in patients with primary biliary cholangitis (PBC)
and primary sclerosing cholangitis (PSC). There is also preliminary
evidence suggesting that cholangiocytes might participate in the
development of liver fibrosis in NASH. In fact, the progression of
NAFLD associates with an increase in the bile duct size and an
upregulation of the senescent markers of these cells. Senescent bile
ducts express multiple adhesion molecules, including macrophage
chemoattractant protein-1 (MCP-1), which attract immune cells
and is also responsible for HSCs activating.169 HSCs account for
approximately 30% of hepatic non-parenchymal cells. Under
physiological conditions, these cells are quiescent and represent
the largest content of vitamin A in the body.170 In response to liver
damage, however, these cells might trans-differentiate into HSCs
acquiring a myofibroblast-like phenotype.171e173 Therefore, acti-
vated HSCs switch from resting vitamin A-rich cell to proliferating,
fibrogenic, and contractile cells.173,174 Activated HSCs promote he-
patic fibrosis by releasing extracellular matrix components, such as
collagen I and III, and by inhibiting metalloproteinases (MMPs) that
degrade the extracellular matrix. The progression of NAFLD in both
mouse models and humans is always associated with the prolifer-
ation and activation of HSCs.175

2.2.4. Intestinal dysbiosis: the gut-liver axis
The gut and liver communicate via bidirectional links through

the biliary tract, the portal vein, the lymphatic system and the
systemic circulation.176 The intestinal microbiota is the main source
of chemical communications between the intestine and the liver
and plays a major role in the pathogenesis of NAFLD (Figs. 2 and 3).
The development of NAFLD associates with intestinal dysbiosis,
which is defined as a quantitative and qualitative change in the
composition of the intestinal microbiota. In addition to NAFLD, the
development of intestinal bacterial dysbiosis is associated with
several metabolic disorders including metabolic syndrome, type 2
diabetes mellitus (T2DM) and obesity. Several animal models have
provided compelling evidence that intestinal dysbiosis promotes
liver inflammation and might participate in the progression of
steatosis to NASH. One key finding of these studies has been that
exposure to a high caloric intake promotes intestinal inflammation
and mucosal barrier dysfunction, allowing the translocation of in-
testinal bacteria and their product into themesenteric lymph nodes
and the portal and systemic circulation.177 This will lead to a portal
endotoxemia that triggers the KCs activation via TLR 9 and 4 and
production of TNF-a. In addition to cells of innate immunity, in-
testinal inflammation caused by HFD also redirects the trafficking
of several T cell subsets. In mice fed an HFD, the ratios of Th1 to Th2
cells and Th17 to Treg cells in mesenteric lymph nodes are altered
and CD4þ T lymphocytes from HFD-fed mice tend to migrate to the
liver and promote hepatic inflammation.178 Furthermore, feeding
an HFD increase in the number of a4b7þ CD4 T cells, along with the
expression of the mucosal addressin cell adhesion molecule 1
(MAdCAM-1) in the colonic mucosa and elevated MAdCAM-1
expression correlated with increased mucosa-associated Proteo-
bacteria. In this model, blocking the heterodimeric integrin recep-
tor a4b7 attenuates the development of liver injury and fibrosis.179
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Confirming these findings, the hepatic expression of MAdCAM-1
has been found elevated in patients with NASH. Intestinal dysbio-
sis might contribute to liver injury by additional mechanisms,
including alterations of the countless chemical messengers gener-
ated by the intestinal microbiota in response to food such as short-
chain fatty acid (SCFA), bile acids and nutrients intermediates such
as choline. A recent study has documented that NAFLD patients had
higher fecal acetate and propionate levels and these changes
associate with taxonomical differences of fecal bacteria that were
dominated by SCFA-producing bacteria. Higher fecal propionate
and acetate levels were associated with a reduced number of reg-
ulatory T-cells (rTregs) (CD4þCD45RAþCD25þþ) as well as higher
values of Th17/rTreg ratio in peripheral blood of NASH patients.
Further on, NASH patients are characterized by higher abundance
of Fusobacteria and Fusobacteriaceae compared to NAFL and healthy
subjects.180 Others have reported that the intestinal microbiota of
NASH patients is enriched in the content of Parabacteroides and
Allisonella, while the concentration of Faecalibacterium and Anae-
rosporobacter is reduced.181 In general, however, despite the po-
tential therapeutic relevance of intestinal dysbiosis to NAFLD,
human studies have been so far poorly informative and the nature
of the dysbiosis in NAFLD patients remains elusive. Although
several factors such as obesity have been identified as a potent
driver of intestinal microbiota composition,182 available studies
have identified different patterns that were not reproducible from
one study to another. Recently a change in 37 bacterial species
including Escherichia coli (E. coli) and Bacteroides vulgatus was
documented in NAFLD individuals and used to construct a model to
distinguish mild/moderate NAFLD from advanced fibrosis.183 In-
testinal dysbiosis characterized by an increase in the gut alcohol-
producing bacteria (especially E. coli) has been reported in chil-
dren.182 Similarly, inconsistent results have been obtained in
NAFLD/NASH subjects treated with probiotics; although counter-
intuitively, some positive results have been obtained with Lacto-
bacillus, Bifidobacterium and Streptococci and butyrate-producing
bacteria (that are increased in NAFLD/NASH individuals) or by fecal
transplantation.184,185

2.2.5. Immune cross-talk between adipose tissue and the liver
An important extrahepatic source of inflammatory mediators in

NAFLD is the adipose tissue (Fig. 2). While in the liver, immune cells
and parenchymal and non-parenchymal cells represent the main
source of immunomodulatory molecules,186e190 in the adipose
tissue the mediators of inflammation are mainly produced by
macrophages infiltrating the adipose tissue.191 These macrophages
show a bias towards the M1 subtype with the production of pro-
inflammatory cytokines that are responsible for low-grade
inflammation and insulin resistance, two essential factors in the
progression of the NAFLD.192,193 Studies in HFD-fed mice showed
that genes associated with macrophage recruitment, such as che-
mokine CCL2, are up-regulated early in adipose tissue relative to
the liver, indicating that the inflammation of adipose tissue pre-
cedes liver inflammation.194 Furthermore, it has been observed that
macrophages infiltrating the adipose tissue in mouse models of
NASH produce high levels of neutrophil chemotactic proteins,
contributing to an increase in the recruitment of neutrophils and
macrophages in the liver and therefore to the worsening of the
disease.195 In line with these data, elevated CD11c expression, one
of the main markers of macrophages and DCs, in the adipose tissue
of patients with severe obesity correlate with a greater expression
of hepatic macrophage and neutrophil activation markers.195

Furthermore, macrophages taken from the adipose tissue of
obese patients show a greater ability to produce inflammatory
mediators compared to those taken from healthy individuals and
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many studies suggest that the number of macrophages present in
the adipose tissue is positively correlated with the severity of liver
inflammation and fibrosis.92,196e199

The mediators released by adipose tissue that modulate
inflammation are called adipokines: a group of chemically heter-
ogenous mediators produced by the adipocytes and macro-
phages.200 The adipokines involved in the pathogenesis of NAFLD
including TNF-a, IL-6, resistin, plasminogen activator inhibitor-1
(PAI-1), leptin and adiponectin. TNF-a mediates the increase of
apoptosis in many cell types including hepatocytes and up-
regulates the expression of adhesion molecules by increasing the
recruitment of immune cells.201 At the metabolic level, TNF-a ac-
tivates intracellular stress-related kinases, such as inhibitor kb ki-
nase (IKK)-b, c-Jun N-terminal kinase (JNK) and p38 mitogen-
activated protein kinase (MAPK), which block the insulin
signaling making the cells insulin resistant.202e206 IL-6 induces
factors such as suppressor of cytokine signaling-3 (SOCS-3) that
interfere with insulin-mediated suppression of phosphoenol py-
ruvate carboxy kinase (PEPCK) in hepatocytes.207 The elevated
expression of PEPCK increases postprandial hepatic gluconeogen-
esis and promotes a hyperglycemia and compensatory hyper-
insulinemia. Hyperinsulinemia induces the desensitization to
insulin signaling in many tissues by decreasing the efficiency of
systemic glucose disposal.187 PAI-1 and leptin are important regu-
lators of HSC activation. These two mediators promote the transi-
tion of quiescent to activated HSCs by inducing a myofibroblast-like
phenotype leading to hepatic fibrosis.208e210 Adiponectin is a pro-
tective adipokine produced by small adipocytes that antagonizes
the TNF-a and resistin signaling in part by inducing the activation of
adenosine monophosphate kinase (AMPK). Activation of AMPK
enhances lipid disposal by increasing FAs b-oxidation, while
inhibiting the DNL.211 Furthermore, adiponectin also decreases the
activation of HSCs by reducing the deposition of collagen and
prevent liver fibrosis.212

Moreover, the adipose tissue is the main source of free fatty
acids (FFA) that are transported to the liver for their metabolism.
The excessive accumulation of FFA in hepatocytes, as already
mentioned above, is sufficient to promote the production of in-
flammatory mediators, such as TNF-a and IL-6, which act both in
the liver and systemically decreasing insulin sensitivity.186

In summary, NAFLD is a systemic disease involving multiple
causative mechanisms. The NAFLD population includes different
subsets of patients that have different clinical and therapeutic
needs. The development of novel therapeutic approaches designed
to target specific patients subsets remains an urgent need, although
it is increasingly appreciated that treating NASH will likely require
development of combination therapies acting on multiple targets.
In the next sections wewill examine the potential of bile acid-based
therapies in the treatment of NAFLD.

3. Bile acids

Bile acids are a family of atypical steroids derived from choles-
terol generated in the liver and intestine by the coordinated action
of liver enzymes and intestinal microbiota.213 In contrast to
cholesterol, bile acids are amphipathic molecules with a hydro-
phobic side (b face) and a hydrophilic side (a face). This amphi-
pathic structure gives them detergent properties that is essential
for solubilizing lipids in the micelles facilitating emulsification and
absorption of dietary lipids and fat-soluble vitamins.214,215 Bile
acids are classified into two main families: primary bile acids,
generated in the liver from cholesterol, and secondary bile acids, or
degenerated, generated in the intestine from primary bile acids by
bacterial enzyme.
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3.1. Bile acid synthesis and recycling

CA and CDCA, the primary bile acids, are synthesized by hepa-
tocytes through two pathways known as the neutral (or classical)
and the acidic (or alternative) pathway (Fig. 1).216 In the classical
pathway, the first and rate-limiting enzyme in bile acids synthesis
is the cholesterol 7a-hydroxylase (CYP7A1) that generates the 7a-
hydroxycholesterol. In the alternative pathway, the first reaction is
catalyzed by the enzyme sterol 27-hydroxylase (CYP27A1) which
transforms cholesterol into 27-hydroxy-cholesterol. After this
initial step the two pathways converge because CYP27A1 is
required for the side chain oxidation in both pathways. The neutral
pathway can generate both CA and CDCA while only CDCA is
generated using the alternate pathway. The classical pathway
generates the large majority of bile acid pool (approximately 90%)
while the alternative pathway contributes less than 10% of total bile
acid pool.3,217,218 In the hepatocytes, the primary bile acids are
amidated (i.e. conjugated) with glycine and taurine, giving rise to
several bile acid salts glycol-CA and glycol-CDCA (GCA and GCDCA)
and tauro-CA and tauro-CDCA (TCA and TCDCA), that are secreted
in to the bile ducts and released into the duodenum. In the intes-
tine, several bacterial species operate additional bio-
transformations of primary bile acids (essentially deconjugation
and dehydroxylation) giving rise to the secondary bile acids: DCA
and LCA (Fig. 1).176,219e221 Other bacteria such as the Bacteroides,
Clostridium, Escherichia, Eubacterium (and others) through the C7 b-
epimerization generates the 3a, 7b-dihydroxy-5b-cholanoic acid,
UDCA.219 Furthermore, the intestinal microbiota generates other
bile acid derivates: 3-, 7- and 12-oxo-bile acid which represent
about 20e30% of bile acid metabolites produced by gut microbiota
in the colon. Recently, new microbiome-conjugated bile acids with
tyrosine, phenylalanine and leucine have also been identified
which give rise respectively to tyrosocholic acid, phenylalanocholic
acid and leucocholic acid.222

In contrast to humans, in addition to the CA, CDCA, DCA, LCA and
UDCA, rodents have specific bile acids, i.e. the a- and b-muricholic
acids (MCA), that are primary bile acids, generated in the liver from
CDCA, and u-MCA, a secondary bile acid generated in the intestine
by the 7a-dehydroxylation of the a- and b-MCAs, that are not found
in humans.3 After secretion in the duodenum, the majority of BA
are reabsorbed by the intestinal epithelial cells (IECs) and trans-
ported back to the liver through the portal vein, completing a cycle
called “entero-hepatic circulation”.213,223

3.2. Bile acids pool in health conditions and NAFLD

The bile acid pool size and relative composition are maintained
stable by bile acid feedback regulation via multiple regulatory axes,
including the gut-to-liver axis.224e226 Bile acid pool size comprises
the total bile acid content in the liver, serum, intestine and gall-
bladder, with the liver bile acid pool that most closely represents
the newly synthesized and recirculated bile acids. In mice about
95% of this pool is represented by taurine-conjugated bile acids
while, in humans, two-thirds of bile acids are glycine-conju-
gates.227,228 In contrast, in the serum, the majority of bile acids are
unconjugated: CA, DCA andMCAs inmice and CD, DCA and CDCA in
humans. The ileum contains more conjugated than unconjugated
bile acids, whereas in the colon and feces the predominant bile acid
is the unconjugated DCA (95%) both in mice and humans.228

However, the bile acid pool size and composition change in
response to various clinical disorders, clinical and preclinical
studies have demonstrated that bile acid profiles are altered in
patients with NAFLD and rodent models of NAFLD.
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3.2.1. Liver bile acid pool in NAFLD
Few studies have examined the composition of bile acid pool in

NAFLD individuals.229e231 In general, there is an agreement among
various studies in reporting that, in comparison to healthy in-
dividuals, NASH patients have an increased liver bile acid pool size,
but the relative composition of bile acid pool change significantly
from one study to another.229,230 In contrast, others have reported
that overweight and hypercholesterolemia individuals show a
decreased liver bile acids pool size because of a reduction in con-
jugated bile acids.231 In aggregate, while these data suggest that
hepatic bile acid homeostasis is dysregulated in patients with
NAFLD, but the nature of this dysregulation remains undefined.

3.2.2. Fecal and urine bile acids pool in NAFLD
Only one study has investigated the fecal bile acid composition

in patients with NAFLD.232 This study includes 25 healthy controls,
12 patients with steatosis and 17 patients with NASH. The fecal
concentrations of primary, secondary, conjugated and unconju-
gated bile acids in NAFL and NASH patients were significantly
higher than in healthy controls, showing a tendency to increase
with the severity of liver disease. A correlation analysis revealed
that fecal unconjugated primary bile acids positively correlated
with steatosis, ballooning, fibrosis, NAS scores, and liver injury
(aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) levels). The results of this study suggest that in NASH patients,
similarly to the liver, the fecal bile acid pool is increased, although it
is unclear whether this is due to an impairment of intestine reab-
sorption or an increase in biliary excretion. Similar data were
observed in the urine. A small study,233 has shown that the urinary
bile acids pool of MAFLD patients is slightly increased in compari-
son to healthy controls due an increased excretion of DCA, TCA, GCA
and GCDCA.

3.2.3. Serum bile acids pool in NAFLD
Several studies have examined the serum bile acids profile in

adult individuals with NAFLD.233e238 While these studies report a
large variability in bile acid pool size and composition, the large
majority documented an increased bile acid pool size in NASH in-
dividuals compared to healthy individuals. A variable increase of
primary, secondary and conjugated bile acids is reported.

In summary, the results of clinical investigations on the bile acid
pools in NAFLD patients support the notion that the bile acid pool
size is increased in NASH individuals and this tendency is observed
constantly in the liver, intestine and blood. The level of fecal and
urinary excretion of various bile acid species is increased in NAFLD/
NASH patients in comparison with healthy individuals. In contrast,
the relative composition of the various bile acid pools in NAFLD
individuals changes significantly from one study to another and
results of these studies do not allow to draw a firm conclusion on
the mechanism that support a dysregulated biosynthesis in NAFLD/
NASH, further confirming that NAFLD is an umbrella definition
encompassing a spectrum of different disorders.

4. Bile acid receptors

Bile acids are the physiological ligands for GPCR and nuclear
receptors collectively known as BARs, mainly expressed in the
entero-hepatic system and immune cells.3,218,239 The two best
characterized BARs are the FXR, deorphanized in 1999,240e242 while
the GPBAR-1, also known as TGR5, a seven-transmembrane G-
protein coupled receptor was discovered in 2002.240e244 FXR is a
receptor for primary bile acids (Figs. 4 and 5). In human, CDCA is the
most potent ligand for FXR, while in mice this role is exerted by CA.



Fig. 4. Effects of FXR activation in NAFLD. Activation of FXR in the liver exerts metabolic and immunological effects. In the liver cells, FXR represses the expression of the sterol
regulatory element-binding protein (Srebp) 1c and Srebp 2, two essential genes in de novo lipogenesis (DNL) by a mechanism mediated by the small heterodimer partner (SHP).
Activation of FXR also induces an increase in b-oxidation, mediated by the upregulation of peroxisome proliferator-activated receptor alpha (Ppara), and an increase in the activity of
lipoprotein lipase (LPL) with an increase in the clearance of chylomicrons. On the immunological side, the activation of FXR with an SHP-dependent mechanism reduces the binding
of c-Jun and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) on the promoter of the target genes, leading to a reduction in the expression of pro-inflammatory
genes and chemokines. Conversely, FXR directly stabilizes the binding of nuclear receptor corepressor 1 (Ncor 1) on the promoter of target genes by inducing a reduction in the
expression of pro-inflammatory genes such as inducible nitric oxide synthase (iNOS) and IL-1b. Intestinal FXR (iFXR) has recently been shown to be one of the factors involved in the
regulation of cholesterol excretion. Activation of iFXR in intestinal epithelial cells (IECs) induces a down-regulation of Niemann-Pick C1-like 1 (NPC1L1) with a consequent decrease
in cholesterol trafficking from the brush border. Furthermore, iFXR, with an SHP-independent mechanism, induces the up-regulation of ATP binding cassette subfamily G member
(ABCG) 5 and 8 by increasing the fecal excretion of cholesterol. In IECs, iFXR activation induces the release of fibroblast growth factor 19 (FGF19) which reaches the liver where it acts
by reducing DNL and inducing gluconeogenesis. Abbreviations: ACC, acetyl-CoA carboxylase; FASN, fatty acid synthase; VLDL-R, very-low-density lipoprotein cholesterol receptor.
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Moreover, 6a/bMCs and their glycine and taurine derivatives, the
main bile acids in mice, act as FXR antagonist.245,246 The UDCA
derivative, GUDCA is considered an FXR antagonist.3,218,239 In
contrast, secondary bile acids, LCA and DCA, are the physiological
ligands of GPBAR1.3 In addition, bile acids can activate other
membrane receptors including the sphingosine 1-phosphate re-
ceptor (S1PR2),247 which binds conjugated bile acids; the musca-
rinic receptors M2 and M3, activated by DCA and LCA. Additionally,
CDCA might act as an antagonist for the formyl peptide receptors
(FPR),248 and transactivates the vascular endothelial growth factor
receptor (VEGFR) in cancer cell lines. The various bile acid species
also activate several nuclear receptors: the constitutive androstane
receptor (CAR, nuclear receptor subfamily 1 group H member 3
(NR1H3)),249 and the pregnane X receptor (PXR, NR1H2),250 that
are activated by CDCA, LCA and DCA, and the vitamin D receptor
(VDR, NR1H1), that is activated by LCA and DCA in addition to
vitamin D.251 Recently, it has also been demonstrated that some oxo
derivatives of bile acids bind to the retinoid-related orphan re-
ceptor (ROR)ɣt acting as antagonists.252

The two best characterized BARs, FXR and GPBAR1 are ubiqui-
tously expressed in the liver and gastrointestinal tract (Figs. 4 and
5), giving rise to a sophisticated network of regulatory mecha-
nisms that include entero-pancreatic and entero-hepatic
axes.4,176,253 Moreover, both receptors are highly expressed in
cells of innate immunity, such as monocytes/macrophages cells,
DCs, NK and NKT cells,243,254e260 although the RORgt, that bind
10
oxo-bile acids as antagonists, is expressed by the subtype 3 of
innate lymphoid cells (ILC3) and by the Th17, a subset of T helper
lymphocytes.252

4.1. FXR

FXR was identified in 1995 as a putative receptor for farnesol, an
intermediate in cholesterol synthesis, by Forman et al.261 and CDCA
was identified as the physiological ligand for human FXR in
1999.240e242 CDCA activates FXR with an EC50 of 6e10 mmol. FXR is
a transcription regulatory factor that modulates the expression of
target genes both positively and negatively by binding directly on
the promoter of these genes or by regulating other transcription
factors. FXR binds to specific DNA sequences known as FXR
responsive elements (FXR-RE) in the promoter of target genes as a
heterodimer in complex with the retinoid X receptor (RXR).262 The
binding of FXR/RXR heterodimer to FXR-RE always has an upre-
gulating effect on gene expression. In addition, FXR exerts indirect
effects by inducing the transcription of other transcription factors
such as the small heterodimer partner (SHP), an atypical nuclear
receptor that lacks the DNA binding domain,263 or hormones such
as the fibroblast growth factors (FGFs) 19 and 21 that are released
by intestinal and liver epithelial cells in response to the activation of
intestinal FXR (iFXR) and liver FXR.264,265 Unlike the FXR/RXR
heterodimer, SHP and FGF19 can have both positive and negative
effects on the expression of target genes (Fig. 4).



Fig. 5. Molecular mechanisms regulated by GPBAR1 in the white and brown adipose tissue (WAT and BAT), muscle, cardiovascular (CV) system and cells of innate immunity.
Activation of GPBAR1 exerts metabolic effects and immunological effects. GPBAR1 is not expressed in hepatocytes, thus GPBAR1 exerts its metabolic effects by acting on BAT,
muscles and intestinal L-cells. The activation of GPBAR1 in the BAT and muscle increases the activity of type 2 deiodinase (D2) and conversion of the hormone thyroxine (T4) into
the active form triiodothyronine (T3) with an increase in oxygen consumption and energy expenditure. In intestinal L-cells, GPBAR1 promotes the release of glucagon-like peptide 1
(GLP-1) that through the systemic circulation reaches the pancreatic b-cells increasing the secretion of insulin. GPBAR1 also exerts immunomodulatory activities by acting mainly on
monocytes/macrophages and on endothelial cells. In arterial and venular endothelial cells, both systemically and in the liver microcirculation, the GPBAR1 increases nitric oxide
(NO) and hydrogen sulfide (H2S) and promotes a vasodilatory response. In these cells, GPBAR1 also inhibits the binding of NF-kB on the promoter of the target genes, inducing a
down-regulation of vascular cell adhesion molecule-1 (VCAM-1) and TNF-a with counteracting the adhesion of circulating monocytes to endothelial cells. GPBAR1 also acts directly
on monocytes/macrophages by inducing the phosphorylation of mammalian target of rapamycin (mTOR) and forkhead box protein O1 (FOXO1), through the protein kinase A (PKA)/
AKT pathway, which leads to a reduction in the expression of various chemokines, and by up-regulating the expression of interleukin (IL -10) in promoter-dependent manner. The
later effect is mediated by the binding of phosphorylation of cAMP response element-binding protein (pCREB) on the IL-10 promoter. Abbreviations: AKT, protein kinase B; cAMP,
cyclic adenosine monophosphate; CRE, cAMP response elements; CSE: cystathionine g-lyase; eNOS: endothelial nitric oxide synthase; GPBAR1, G protein-coupled bile acid receptor
1.

M. Biagioli and S. Fiorucci Liver Research xxx (xxxx) xxx
Several FXR ligands have been developing for clinical use. The
first synthetic ligand of FXR, GW4064, was discovered in 2000 but
the low plasma bioavailability precluded its clinical devel-
opment.266e268 Subsequently, in 2002, Prof. Fiorucci's laboratory
described a derivative of CDCA, the 6-ethyl-CDCA that was later
christened as obeticholic acid (OCA),269 as a potent semi-synthetic
FXR ligand.270 In 2016, OCAwas granted approval for the treatment
of UDCA-resistant PBC patients, and as such, has been the first-in-
class of FXR ligands approved for clinical use. In the last decade,
several other FXR ligands have been developed and some of them
have been advanced in clinical trials.267,271,272
4.1.1. Functional roles of FXR in NASH: preclinical models
Several studies have shown a beneficial role of FXR in regulating

lipid metabolism in rodent models of NAFLD/NASH. Results ob-
tained in mice lacking systemic FXR expression have demonstrated
that the absence of the receptor facilitates the development of liver
steatosis and a pro-atherogenic lipid profile in response to feeding
an HFD.273 In an early animal study, it was demonstrated that FXR
activation by the isoxazole agent, GW4064, protects against the
development of fatty liver disease in mice fed an HFD through a
mechanism that involves an SHP-dependent repression of
SREBP1c.274 The study, elegantly demonstrated that SHP binds to
LXR, a positive regulator of SREPB1c transcription, thus inhibiting
the recruitment of LXR to the SREPB1c promoter. The down-
regulation of SREBP1c results in the repression of various lipo-
genic genes including the fatty acid synthase (FASN) and ACC
(Fig. 4). Furthermore, other studies have shown that in human
hepatocytes activation of FXR induces the expression of PPARa, a
11
positive modulator of FFA b-oxidation.275 Unfortunately, these
findings have not been confirmed in clinical studies.

Data from preclinical studies also supported the concept that
FXR regulates the synthesis of VLDL promoting the VLDL and chy-
lomicrons clearance.276,277 Several molecular mechanisms medi-
ated this effect. First, the FXR/RXR heterodimer represses the
expression of ApoC-III while inducing ApoC-II and ApoA-V thereby
inducing the activity of lipoprotein lipase (LPL), a key enzyme
involved in the lipolysis of VLDL and chylomicrons.276,277 Second,
FXR induces the expression of the very-low-density lipoprotein
cholesterol receptor (VLDL-R), an essential component in post-
prandial lipoprotein metabolism, by inducing LPL activity. These
data, however, were not confirmed by human studies. In addition,
animal studies suggest that FXR might modulate cholesterol
metabolism through the negative regulation of SREBP2, a gene that
regulates the DNL of cholesterol.278e281 In mice, treatment with
FXR agonists down-regulates the expression of SREBP2 by an SHP-
dependent mechanism (Fig. 4). Again, these findings have not been
confirmed in clinical trials, since the administration of OCA to NASH
individuals worsens the lipoprotein profile.

Some of the beneficial effects exerted by FXR in rodent models
of NAFLD aremediated by two FGFs: FGF19/15, which is released by
IEC upon iFXR activation, and FGF21 that is released from hepato-
cytes, in response to liver FXR activation. Both FGF19 and FGF21 act
on hepatocytes by binding to a cell membrane receptor complex
made up of FGF-R4 and b-klotho.282 In mouse model of NASH,
administration of FGF15 or FGF21 improves the liver histopathol-
ogy by attenuating the severity of steatosis, inflammation and
fibrosis and promotes an increase in energy expenditure and
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insulin sensitivity, along with the browning of the WAT, ketogen-
esis and lipolysis.283e291 These entero-liver and liver-liver axes, are
considered today the most important target to explain beneficial
effects of FXR on glucose metabolism, but their role in clinical
settings is poorly defined. Furthermore, while FGF19 analogues
have been tested in clinical trials, there is concern over the pro-
oncogenic effects of the FGF19/FGF-R4/b-klotho axis in the liver.292

As mentioned above, several of the beneficial effects exerted by
FXR agonists in mousemodels of NASH have not been confirmed by
clinical trials (Table 1). OCA, the first FXR agonist that has been
investigated in patients with liver biopsy-proven NASH, worsened
the pro-atherogenic lipid profile by increasing cholesterol and
plasma LDL-C levels and decreasing HDL-C levels.269 Moreover, the
histopathological benefits of OCA on the histopathology benefits on
liver steatosis, steato-hepatitis and fibrosis scores in NASH in-
dividuals have shown to be inconstant.269

At the systemic level, preclinical studies, using pharmacological
and genetic approach, have shown that FXR might reduce the for-
mation of atherosclerotic plaques in the aorta, also reducing the
expression of inflammatory genes such as IL-6, IL-1b and Cd11b in
ApoE�/� and Ldlr�/� Fxr�/�/Ldlr�/� double knockout mice.273,293e304

However, as already mentioned, the activation of FXR by OCA
worsened the plasma lipid profile and therefore the effects of OCA
on aortic inflammation, cannot be expected to translate into clinical
efficacy.

One of the main target of FXR is the intestine (Fig. 4). The in-
testine plays an essential role in the cholesterol metabolism by
regulating its absorption and excretion and, therefore, is an inter-
esting clinical target for the treatment of NASH. iFXR has recently
been shown to be one of the factors involved in the regulation of
cholesterol excretion (Fig. 4).305 IECs absorb micelles of bile acids
and solubilized cholesterol by phagocytosis. Some of this choles-
terol is then excreted back into the intestinal lumen by two trans-
porters, ATP binding cassette subfamily G member (ABCG) 5 and
ABCG8, whose expression is reduced in the Fxr�/� mice, suggesting
that iFXR might promote cholesterol excretion. This view has been
confirmed by Gege et al.267 through the use of FXR agonist
PX20606, since treating mice with this agent increases the fecal
cholesterol excretion by an FXR-dependent mechanism. Another
Table 1
FXR agonists in clinical trials and development stage.

FXR agonists Development stage in NASH

OCA Clinically approved for the treatment of UDCA-resistant PBC
Phase 3: Randomized Global Phase III study to evaluate the impac
Identifier: NCT02548351

EDP305 A randomized, double-blind study to assess the safety and efficacy
ClinicalTrials.gov Identifier: NCT04378010

Cilofexor (GS-
9674)

Phase II: (i) A Phase II, randomized, double-blind, placebo-controll
combinations in subjects with bridging (F3) fibrosis or compensated
December 2020)
(ii) Safety, tolerability, and efficacy of selonsertib, firsocostat, and

Tropifexor Phase II complete in PBC patients.
Phase IIb in NASH patients ongoing (i) Study of safety and efficacy
Identifier: NCT02855164. Completed April 6, 2020
(ii) Efficacy, safety and tolerability of the combination of Tropifexo
with NASH and liver fibrosis. (ELIVATE). ClinicalTrials.gov Identifie

Nidufexor (LMB-
763)

Phase IIa. Safety, tolerability, pharmacokinetics and efficacy of LMB

TERN-101 Phase IIa. LIFT Study: a safety, tolerability, efficacy, and pharmacok
NCT04328077

MET409 Phase Ib in NASH. Proof of concept. Completed
Phase II. Study to evaluate MET409 alone or in combination with Em
NCT04702490

Vonafexor
(EYP001)

Safety, tolerability, pharmacokinetics and pharmacodynamics of E
NCT03976687
Phase II in NASH and hepatitis B infection is ongoing.

Abbreviations: FXR, farnesoid-X-receptor; NASH, non-alcoholic steatohepatitis; OCA, ob

12
mechanism of regulation of cholesterol absorption by iFXR involves
an SHP dependent regulation of the Niemann-Pick C1-like 1
(NPC1L1) protein. NPC1L1 mediates intracellular cholesterol traf-
ficking from the brush border membrane of the enterocytes to the
ER in the proximal ileum.306

Few iFXR restricted agonists have been developed to exploit the
entero-liver axis and reduce the side effects linked to generalized
activation of FXR.307,308 An example is fexaramine, which has been
shown effective in several mouse models of obesity and inflam-
mation, although it is not currently advanced in clinical trials.307,308

Interestingly, some of the beneficial effects exerted by fexaramine,
such as an increased energy expenditure by BAT, browning of WAT
and shift in bile acid pool composition are abrogated in Gpbar1
knockout mice, suggesting that this agent might work through a
GPBAR1-related mechanism.308

4.1.2. Immune effects of FXR: preclinical models
Recruitment of immune cells is deemed important for the

perpetuation of liver damage and is essential for fibrosis develop-
ment.309,310 The fact that bile acids modulate several effector
functions in myeloid cells was discovered 30 years ago.254,311e313

However, the physio-pathologic relevance of these interactions
has remained elusive until the discovery of BARs.313 Data indicating
that bile acids regulate myeloid cell functions were originally ob-
tained by Kawamata et al.244 for GPBAR1 and by Vavassori et al.254

for FXR. FXR, like other bile acid receptors, is expressed in various
cells of innate immunity: monocytes and macrophages, DCs, NK
and NKT cells. Conversely, T cells express low levels, if any, FXR.314

Results from preclinical models have consistently demonstrated
that activation of FXR in cells of innate immunity promotes a tol-
erogenic phenotype in both the liver and intestine, also decreasing
the number of infiltrating leukocytes in models of colitis or acute
hepatitis and liver fibrosis.254,257,258,314 The anti-inflammatory ac-
tion exerted by FXR in these cells is mediated by an array of
different mechanisms and, in a broad way, can be divided into SHP-
dependent and SHP-independent (Fig. 4).254,315e317 Prof. Fiorucci's
lab was the first to demonstrate that upon FXR activation, SHP
might act as a co-repressor for the production of several cytokines
including IL-1b and TNF-a. In macrophages, SHP physically
t on NASH with fibrosis of OCA treatment (REGENERATE). ClinicalTrials.gov

of EDP-305 in subjects with liver-biopsy proven NASH.

ed study evaluating the safety and efficacy of selonsertib, GS-0976, GS-9674, and
cirrhosis (F4) due to NASH ClinicalTrials.gov Identifier: NCT03449446 (completed

cilofexor in adults with NASH. ClinicalTrials.gov Identifier: NCT02781584

of Tropifexor (LJN452) in patients with NASH (FLIGHT-FXR). ClinicalTrials.gov

r & Licogliflozin and each monotherapy, compared with placebo in adult patients
r: NCT04065841
763 in patients with NASH. ClinicalTrials.gov Identifier: NCT02913105

inetics study of TERN-101 in subjects with NASH. ClinicalTrials.gov Identifier:

pagliflozin in patients with type 2 diabetes and NASH. ClinicalTrials.gov Identifier:

YP001a in healthy volunteers and NASH patients, ClinicalTrials.gov Identifier:

eticholic acid; PBC, primary biliary cholangitis; UDCA, ursodeoxycholic acid.
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http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://ClinicalTrials.gov


M. Biagioli and S. Fiorucci Liver Research xxx (xxxx) xxx
interacts with c-Jun by inhibiting its binding to the promoter of
TNF-a and IL-1b.318,319 Others have shown that SHP directly binds
to CCL2 promoter by preventing the recruitment of NF-kB and
repressing the transcription of this chemokine.320 Another immu-
nomodulatory mechanism activated by FXR, that is SHP-
independent, involves the nuclear co-repressor (NCoR) 1. Activa-
tion of FXR stabilizes NCoR1 on the promoter of pro-inflammatory
genes preventing NF-kB binding and down-regulating the expres-
sion of inducible nitric oxide synthase (iNOS) and IL-1b.255e257 In
contrast, the activation of TLR-4 causes the release of the NCoR1
complex from the promoter of these genes, promoting their
transcription.

In addition to FXR, GPBAR1 is also expressed by monocytes/
macrophages. However, since the two receptors have different af-
finity for various bile acids and different tissue distribution, they
contribute to the regulation of macrophages functions in the body
in a selective manner. However, FXR and GPBAR1 also share com-
mon targets.314 One target of FXR and GPBAR1 in macrophages is
inflammasome. The liver macrophages express the highest levels of
inflammasome components and animal studies have shown that
inflammasome activation is required for NASH development.321

Inflammasomes are part of the innate immune system and part of
the germline-encoded pattern-recognition receptors (PRRs) that
are activated in response to harmful stimuli, such as invading
pathogens, dead cells, or environmental irritants.76,322,323 PRRs
recognize the presence of unique microbial components, called
pathogen-associated molecular patterns (PAMPs) or DAMPs, which
are generated by endogenous stress, and trigger downstream in-
flammatory pathways to eliminate microbial infection and repair
damaged tissues.78 The inflammasomes are intracellular multi-
meric protein complexes that activate caspase-1, leading to the
generation of IL-1b and IL-18. An inflammasome is defined by its
sensor protein (a PRR), which oligomerizes to form a pro-caspase-1
activating platform in response to DAMP.322 There are five mem-
bers of PRRs that have been confirmed to form inflammasomes: the
nucleotide-binding oligomerization domain (NOD), leucine-rich
repeat (LRR)-domain receptor (NLR) family members NLRP1,
NLRP3, and NLRC4, as well as absent-in-melanoma 2 (AIM2) and
pyrin.324 The NLRP3 inflammasome is a target for both FXR and
GPBAR1 and inhibition of inflammasome might contribute to the
anti-inflammatory and immuno-modulatory activities of FXR and
GPBAR1 ligands. In a model of systemic inflammation induced by
bacterial endotoxin, GPBAR1 ligation by LCA promoted cyclic
adenosine monophosphate (cAMP)-protein kinase A (PKA)
dependent phosphorylation and inactivation of NLRP3 in macro-
phages which partially explains the beneficial effect of bile acids in
systemic inflammation and diabetes-related inflammation.323 In
addition to GPBAR1, FXR also inhibits NLRP3 activation in rodent
models of cholestasis, and while whole-body Fxr-null mice were
more prone to develop a severe shock in response to bacterial
endotoxin, FXR-overexpressing mice are resistant to endotoxin-
induced shock.325 In this study, however, DCA and CDCA
increased IL-1b mRNA expression and activated NLRP3 inflamma-
some assembly and FXR expression, but not FXR agonism, sup-
pressed NLRP3 activation by directly interacting with the NLRP3
inflammasome components, raising the question of the trans-
lational relevance of this observation.325

4.1.3. FXR agonists in clinical trials
Several FXR agonists are under clinical development for the

treatment of NASH (Table 1).267,271 The OCA is the first-in-class of
FXR steroidal ligands that have reached a clinical stage. It has been
approved for clinical use in 2016 as a second line treatment for
PBC.326e328 OCA, originally described at the University of Perugia as
6-ethyl-CDCA,270 and INT-747,318,329e331 has recently completed a
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Phase III study (REGENERATE study) in patients with NASH and
liver fibrosis.332 The results of this study were that 23.1% of NASH
individuals with F2 and F3 fibrosis treated with 25 mg/day of OCA
and 11.9% of those treated with the placebo improved the fibrosis
status by� 1, without worsening NASH. However, no change in the
NAS score was observed and similarly to results of a Phase II study,
the FLINT study,333 treatment with OCA worsened the pro-
atherogenic lipid profile: i.e., increased total cholesterol and LDL-
cholesterol levels and reduced HDL-cholesterol levels.334 Further-
more, OCA caused pruritus, a common side effect associated with
the use of OCA, in up to 51% of NASH individuals treated with
25 mg/day, while only 18% of patients treated with placebo expe-
rienced this side effect. Additionally, 3% of OCA-treated patients
developed gallstones or cholecystitis compared to <1% of placebo-
treated individuals. Because these safety concerns and lack of ef-
ficacy, approval of OCA in the treatment of NASH was not gran-
ted.335,336 Taking into consideration that OCA deteriorates the
lipoproteins profile at virtually any dose in NASH patients, the use
of atorvastatin has been proposed as a possible remedy to limit the
side effects of this FXR agonist.337 Additionally, the possibility that
OCA might cause liver decompensation in cirrhotic patients has
lead to limitations in its use in cirrhotic patients.4,335,336

Another steroidal FXR agonist that is being evaluated in NASH is
EDP-305 (Enanta Pharmaceuticals). EDP-305 has completed a
Phase IIa study in patients with NASH (NCT04378010).333 The re-
sults from the phase I studies have shown that EDP-305 activates
FXR in vivo and increases the circulating levels of FGF19, while re-
duces the synthesis of bile acids as measured by assessing the levels
of a-hydroxy-4-cholesten-3-one (named C4). At the dose of 20 mg/
day, EDP-305 reduced total cholesterol and HDL without increasing
the LDL. An increase in the incidence of pruritus compared to pla-
cebo was observed in patients treated with EDP-305.

Several second generation non-steroidal FXR agonists are
currently under investigation in NASH.267,271 Cilofexor (GILEAD),
formerly known as GS-9674 or Px-201, is a potent non-steroidal
FXR agonist.267 A Phase IIb study showed that cilofexor reduced
the hepatic steatosis score in a dose-dependent manner with a
greater efficacy at doses of 30 and 100 mg/day.338 This beneficial
effect was accompanied by a trend of reduction of AST values.
Among adverse effects, pruritus was reported in 14.3% of patients
treated with 100 mg/day cilofexor compared to only 3.6% of pla-
cebo. Because some lack of efficacy and a dose-dependent devel-
opment of pruritus, cilofexor has been also investigated as a part of
a combination package with selonsortib and firsocostat, an ACC
inhibitor in a Phase II trial on NASH individuals. This trial (ATLAS
trial) was designed to investigate the safety, tolerability, and effi-
cacy of monotherapy and dual combination regimens of cilofexor
30 mg, firsocostat 20 mg and selonsertib 18 mg in patients with
advanced fibrosis (F3eF4).339,340 The study NCT03449446
(completed December 2020). Selonsortib was discontinued
because lack of efficacy. On the contrary, the cilofexor plus firso-
costat combination showed positive results.338

Tropifexor (NOVARTIS), also known as LJN452,267 has been
tested in a Phase II trial: “Study of safety and efficacy of tropifexor
(LJN452) in patients with NASH (FLIGHT-FXR)” (NCT02855164)
showed efficacy in reducing hepatic fat content by 5.4% and 10.7% at
the dose of 60 mg and 90 mg, respectively, in patients with NASH. A
reduction of 8.2% and 11.4% in ALT values was also observed in
NASH individuals treated with tropifexor compared to placebo. A
more pronounced decrease in the serum C4 levels at week 12 were
observed with tropifexor compared to placebo. The interim results
of the second part of the trial (part C, NCT02855164) that included
152 patients with NASH, randomized to placebo, 140 mg, or 200 mg
tropifexor, were also published in abstract form. Secondary end-
points measured at 48 weeks showed a progressive decrease in the
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hepatic fat fraction of 31e39% using quantitative magnetic reso-
nance imaging (MRI) in tropifexor groups relative to placebo
(P < 0.001). Similarly, significant decreases in ALT and gamma-
glutamyl transferase (GGT) were reported in both tropifexor
groups compared to placebo. Tropifexor has also been tested in a
Phase II trial in PBC patients with inadequate response to UDCA
(NCT02516605). Among the adverse effects, pruritus was observed
in 14% and 8% of patients treated with 60 mg and 90 mg of tropifexor,
respectively, compared with 7% in patients treated with placebo. In
addition, tropifexor increased LDL and decreased HDL levels. Tro-
pifexor is currently investigated in combinationwith cenicriviroc in
patients with NASH and fibrosis (Tandem study).

Nidufexor (LMB-763-Novartis),310,341 is a non-bile acid FXR ag-
onists based on a tricyclic dihydrochromenopyrazole core,
endowed with partial FXR agonistic activity in vitro and FXR-
dependent gene modulation in vivo. Nidufexor has been advanced
to Phase II clinical trials in patients with NASH and diabetic
nephropathy.

TERN-101 (TERNS Pharmaceuticals Inc.) has recently completed
a Phase IIa study (safety, tolerability, pharmacokinetics and efficacy
of LMB763 in patients with NASH. ClinicalTrials.gov Identifier:
NCT02913105). The primary endpoint of this trial was to evaluate
the safety and tolerability of TERN-101 over 12 weeks of treatment
plus a 4-week post-treatment follow-up period. Secondary end-
points included percent change from baseline in ALT levels and
plasma pharmacokinetics of TERN-101. Exploratory efficacy end-
points included changes in liver fibro-inflammation measured by
MRI corrected T1 (cT1), liver fat content by MRI proton density fat
fraction (MRI-PDFF), pharmacodynamic parameters, and serum
NASH biomarkers.

Additional FXR ligands in clinical trials are: MET409 (Meta-
crine), that is currently undergoing a Phase II trial in patients with
T2DM: study to evaluate MET409 alone or in combination with
empagliflozin in patients with TDM2 and NASH (ClinicalTrials.gov
Identifier: NCT04702490) and Vonafexor (Enyo Pharmaceuticals)
(Table 1).267 Other FXR agonists are undergoing preclinical
evaluation.267,341

4.2. GPBAR1

GPBAR1, is a seven-transmembrane G-protein coupled receptor,
discovered in 2002 by Maruyama et al.,243 mainly activated by
secondary bile acids. This receptor is also known as G-protein
coupled receptor GPCR19 (hGPCR19) or hBG37, while membrane
bile activate receptor (M-BAR) and TGR5 are considered synonyms.
DCA, LCA and their taurine and glycine derivatives are considered
the physiologic ligands.3 The highest expression of the receptors
occur, in the ileum and colon (epithelial and endocrine cells and
intestinal neurons), in the biliary tree (cholangiocytes), gallbladder,
but also in the placenta and spleen. Lower levels are detectable in
the adipose tissues, WAT and BAT, lung, heart and lymphatic tissues
(Fig. 5). In the liver, GPBAR1 is expressed by various non-
parenchymal cell types such as the LSECs, KCs and activated
HSCs, while no expression has been detected in hepatocytes.342e345

In addition, GPBAR1 is abundantly expressed by cells of innate
immunity:monocytes, macrophages, DC and NKTcells, although no
expression has been identified in T cells.255,258,259,346,347

4.2.1. GPBAR1 in NASH: preclinical models
Despite several studies have highlighted a role of GPBAR1 in

regulating energy homeostasis, Gpbar1�/� mice did not gain more
weight than their littermates when fed an HFD.348,349 In adipocytes
and muscle cells, activation of GPBAR1 increases the level of the
type 2 iodothyronine deiodinase (D2). D2 is a major thermogenic
protein that converts thyroxine (T4) into the active
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triiodothyronine (T3) in the BAT and muscles. Exposure of BAT-
derived adipocytes and human skeletal muscle cells to bile acids
increases D2 activity, oxygen consumption and energy expenditure,
suggesting a role for GPBAR1 as an anti-obesogenic receptor
(Fig. 5).348 In the intestine, GPBAR1 is expressed by L cells, a sub-
type of entero-endocrine cells, that produce GLP-1. Activation of
GPBAR1 in these cells induces the secretion of GLP-1 which acts on
pancreatic b cells to potentiate glucose-stimulated insulin secretion
(Fig. 5).350,351 The induction of GLP-1 explains how GPBAR1 ago-
nists attenuate liver insulin resistance in metabolic syndrome and
T2DM.350,352 Consistent with this view, whole body disruption of
GPBAR1 slightly increases insulin-resistance in mice fed an HFD.353

However, several studies have shown that Gpbar1�/� mice sub-
jected to an HFD do not gain more weight than their wild-type
counterparts, because these mice are more active than wild-type
mice and have an increased basal metabolic rate.353,354

Conversely, we and others have shown that GPBAR1 agonism in
mice fed an HFD ameliorates vascular function and reduces
atherosclerosis and liver fat deposition.349,355,356 Preclinical studies
with synthetic selective GPBAR1 agonists (INT777 and BAR501) or
with dual FXR and GPBAR1 ligand (INT767 and BAR502) have
shown that activation of GPBAR1 alleviates liver damage in mice
fed with HFD: BAR501, a selective GPBAR1 agonist attenuates he-
patic and fat deposition and development of fibrosis and portal
hypertension.349,355e359

In addition to liver disease (Fig. 5), NAFLD has a robust cardio-
vascular component that dictates the prognosis of disease more
frequently and to a greater extent than the liver component. The
cardiovascular component of NAFLD represents amajor therapeutic
target for the treatment of NASH. Liver and systemic endothelial
cells express GPBAR1,342,360 and GPBAR1 activation in these cells
might account for the long-time known vasodilatory properties of
secondary bile acids in the systemic and portal circulation.361,362

Keitel et al.342 in 2007, were the first to demonstrate that expo-
sure of LSECs to bile acids increases cAMP concentrations and
expression of endothelial nitric oxide synthase (eNOS) (Fig. 5).342

Consistent with these results, exposure of human umbilical vein
endothelial cell (HUVEC) to TLCA promotes a Ser1177 phosphoryla-
tion of eNOS and increases NO production in a GPBAR1-dependent
manner.363 In its turn, NO attenuates TNF-a-induced adhesion of
monocytes to HUVECs and reduces the expression of vascular cell
adhesion molecule-1 (VCAM-1) (Fig. 5).363,364 Renga et al.361 have
shown that in addition to eNOS phosphorylation, GPBAR1 agonism
modulates the activity of cystathionine-g-lyase (CSE) an enzyme
involved in the generation of hydrogen sulfide (H2S) (Fig. 5). H2S,
similarly to NO, is a vasodilatory agent in the liver microcirculation
and mediates some of the portal pressure-lowering effects of bile
acids and OCA.361,362,365,366

As mentioned above, an important component of NASH is the
inflammatory state generated by exposure to HFD. This state of
subclinical inflammation spans through various tissues including
liver, adipose tissues and cardiovascular system.78,309 Infiltration of
monocytes as well as polarization of macrophages towards a pro-
inflammatory M1 phenotype typically occurs in the liver of mice
fed with HFD and is thought to promote the progression from
NAFLD to NASH.92,367 Several reports have highlighted the potential
of GPBAR1 agonism in modulating immune responses in models of
NAFLD.3,79,310 GPBAR1 regulates myeloid cells functions,244 and the
effects of the receptor on these cells overlap those of other nuclear
receptors, including LXR and FXR.314 In general, both FXR and
GPBAR1, once activated with natural or synthetic ligands, exert
counter-regulatory effects on monocytes and macrophages, i.e.,
attenuates the macrophage responses to pro-inflammatory stimuli,
suggesting that the two receptors could be part of the regulatory
network involved in maintaining a telegenic phenotype in entero-
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hepatic and vascular tissues.6,254,257,258,342,344,355,368 Consistent
with this view, mice deficient for FXR or GPBAR1 are more prone
than their wild-type counterparts to develop inflammation with
age and react to challenges with pro-inflammatory agents with an
exaggerated generation of inflammatory mediators.273,353 GPBAR1
exerts anti-inflammatory activity through multiple mechanisms.
Perino et al.368 in 2014 have shown that GPBAR1 (TGR5) activation
induces a PKA/protein kinase B (AKT) dependent phosphorylation
of mTOR and inhibits the generation of chemokines and their re-
ceptors in LPS-activated macrophages (Fig. 5). In addition, we have
shown that GPBAR1 agonism increases the recruitment of pCREB to
CRE sequences expressed in the promoter of IL-10, increasing the
production of this anti-inflammatory cytokine (Fig. 5).258,369

Importantly, IL-10 knockout mice do not respond to GPBAR1 acti-
vation, indicating that part of the anti-inflammatory activity exer-
ted by GPBAR1 is mediated by this cytokine. In addition to IL-10,
GPBAR1 regulates the expression/function of several chemokines,
including CCL2 and BAR501, 6b-Ethyl-3a, 7b-dihydroxy-5b-cholan-
24-ol, a GPBAR1 ligand, effectively reverses the CCL2/CCR2 activa-
tion at the sinusoidal cell/macrophages interface via a forkhead box
protein O1 (FOXO1)-dependent inhibitory pathway (Fig. 5B).260

Additionally, similarly to FXR, GPBAR1 negatively regulates NLP3
assembly, thereby reducing the production of pro-inflammatory
mediators.323,324,370 The pharmacological effects exerted by
BAR501 on these inflammatory mediators are likely involved in the
beneficial results obtained with this agent in preclinical models of
Fig. 6. Molecular targets of dual GPBAR1 and FXR agonists in NAFLD/NASH. The figure dep
that might be beneficial in treating the liver and vascular components of NAFLD and that cou
CCL2, C-C motif chemokine ligand 2; CCR2, C-C motif chemokine receptor 2; CV, cardiovascu
glucagon-like peptide 1; GPBAR1, G protein-coupled bile acid receptor 1; H2S, hydrogen sulfi
natural killer T; NO, nitric oxide; PGC1a, peroxisome proliferator-activated receptor gamma
type 2 diabetes mellitus; WAT, white adipose tissue.
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NASH. Thus, despite the fact that GPBAR1 is not expressed in he-
patocytes, BAR501 reverts both the hepatic and vascular damage
induced by an HFD in a Gpbar1-dependent manner.356 Further-
more, Gpbar1�/� mice show an increase in systolic blood pressure,
while there is no difference in diastolic blood pressure and heart
rate compared to wild-type mice confirming a role for GPBAR1 in
regulating the vascular tone. Further studies are needed to fully
understand themechanisms bywhich the activation of GPBAR1 has
a protective role in metabolic and immune liver diseases, but the
data obtained so far identify this receptor as an interesting thera-
peutic target.

4.3. GPBAR1 agonists in clinical trials

Several natural triterpenoids, including oleanolic acid, betulinic
acid and ursolic acid, activate GPBAR1 in vitro and in vivo, sug-
gesting a role for this receptor in the beneficial effects exerted by
these diet components and opening interesting opportunities for
developing GPBAR1-based nutraceuticals.371,372 Synthetic GPBAR1
ligands, are INT777 (Intercept Pharmaceuticals) and BAR501 (BAR
Pharmaceuticals) and SB-756050 (GlaxoSmithKline).271,358,373 Re-
sults from a Phase IIa trial are available only for SB-756050 (Clinical
trial: NCT00733577).374 In this placebo-controlled study carried out
in T2DM individuals, treatment with SB-756050, a non-steroidal
GPBAR1 ligand,375 exerted no effects on glucose, insulin and GLP-
1 plasma levels.
icts some of the molecular targets that are activated separately by FXR and GPBAR1 and
ld exploited by a dual GPBAR1/FXR agonists. Abbreviations: BAT, brown adipose tissue;
lar; DCs, dendritic cells; FGF, fibroblast growth factor; FXR, farnesoid X receptor; GLP-1,
de; iFXR, intestinal farnesoid X receptor; NAFLD, non-alcoholic fatty liver disease; NKT,
coactivator 1-alpha; PPARa, peroxisome proliferator-activated receptor alpha; T2DM,
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4.4. Dual GPBAR1 and FXR agonists

The phenotype of double Gpbar1 and Fxr knockout mice has
been described recently.376 These mice show a profound dysregu-
lation of bile acid homeostasis and are more prone to develop liver
fibrosis when challenged with hepatotoxic agents. There are dual
GPBAR1/FXR agonists that have been tested in models of NAFLD:
INT767 and BAR502. INT767 is an FXR preferential agonist, while
BAR502 is a slightly preferential for GPBAR1.271 Preclinical studies
have shown that these agents exert beneficial effects in models of
NASH (Fig. 6).357,377 Based on preclinical data, a Phase I trial
assessing safety and pharmacokinetic of BAR502 in healthy vol-
unteers has been announced. The use of dual ligands might have
several benefits, including a broader activity in comparison to
single agents, spanning over multiple targets that could be desir-
able in a complex disease. Additionally, the use of less potent FXR
agonists might reduce the weight of some FXR-related side effects
that have manifested in clinical trials (Fig. 6). Results of clinical
study are therefore awaited.
5. Conclusions

Here, we have revised how a dysregulated immune system
contributes to the development of NAFLD. While NAFLD is a mul-
tisystemic disease, a dysregulated immune response contributes to
lipotoxicity caused by the lipid overflow in liver and adipose tis-
sues. A dysregulated immune system integrates pathogenic signals
from multiple sources explaining the role of intestinal dysbiosis in
promoting progression of liver disease from simple steatosis to
steatohepatitis and fibrosis and might represent an additional
target in the treatment of NAFLD. While several FXR agonists have
entered clinical trials for the treatment of NAFLD, there are no
clinical data on the effects of these agents on immunemechanisms,
although reduction of liver fibrosis involves immune-mediated
pathways. In contrast to FXR, GPBAR1 is expressed by multiple
cells of innate immunity, and ligands for this receptor exert bene-
ficial effects in models of inflammation,378 suggesting a potential
role for this receptor in modulating the immune response ignited
by a fat-enriched diet. Furthermore, while the effects of the two
receptors are generally overlapping, there is some evidence that
GPBAR1 and FXR act as antagonists on some targets including GLP-
1 release and autophagy. Thus, while FXR represses the liver
expression of autophagic genes in response to feeding, GPBAR1
exerts an opposite effect and promotes liver autophagy in response
to feeding or in mice fed with HFD.336,379 In addition, GPBAR1 ex-
erts beneficial cardiovascular effects that might be exploited in the
treatment of cardiovascular component of NAFLD. Dual GPBAR1/
FXR ligands are currently developed to target these additional
mechanisms in NAFLD, highlighting the potential of bile acids
based therapies in complex disorders.
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