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Nomenclature

k Thermal Conductivity Wm�1K�1

MF Mass fraction

TCR Thermal conductivity ratio

 
knf
kbf

!
T Temperature ð�CÞ
VF Volume fraction

RSM Response surface methodology

Greek Letters

m Viscosity ðmPa:sÞ
_g Shear rate
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The main purpose of this study is to investigate the capabilities of artificial neural network

(ANN) and response surface methodology (RSM) in estimating the viscosity of Fe3O4

nanofluid. Nanoparticles increase the resistance to motion and thus boost the viscosity.

Initially, the rheological behavior of the base fluid and nanofluid was investigated and it

was found that both fluids are not particularly sensitive to the shear rate, which indicates

the Newtonian behavior. Input parameters of temperature and volume fraction and output

parameter, nanofluid viscosity were introduced to both techniques to find the best corre-

lation in which the viscosity can be predictable. Comparison of R-square in ANN (0.999) and

RSM (0.996) techniques showed that both techniques can navigate the viscosity well. Also

the margin of deviation (MOD) and mean square error (MSE) for ANN were 4.22% and

0.0000741 which were lower than the corresponding values in RSM one (MOD ¼ 5.52%,

MSE ¼ 0.00027).

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Reducing energy consumption is a critical issue for human

activity on Earth, and has attracted the attention of many

researchers in building [1e7], solar still [8e12] and solar ap-

plications [13e16]. One of the techniques to reduce con-

sumption can be met by non-materials. The presence of

nanoparticles in fluids dates back to the 20th century. Since

then,many studies have been conducted inwhich researchers

[5,17e23] have prepared many samples of nanofluids to

improve the performance of various devices [12,24e28].

Because mathematics [5,29] is used in many sciences [29,30],

artificial intelligence-based [31,32] techniques can also be

used to reduce the number of experiments. Tian et al. [33]

applied ANN on Gr/EG to investigate the nanofluid surface

tension. They tested nanofluid samples prepared in

0.005e5 wt.% to measure surface tension at 25e70�C. Also,
they developed a neural network consisting of three layers.

The input layer included two neurons, whichwere assigned to

the T and WF, and for the output layer, only one neuron was

considered for surface tension. The number of neurons in the

middle layer was not reported by the authors. A comparison

between ðsGr=EGÞExp and ðsGr=EGÞPred showed that MOD was less

than 1.5%. From the perspective of ANN accuracy, it was

affirmed that the R2 and MSE values were equal to 0.986 and
5:068� 10�8, respectively. Li et al. [34] attempted to predict the

kAl2O3=EG and mAl2O3=EG using a neural network and then eval-

uate the accuracy of the method by comparing it with exper-

imental results. It was found that the coefficient of

determination for viscosity and conductivity was

ðR2Þm ¼ 0:9984 and ðR2Þk ¼ 0:9997, respectively.

Yan et al. [35] prepared samples of MWCNT/liquid paraffin

and then investigated the nanofluids behavior by measuring

sMWCNT=Paraffin. The two neurons that created the input layer

were assigned to T and MF while in the output layer one

neurons was assigned to surface tension. The authors found

that three neurons were appropriate for the middle layer.

Comparisons between ðsMWCNT=ParaffinÞExp and ðsMWCNT=ParaffinÞPred
revealed that the values of R2 and MSE and MOD were 0:997,

5:568� 10�6 and 0:998%, respectively. Akhgar et al. [36] inser-

ted TiO2 and MWCNT (50:50) into EG-water (50:50 vol.%) and

measured knf at 25e50
�C. The neurons in the first, second, and

third layers were two, four, and one, respectively. A compar-

ison between ðkTiO2þMWCNT=wþEGÞExp and ðkTiO2þMWCNT=wþEGÞPred
revealed that the MOD of the developed ANN was less than

2.1%. In another study, Ma et al. [37] evaluated the ability of

the ANN method for prediction of viscosity and thermal con-

ductivity of Al2O3eCuO/Water-EG. They measured the accu-

racy of the ANN technique by calculating the coefficient of

determination and revealed that this parameter for m and k
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Table 1 e ANOVA outputs.

Parameter F -value P -value

T 150 <0:0001

f 500 <0:0001

Tf 28 <0:0001

T2 9.4 0:0051

f2 11 0:003

T2f 10 0.0038

Tf2 0.94 0.34

T3 2 0.17

f3 27 <0:0001
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was ðR2Þm ¼ 0:9755 and ðR2Þk ¼ 0:9846. Li et al. [38] prepared

MgO/water nanofluid at 0.07e1.25 vol.% and measured vis-

cosity at 25e60�C. The neural network developed by the au-

thors to predict mMgO=Water consisted of 3 layers. Three neurons

were added to the first layer to cover the input variables of T,

VF and _g while in the output layer, only one neuron was

allocated for viscosity. The use of trial and error have shown

that 24 neurons are the most suitable model for the middle

layer. Authors reported that the developed ANN has the

values of 0.999 and 0.0118 for R2 and MSE, respectively.

Ghazvini et al. [39] found that kCuFe2O4=water was predictable by

the use of ANN method at 10e70�C and 0e14 wt.%. By

assigning two neurons in the input layer to T and MF, one

neuron for kCuFe2O4=water, and an optimal number equal to six

neurons for the middle layer, they showed that the ability of

the ANN method is very high so that the values of 2:5� 10�4

and 0:97 were obtained forMSE and R2, respectively. Similar to

[39], a study conducted by Esfe and Motallebi [40] investigated

the appropriateness of using the ANN method to estimate

kAl=oil, mAl=oil and cpAl=oil. A comparison was made between the

experimental and predicted data and showed that all three

parameters, taking into account values of R2
k ¼ 0:99, R2

m ¼ 0:846

and R2
cp

¼ 0:895, could well be estimated by ANNmethodology.

The response surface methodology (RSM) method has also

been evaluated by various researchers [41] and their results

show that this method is very simple and at the same time,

has acceptable accuracy. Esfe et al. [42] applied RSM to predict

the
kAl2O3=water

kwater
as well as

mAl2O3=water

mwater
at 300e325K and 1e5 vol.%.

through performing regression criteria, it was found that the

coefficient of determination were ðR2ÞkAl2O3=water
kwater

¼ 0:9997 and

ðR2ÞmAl2O3=water
mwater

¼ 0:9955. In addition, they approved RSM for the

nanofluid of CuO/water and observed that the values of

ðR2ÞkCuO=water
kwater

and ðR2ÞmCuO=water
mwater

were 0.9996 and 0.9956 respectively.

Tian et al. [43] applied RSM to predict the
kAl2O3�MWCNT=10w40

k10w40
at

0.05e1 vol.% and 25e65�C. Performing regression criteria, it
Fig. 1 e Measured viscosity [51].
was found that the values of R2,MSE andMODmax were 0.9948,

0.0008485 and 0.97%, respectively. Yan et al. [41] also exam-

ined RSM for the prediction of mMWCNTs�TiO2=EG at 25e55�C. The

ability of the RSMmethod was excellent because the values of

R2, MSE and MODmax were 0.995, 0.00418 and 9.54%,

respectively.

When ferrofluids [44e46] are exposed to a magnetic field,

they exhibit magnetic properties that are used in the medical

and aerospace industries and have been studied by many re-

searchers [47e50]. In this investigation, the viscosity of Fe3O4/

water nanofluid is predicted by using ANN and RSM tech-

niques. In both techniques, considering the lowest R-square

criteria, the suitable continuous function and appropriate

neuron numbers are extracted. Moreover, mean square error

and margin of deviation for both techniques will be calcu-

lated. Finally, through performing a comparison, the accuracy

of ANN and RSM are evaluated.
2. Reference data

In both cases, the input information must be introduced into

the system. The input information in this study was the

Fe3O4/water viscosity, which was measured experimentally

by Toghraie et al. [51] The authors observed that the viscosity

did not depend to the shear rate. The input variables were

limited to Tand fwithin the range of 20e55�C and 0.1e3 vol.%,

respectively. Fig. 1 shows the amount of viscositymeasured in

the laboratory.
3. RSM technique

As mentioned in the RSM technique, a function is utilized to

estimate the value of the objective parameter. This function is

a set of several linear expressions [52]. In this study, the inputs

include T and f and therefore, for the cubic models, the fitted

function includes main factors such as T, f, T2, f2, T3, f3 and

interaction factors such as Tf, T2f and Tf2. Each factor affects
Table 2 e Coefficients value of the proposed correlation.

Parameter Value Parameter Value

a0 1.4 a5 0.13

a1 �0.045 a6 �8 E�5

a2 0.015 a7 �0.00031

a3 0.0056 a8 �4.3 E�6

a4 0.0007 a9 �0.029

https://doi.org/10.1016/j.jmrt.2020.11.087
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Fig. 2 e Predicted viscosity in terms of T and f.
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the output function. In other words, each factor is multiplied

by a constant coefficient, and by summing all of them, the

output function is extracted. The importance of each factor is

determined by the P-value test and based on the P-value test

criteria, for P>0:1; it can be claimed that the factor does not
Fig. 3 e Predicted versus expe
have a significant effect on the objective function. The

constant-coefficient value is determined by ANOVA and using

the least-square method. Note that, in this technique, in

addition to cubic models, there are also square and linear
rimental viscosity (RSM).
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Fig. 5 e Predicted versus experimental viscosity (ANN).
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Fig. 6 e Margin of deviation for the ANN technique.
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models. In the square model, the total power of each factor

should not be less than two.
4. ANN

In the artificial neural network technique, the input infor-

mation is utilized to find the output variables after passing

through three layers. In ANN, the value of the output param-

eter is generated at the discrete points [53]. In this technique,

the input information is divided into three parts: training,

validation and test. In this study, the total number of input

data was 35 and for training, validation and test sections, 25, 5

and 5 points were assigned, respectively. The accuracy of the

neural network depends on the number of neurons in the

middle layer, and in general, there is no correlation to obtain

the optimal neurons number, and it should be referred to

methods based on trial and error.
Table 3 e Comparison of the statistical criterion for ANN
and RSM.

R2 MSE MODmax

ANN 0.999 0.0000741 4.22%

RSM 0.996 0.00027 5.52%
5. Results

The main purpose of this paper is to investigate the accuracy

of RSM and ANN methods in estimating mFe3O4=water. Therefore,

first, the results of each technique are mentioned separately

and then they are compared.

5.1. RSM outputs

In the regression technique [54,55], it is always tried to predict

the effects of independent variables on the dependent ones

using a function (linear or nonlinear). The RSM method fo-

cuses on several polynomials functions. The polynomials

function used in the RSM technique are limited to first, sec-

ond, and third polynomials. By implementing the statistical

calculation, R-squared value for the linear, quadratic and

cubic polynomial is 0.98, 0.991 and 0.996 respectively. This

implies that the cubic model has priority to other ones. By

implementing the analysis of variance (ANOVA), each

parameter importance is determined. The results of ANOVA

summarized in Table 1.

Finally, the following cubic polynomial correlation is

derived:

mnf ¼a0 þ a1 Tþ a2 fþ a3Tfþ a4 T
2 þ a5 f

2 þ a6 T
2fþ a7 Tf2

þ a8 T
3 þ a9f

3

(1)
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Fig. 7 e Comparison of ANN and RSM techniques.
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The coefficients of the proposed correlation are reported in

Table 2.

Fig. 2 shows the amount of viscosity in terms of fT and f.

The maximum viscosity value is 1.38 mPa s, which is subject

to conditions T ¼ 20�C and. f ¼ 3 vol:%

Fig. 3 shows the correlation between mEpxand

mPredparameters. Under the best conditions, if all points are on

the bisector line, the correlation accuracy is at its maximum

value, in which case the parameters of R2, MSE andMODmaxare

unity, zero and 0%, respectively. However, Eq. (1) is a corre-

lation based on the minimal squares method, which means

that there is a small error in viscosity estimation. Owing to

error, the parameters of R2, MSE andMODmaxare 0.996, 0.00027

and 5.52%, respectively.

The error value (residual) for Eq. (1) is obtained by sub-

tracting the value of the experimental viscosity and the esti-

mated viscosity. Fig. 4 shows the residual of the total reference

data. The maximum residual value is within the range of

�0.025 mPa s to 0.031 mPa s.

5.2. ANN results

The developed neural network in the input and output layers

has two and one neurons, respectively, but since the number

of neurons in the middle layer is not known, the most

appropriate number of neurons must be obtained by repeti-

tion. In this study, themost appropriate number of neurons in

the middle layer is ten. In total, the neural network consisting

of 13 neurons (two neurons in the input layer, ten neurons in

themiddle layer, and one neuron in the output layer) is able to

navigate the behavior of Fe3O4/water from a viscosity

perspective. Asmentioned in the RSM technique, Fig. 5 is used

to examine the correspondence between the experimental

and predicted data. There is a very high match between the

numerical results and experimental ones. However, to ensure

the strength of the ANN, the values of R2 and MSE for this

network are calculated and the results are shown in Fig. 5.

Margin of deviation (MOD) for each experimental data can

be seen in Fig. 6. As shown in Fig. 6, in just four points, the

MOD value is greater than 2%. Elsewhere, MOD value are less

than 2%. However, the maximum MOD was calculated to be

4.22%.

5.3. Comparison of ANN and RSM

In this section, the ability of both methods to estimate

mFe3O4=waternanofluid is compared. The comparison of the two

techniques from the statistical perspective is reported in

Table 3.

The ANN method has a higher R-squared value as well as

lower MSE and MODwhich implies that using ANN is superior

to the RSM technique. The secondmethod of comparison is to

illustrate laboratory data and output techniques. In Fig. 7, at

each temperature, a comparison is performed with respect to

the mass fraction, so that the accuracy of both techniques is

well illustrated.

As shown in Fig. 7, both techniques are highly accurate.

However, the strength of the ANN is slightly better than the

RSM technique especially at higher temperatures.
6. conclusion

In this research, mFe3O4=water was investigated numerically. For

numerical study, RSM and ANN techniques were used, and by

applying the least-square technique, the best polynomials and

the most appropriate number of neurons in the middle layer

were identified. The main findings were:

* Considering the amount of R2in ANN (0.999) and RSM

(0.996), it can be said that from this perspective, the neural

network is better.

* The value of MSE in the ANN (0.0000741) and RSM (0.00027)

indicates that the amount of error in the RSM technique is

more than ANN one.

* The maximum margin of deviation for the neural network

(4.22%) and RSM (5.52%) technique also indicates that the

neural network is stronger than RSM by considering this

criterion.

* Comparison between the neural network and RSM trend,

affirmed the superiority of the neural network.

Finally, it can be concluded that the ANN method

compared to the RSM technique is superior.
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