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The main result of this paper states that fully inert subgroups 
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with fully invariant subgroups, which have a satisfactory 
characterization by a classical result by Kaplansky. As the 
proof of this fact relies on the analogous result for direct sums 
of cyclic p-groups, we provide revisited and simplified proofs 
of the fact that fully inert subgroups of direct sums of cyclic 
p-groups are commensurable with fully invariant subgroups.
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1. Introduction

All groups considered in this paper are assumed to be abelian. Given a group G and 
an endomorphism φ ∈ End(G), a subgroup H of G is called φ-inert if it has finite index 
in φ(H) + H, and it is called fully inert if it is φ-inert for all endomorphisms φ of G. 
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Clearly, the notion of fully inert subgroup generalizes that of fully invariant subgroup. 
Furthermore, two subgroups H and K of G are said to be commensurable if H ∩K has 
finite index both in H and in K. These definitions can be transferred to modules over 
the ring Jp of the p-adic integers, since the torsion Jp-modules are exactly the p-groups. 
So a submodule B of a Jp-module A is called fully inert if it has finite index in ψ(B) +B

for all endomorphisms ψ of A, and two submodules B and C of A are commensurable if 
B ∩ C has finite index both in B and in C.

It is worthwhile recalling that the notions of φ-inert and fully inert subgroups orig-
inated not from a desire to generalize the notions of φ-invariant and fully invariant 
subgroups, but rather they arose naturally in the investigation of dynamical properties 
of endomorphisms of abelian groups. Actually, φ-inert subgroups were a basic tool in 
the definition of intrinsic algebraic entropy introduced in [3], which in turn is a variant 
of the notion of algebraic entropy that was investigated in depth in [5]. Moreover, the 
intrinsic algebraic entropy of the endomorphisms of some important classes of groups, 
including groups of finite rank, may be computed just using fully inert subgroups which 
are independent of the choice of the endomorphisms (see [10]). We refer to our recent 
paper [9] for a survey of the different notions of entropy in the setting of abelian groups.

There is a parallel between fully inert subgroups of p-groups and fully inert submod-
ules of torsion-free Jp-modules. In fact, the main theorem in [11] states that fully inert 
subgroups of direct sums of cyclic p-groups are commensurable with fully invariant sub-
groups, and an example is given of a separable p-group with a fully inert subgroup not 
commensurable with any fully invariant subgroup. In parallel, in [12] it is proved that a 
free Jp-module satisfies the property that a fully inert submodule is commensurable with 
a fully invariant submodule, and an example is furnished of a torsion-free Jp-module not 
satisfying this property.

This parallel is not complete, since in [12] it is also proved that fully inert submodules 
of torsion-free Jp-modules which are complete in the p-adic topology are commensurable 
with fully invariant submodules, while the analogous result for p-groups is not available. 
The parallel notion of complete torsion-free Jp-modules, in the setting of p-groups, is the 
notion of torsion-complete p-groups. In fact, these p-groups are complete in the inductive 
topology or, equivalently, they are isomorphic to the torsion part of the completion in 
the p-adic topology of any basic subgroup (see [7] and [13]).

The main goal of this paper is to provide this missing parallel result. Thus in Section 3
we will prove the main theorem of this paper, stating that fully inert subgroups of 
torsion-complete p-groups are commensurable with fully invariant subgroups. The proof 
of the theorem is split in several parts, depending on the intersection of the fully inert 
subgroup H with a basic subgroup B. First we prove the theorem when H ∩B is either 
of finite index in B, or it is finite. When neither of this two cases arise, the two main 
proofs concern first the case of H ∩ B unbounded, and then that of H ∩ B bounded. 
Surprisingly enough, the most challenging case is the latter.

An essential tool in the proof is the analogous result for direct sums of cyclic p-groups. 
This latter result has a long and elaborate proof divided in two parts, the bounded and 
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the unbounded cases. Unfortunately, there are some gaps in the intermediate results used 
in the second part of the proof in [11]. Thus in Section 2 we revisit some steps of [11], 
providing a simplified version of these in the bounded case and a corrected version in 
the unbounded case.

2. Revisiting fully inert subgroups of direct sums of cyclic p-groups

The standard notation we shall use for a direct sum of cyclic p-groups is:

G = ⊕n≥1Bn = B1 ⊕B2 ⊕ · · · ⊕Bn ⊕B�
n

where Bn
∼= ⊕αn

Z(pn) for all n (αn is the n-th Ulm-Kaplansky invariant of G) and 
B�

n = ⊕i>nBi, with projections πi : G → Bi and π�
n : G → B�

n.

Remark 2.1. In [8, p.168] the subgroup B�
n is denoted by B∗

n. We have changed this 
notation, since we will denote by H∗ the fully invariant hull of a subgroup H of a group 
G (see Proposition 2.6).

In [11, Theorem 3.10] it is proved that a fully inert subgroup H of a direct sum of 
cyclic p-groups G is commensurable with a fully invariant subgroup. The proof is quite 
elaborate and makes use of sophisticated techniques, both in the bounded and in the 
unbounded case. Unfortunately, the proof in the unbounded case has some gaps. In this 
section we furnish a simpler proof for the bounded case, using a result on fully inert 
subgroups of free groups proved in [6]. Then we simplify the proof for the unbounded 
case by means of a reduction to box-like subgroups. Recall that a subgroup H of a direct 
sum of groups G = ⊕i∈IGi is a box-like subgroup if H = ⊕i∈IHi, with Hi ≤ Gi for all 
i ∈ I. Box-like subgroups have been introduced in [4] in the investigation of fully inert 
subgroups of divisible groups, and used intensively in [2].

The notation used to indicate that two subgroups H and K are commensurable is 
H ∼ K. A crucial property of commensurability used throughout paper is that it is 
transitive, and hence it is an equivalence relation.

2.1. The bounded case

The proof of the next proposition replaces the long proof of [11, Theorems 2.2]; it 
makes use of a result from [6] on free groups and some general results from [2].

Proposition 2.2. A fully inert subgroup H of a bounded p-group G is commensurable with 
a fully invariant subgroup.

Proof. Step 1. G = ⊕Z(pn) is a homogeneous bounded p-group.
Write G = F/K, with F a free group and K = pnF , and H = F ′/K, with F ′ a free 

subgroup of F . Every endomorphism φ of F induces an endomorphism φ̄ of F/K = G, 
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and since H is fully inert in G we have that (H + φ̄H)/H ∼= (F ′ + φF ′)/F ′ is finite; 
therefore F ′ is fully inert in F . From [6, Theorem 2.8] we derive that F ′ ∼ mF for some 
integer m, and this implies that H ∼ mG = pkG for some k, as desired.

Step 2. G =
⊕

1≤i≤n ⊕αi
Z(pi).

Set ⊕αi
Z(pi) = Bi and Hi = H ∩ Bi for all i ≤ n. By [2, Lemma 2.3] we get 

that H ∼ H1 ⊕ · · · ⊕ Hn, and by [4, Proposition 4.2] that each Hi is uniformly fully 
inert in Bi. By Step 1, Hi ∼ pkiBi for certain integers 0 ≤ ki ≤ i. There follows that 
H ∼ X = pk1B1 ⊕ · · · ⊕ pknBn. Now [2, Proposition 2.1] ensures that X is fully inert in 
G. We claim that this implies that X is commensurable with a fully invariant subgroup.

We can eliminate the Bi’s which are finite and prove that the direct sum of the 
remaining Bj ’s, which is still fully inert, is fully invariant in G. So, let us assume that 
B = Bc1 ⊕ · · · ⊕ Bcr , where c1 < · · · < cr. Without loss of generality we can assume 
that all the Bci ’s are countable, since in the general case the argument below is easily 
adaptable. In view of [11, Lemma 1.6], it is enough to prove that, for all 0 < j < h ≤ r:

kcj ≤ kch ≤ kcj + ch − cj .

First assume, by way if contradiction, that kch > kcj + ch − cj for some j < h, i.e., 
cj − kcj > ch − kch . Since Hch

∼= ⊕Z(pch−kch ) and Hcj
∼= ⊕Z(pcj−kcj ), the canonical 

injection of Bcj into Bch sends Hcj on an infinite subgroup of Bch strictly containing 
Hch , which is absurd since B is fully inert.

Assume now, by way if contradiction, that kch < kcj for some j < h. Then ch− kch >

cj−kcj , hence the canonical surjection of Bch onto Bcj sends Hch on an infinite subgroup 
of Bcj strictly containing Hcj , again absurd since X is fully inert. �
2.2. Reduction to box-like subgroups

In order to provide a correct proof of [11, Theorem 3.10], we restate Lemma 3.3 of [11]
in a slight modified version and furnish a new proof of it, since the original statement 
and its proof made use of an ambiguous notation, namely, 

∑
i≥t πiH, that may be read 

either as 
∑

i≥t πi(H), or as (
∑

i≥t πi)(H). In our context the correct way is 
∑

i≥t πi(H).

Lemma 2.3. Let H be a fully inert subgroup of a p-group G = ⊕i∈NXi, (Xi �= 0), and 
let πi : G → Xi (i ∈ N) be the canonical projections. Then there exists an index t ∈ N

such that (⊕i≥tπi(H) + H)/H is finite.

Proof. Assume, by way of contradiction, that (⊕i≥tπi(H) +H)/H is infinite for all t ∈ N. 
We will select inductively a sequence of indices t1 < t2 < t3 < · · · in N and a sequence of 
elements h1, h2, h3, · · · in H such that the endomorphism ψ : G → G defined by setting, 
for each element (xi)i∈N ∈ ⊕i∈NXi:

ψ((xi)i∈N) = (xtn)n∈N
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satisfies the condition that the elements

ψ(h1) + H, ψ(h2) + H, ψ(h3) + H, · · ·

are all different. This condition will contradict the hypothesis that (ψ(H) + H)/H is 
finite.

Fix a t1 ∈ N such that πt1(H) is not contained in H, and an element πt1(h1) ∈
πt1(H) \H for some h1 ∈ H. As the support of h1 is finite, choose an index s1 > t1 such 
that πt(h1) = 0 for all t ≥ s1.

As the set {πt1(h) + H | h ∈ H} is finite and (⊕t≥s1πt(H) + H)/H is infinite, there 
are infinitely many elements of the form πt(h) + H (h ∈ H) with t ≥ s1 such that 
πt1(h) + πt(h) + H �= πt1(h1) + H. Select one of these elements πt2(h2) + H.

As the set {πt1(h) + H, πt2(h′) + H | h, h′ ∈ H} is finite and (⊕t≥s2πt(H) + H)/H
is infinite, there are infinitely many elements of the form πt(h) +H (h ∈ H) with t ≥ s2
such that πt1(h) + πt2(h) + πt(h) + H �= πt1(h1) + H, πt1(h2) + πt2(h2) + H. Select one 
of these elements πt3(h3) + H.

Continuing in this way we obtain the desired sequences, since for each n ∈ N we have 
that ψ(hn) = (πt1 + · · · + πtn)(hn), since πt(hn) = 0 for all t ≥ tn+1. �

Thus the statement of [11, Lemma 3.3] is essentially correct, but the next [11, Corollary 
3.4] is wrong; it states that, under the hypotheses of Lemma 3.3, there exists an index 
t such that H ∩ ⊕i≥tGi = ⊕i≥tπi(H). The next counter-example shows that this is not 
true in general.

Example 2.4. Let G = ⊕n∈N〈en〉, where 〈en〉 ∼= Z(pn) for all n, and let H = ⊕n>1〈en −
e1〉. Then G/H ∼= Z(p), thus H is commensurable with G, hence uniformly fully inert. 
Clearly πi(H) = 〈ei〉 for all i ∈ N, therefore for every t ∈ N we have that ⊕i≥tπi(H) =
⊕i≥t〈ei〉 strictly contains its subgroup H ∩⊕i≥t〈ei〉 = ⊕i>t〈ei − et〉. Note that H is not 
a box-like subgroup of G with respect to the direct decomposition G = ⊕n≥1〈en〉, but it 
is box-like if we write G as G = 〈e1〉 ⊕n>1 〈en − e1〉.

The failure of [11, Corollary 3.4] is not serious, since we may reduce to the case of H
a box-like subgroup of ⊕iBi, that is, of the form ⊕iHi, with Hi ≤ Bi for all i, as the 
next result shows.

Corollary 2.5. Let H be a fully inert subgroup of an unbounded direct sum of cyclic p-
groups G = ⊕i∈NBi. Then (⊕i≥1πi(H))/H is finite, therefore H is commensurable with 
a box-like subgroup.

Proof. By [2, Lemma 2.3],

(π1(H) ⊕ · · · ⊕ πn(H) ⊕ π�
n(H)) / H
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is finite for every n, where π�
n : G → B�

n = ⊕i>nBi is the canonical surjection; therefore

(π1(H) ⊕ · · · ⊕ πn(H) + H) / H

is finite for every n.
By Lemma 2.3, there exists a positive integer t such that

(
⊕

i≥t

πi(H) + H)/H

is finite. Putting together these two facts, we get that

⊕i≥1πi(H)/H

is finite. Therefore H is commensurable with the box-like subgroup ⊕i≥1πi(H). �
The next result is [11, Proposition 3.5]; we restate it in the present notation and 

terminology, but we omit the proof that is correctly given in [11]. Recall that the fully 
invariant hull of a subgroup H of a group G, denoted by H∗, is the minimal fully 
invariant subgroup of G containing H.

Proposition 2.6. Let H = ⊕i∈Iπi(H) be a box-like fully inert subgroup of a p-group G =
⊕i∈I〈ei〉, where πi : G → 〈ei〉 is the canonical projection. Then H∗ =

⋃
φ∈End(G) φ(H).

Looking for fully inert subgroups H of unbounded direct sums of cyclic p-groups 
G = ⊕nBn, by Corollary 2.5 we can assume, without loss of generality, that

H = ⊕n≥1πn(H) = ⊕n≥1(H ∩Bn)

is a box-like subgroup. Now each subgroup Hn = H ∩ Bn is fully inert in Bn, but this 
property is useless if G is semi-standard, i.e., each homogeneous component Bn is finite: 
in fact, in this situation the subgroups Hn are fully inert in Bn for any box-like subgroup 
H, so we cannot use the argument applied in Step 2 of the proof of Proposition 2.2. Thus 
the first case we will consider in the next subsection is that in which G is unbounded 
but is semi-standard (see Corollary 2.10).

2.3. The general case

First we need the next result, which is essentially [11, Theorem 3.7], but adapted to 
the box-like setting. As in that theorem, we keep the notation Ht = ⊕i≥tHi for t ≥ 1, 
and H∗t for its fully invariant hull in B�

t−1 = ⊕i≥tBi.; furthermore, if ψ : ⊕iBi → ⊕iBi

is an endomorphism, we will set Supp(ψ) = {i ∈ N | ψ(Bi) �= 0}.
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Lemma 2.7. Assume that the unbounded direct sum of cyclic p-groups G = ⊕i∈NBi con-
tains a box-like fully inert subgroup H = ⊕i≥1Hi, with Hi = H ∩ Bi. Then there exists 
an index t ∈ N such that (H∗t + H)/H is finite.

Proof. Assume, by way of contradiction, that (H∗t +H)/H is infinite for all t ∈ N. We 
will select inductively

- indices t1 < t2 < t3 < · · · in N
– elements a1, a2, a3, · · · such that ai ∈ H∗ti for all i and ai + H �= aj + H for i �= j

– elements g1, g2, g3, · · · such that gi ∈ Hti for all i
– endomorphisms ψ1, ψ2, ψ3, · · · of G such that ψi(gi) = ai and Supp(ψi) contained in 
Bti ⊕Bti+1 ⊕ · · · ⊕Bti+1−1 for all i.

Pick arbitrary t1 ∈ N and a1 ∈ H∗t1 \ H. By Proposition 2.6, H∗t1 =⋃
φ∈End(B�

t1−1)
φ(Ht1), therefore there exist an element g1 ∈ Ht1 and an endomorphism 

φ1 of B�
t1−1 such that φ1(g1) = a1. If g1 ∈ Bt1 ⊕ Bt1+1 ⊕ · · · ⊕ Bt2−1 for some t2 > t1, 

let ψ1 be the endomorphism of G which coincides with φ1 on Bt1 ⊕Bt1+1 ⊕ · · · ⊕Bt2−1, 
and vanishes elsewhere.

As (H∗t2 +H)/H is supposed to be infinite, there exists a2 ∈ H∗t2 such that a2+H �=
a1 + H. By Proposition 2.6, there exist an element g2 ∈ Ht2 and an endomorphism φ2

of B�
t2−1 such that φ2(g2) = a2. If g2 ∈ Bt2 ⊕Bt2+1 ⊕· · ·⊕Bt3−1 for some t3 > t2, let ψ2

be the endomorphism of G which coincides with φ2 on Bt2 ⊕ Bt2+1 ⊕ · · · ⊕ Bt3−1, and 
vanishes elsewhere. Note that, by construction, Supp(ψ1) ∪ Supp(ψ2) = ∅.

Continuing in this way, we obtain the desired families of indices, elements and endo-
morphisms. Now define the endomorphism ψ : G = ⊕i∈NBi → G = ⊕i∈NBi as follows: 
if x = (xi)i∈N ∈ G (xi ∈ Bi for all i), set

ψ(x) =
∑

tn≤i<tn+1

ψn(xi).

This map is well defined since almost all the coordinates of x are zero and the supports 
of the maps ψn are mutually disjoint. In this way we reach the desired contradiction, as 
(ψ(H) + H)/H contains the infinite set ψ(gi) + H = ψi(gi) + H = ai + H, (i ∈ N). �

The next result is essentially [11, Corollary 3.8], which however uses an incorrect 
argument when it derives that (H∗s + H)/H = 0 for some s ≥ t from the fact that ⋂

n≥t H
∗n = 0. Our proof uses a different argument.

Corollary 2.8. Let H = ⊕i≥1Hi be a box-like fully inert subgroup of the unbounded direct 
sum of cyclic p-groups G = ⊕i≥1Bi. Then there exists an index s ∈ N such that Hs =
⊕i≥sHi is fully invariant in B�

s−1 = ⊕i≥sBi.



B. Goldsmith, L. Salce / Journal of Algebra 555 (2020) 406–424 413
Proof. From Lemma 2.7 we know that (H∗t + H)/H is finite for a t ∈ N. This implies 
that the descending chain: (H∗t + H)/H ≥ (H∗t+1 + H)/H ≥ (H∗t+2 + H)/H ≥ · · · is 
stationary. Now we show that 

⋂
i∈N(H∗i +H) = H. Let x = b1 + · · ·+ bm ∈

⋂
i∈N(H∗i +

H), with bj ∈ Bj for all j ≤ m. Since H∗m + H = H1 ⊕ · · · ⊕Hm ⊕H∗m, we get that 
x = h1 + · · ·+hm +h∗m, with hj ∈ hj for all j ≤ m and h∗m ∈ H∗m. Comparing the two 
expressions of x we deduce that h∗m = 0, consequently x ∈ H. The preceding arguments 
show that there exists an s ∈ N such that H∗s ≤ H ∩B�

s−1 = Hs, therefore Hs is fully 
invariant in B�

s−1. �
As in [11, Theorem 3.9], one can easily deduce from Corollary 2.8 the main result for 

semi-standard direct sums of cyclic p-groups.

Theorem 2.9. A fully inert subgroup H of a semi-standard direct sum of cyclic p-groups 
G is commensurable with a fully invariant subgroup.

Proof. By Corollary 2.5 we can assume that H is box-like, thus H = H1⊕· · ·⊕Hs⊕Hs. 
From Corollary 2.8 we know that Hs is fully invariant in B�

s−1 for a certain s ∈ N. 
Then [11, Lemma 1.5] ensures that there exists a subgroup C of B1 ⊕ · · · ⊕Bs such that 
C⊕Hs is fully invariant in G. But the semi-standard hypothesis implies that C is finite; 
since Hs has also finite index in H, we conclude that H is commensurable with the fully 
invariant subgroup C ⊕Hs. �

Now the proof in the general case goes as in [11, Theorem 3.10], using as main in-
gredient Corollary 2.8. So the main result is the following theorem, whose proof is only 
sketched. The reader interested in the details is referred to the original proof.

Theorem 2.10. A fully inert subgroup H of a direct sum of cyclic p-groups G is commen-
surable with a fully invariant subgroup.

Sketch of the proof. The difference with respect to the proof of the semi-standard case of 
Theorem 2.10 is that H1⊕· · ·⊕Hs, which is fully inert in B1⊕· · ·⊕Bs, is no longer finite; 
however, in view of the solution of the bounded case, H1⊕· · ·⊕Hs is commensurable with 
a fully invariant subgroup L of B1 ⊕ · · ·⊕Bs. Clearly H is commensurable with L ⊕Hs. 
The proof of [11, Theorem 3.10] consists in showing that L ⊕Hs is commensurable with 
a fully invariant subgroup of G using [11, Lemma 1.6], which characterizes fully invariant 
subgroups of direct sums of cyclic p-groups (recall that [11, Lemma 1.6] rephrases [1, 
Theorem 2.8]). �
3. Fully inert subgroups of torsion-complete p-groups

In this section we prove a result for fully inert subgroups of torsion-complete p-groups 
analogous to the results proved in [11] and [12] for direct sums of cyclic p-groups and 
for complete torsion-free Jp-modules, respectively. The proof in the case of p-groups is 
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more technical, due to the fact that fully invariant subgroups of separable p-groups have 
a more complex structure than fully invariant submodules of torsion-free Jp-modules.

Let G be a separable p-group with basic subgroup B = ⊕n≥1Bn, where Bn
∼=

⊕αn
Z(pn). Recall that the exact sequence 0 → B → G → G/B → is pure, and that 

G/B ∼= ⊕Z(p∞) is divisible. This exact sequence gives rise to the long contravariant 
exact sequence:

0 → Hom(G/B,G) → Hom(G,G) → Hom(B,G) → Pext(G/B,G) → · · ·

where the first Hom is zero, since G is assumed to be reduced, and Pext denotes the 
group of the pure-exact sequences. It is a basic result in homological algebra for p-groups 
that the group G is torsion-complete if and only if Pext(Z(p∞), G) = 0 (see [8, Corollary 
3.7, p. 314]). Therefore, if G is such a group, we have the isomorphism Hom(G, G) ∼=
Hom(B, G) induced by the restriction, thus every homomorphism φ : B → G extends 
uniquely to an endomorphism of G; this fact holds, in particular, for every endomorphism 
of B.

From now on, we will identify a reduced unbounded torsion-complete p-group with 
basic subgroup B with B, the torsion subgroup of the p-adic completion of B. Both B
and B are separable groups, hence, they are fully transitive; therefore, by Kaplansky’s 
theorem [8, Theorem 2.2, p. 307], the fully invariant subgroups of B and B are of the 
form B(u) and B(u), respectively, for some increasing sequence of non-negative integers 
or symbols ∞: u = (r0, r1, r2, · · · ) (see [8, Chapter 10, Section 2] for the notion of 
fully transitive group G and for the definition of the subgroups G(u)). As B and B are 
unbounded, the non-zero subgroups of the form B(u) and B(u) are infinite.

3.1. Preliminary results

We prove now some results on commensurable subgroups of an arbitrary group, on the 
existence of maps from unbounded direct sums of cyclics, and on fully inert subgroups 
of torsion-complete groups that will be used in this section.

Lemma 3.1. Let H ∼ K be commensurable subgroups of a group G, and let L a subgroup 
of G. Then H ∩ L ∼ K ∩ L.

Proof. We have the following relations:

((H ∩L)+ (K ∩L))/(K ∩L) ∼= (H ∩L)/(H ∩L∩K) ∼= ((H ∩L)+K)/K ≤ (H +K)/K.

As the last quotient is finite, so too is the first. The same relations hold replacing H and 
K, so both H ∩L and K∩L have finite index in (H ∩L) +(K ∩L), and we are done. �
Lemma 3.2. If B is an infinite direct sum of cyclic p-groups and Y is an unbounded 
p-group, then there exists a homomorphism σ : B → Y such that σ(B[p]) is infinite.
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Proof. Let B = ⊕i∈I〈ei〉 and let B′ = ⊕j∈J〈e′j〉 be a basic subgroup of Y . Select a 
sequence of cyclic summands 〈ein〉 (n ∈ N) of B and a sequence of cyclic summands 
〈e′jn〉 (n ∈ N) of B′ of strictly increasing order, such that the order of e′jn is greater 
than or equal to the order of ein . Then define σ by embedding each ein into e′jn , and 
sending to zero all the remaining generators ei. Clearly σ(B[p]) = ⊕n∈N〈e′jn〉[p], which 
is infinite. �

The next result exhibits some simple consequences of full inertia which will be useful 
in our approach. The results are well known but we include the simple proof for the 
convenience of the reader.

Lemma 3.3. (i) If A is a subgroup of the group G having the property that every endo-
morphism of A extends to an endomorphism of G, then if H is fully inert in G, H ∩ A

is fully inert in A.
(ii) If H is a fully inert subgroup of G = X ⊕ Y , then

(H ∩X) ⊕ (H ∩ Y ) ≤ H ≤ πX(H) ⊕ πY (H),

where πX , πY are the canonical projections of G onto X, Y respectively. Furthermore, 
(H ∩X) ⊕ (H ∩ Y ) ∼ H ∼ πX(H) ⊕ πY (H).

Proof. Since H is fully inert in G, the quotient (H+φ(H))/H is finite for all φ ∈ End(G). 
Now if ψ is an arbitrary endomorphism of A, there is, by assumption, an endomorphism 
φ of G with φ � A = ψ and so ((H ∩ A) + ψ(H ∩ A))/H ∩ A ≤ ((H + φ(H)) ∩ A) and 
since the RHS is isomorphic to a subgroup of the finite group (H + φ(H))/H, the LHS 
is also finite. Since ψ was arbitrary, H ∩A is fully inert in A.

It follows from part (i) that H ∩X, H ∩ Y are fully inert in G and clearly (H ∩X) ⊕
(H ∩ Y ) ≤ H ≤ πX(H) ⊕ πY (H). To complete the proof it suffices to show that the 
quotient πX(H) ⊕ πY (H)/(H ∩X) ⊕ (H ∩ Y ) is finite.

Now H ∩X = H ∩πX(H) and H ∩Y = H ∩πY (H), so that πX(H)/(H ∩X) ∼= (H +
πX(H))/H is finite since H is fully inert in G; similarly Y . It then follows immediately 
that πX(H) ⊕ πY (H)/(H ∩X) ⊕ (H ∩ Y ) is also finite. �

Lemma 3.3(i) enables us to derive from [11, Theorem 3.10] or Theorem 2.10 above that 
H∩B is commensurable with a fully invariant subgroup of B. Thus, under the hypothesis 
of Lemma 3.3 we derive that H ∩B ∼ B(u) for some sequence u; in particular, the two 
extreme cases may happen, that is, H ∩ B ∼ {0} (i.e., H ∩ B is finite), or H ∩ B ∼ B

(i.e., H ∩B has finite index in B).
The next result presents a sufficient condition and a necessary condition in order that 

H ∩B is commensurable with a non-zero fully invariant subgroup B(u).

Proposition 3.4. (1) If H is a subgroup of B which is commensurable with the non-zero 
fully invariant subgroup B(u), then H ∩B is commensurable with B(u).
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(2) If H∩B is commensurable with B(u), then H is commensurable with the subgroup 
H ′ = H + B(u) of B such that (H ′ ∩B)/B(u) is finite.

Proof. (1) Since B(u) ∩B = B(u), the result follows immediately from Lemma 3.1.
(2) From H ′ = H + B(u) we have (H ′ ∩ B)/B(u) = ((H + B(u)) ∩ B)/B(u) =

((H ∩ B) + B(u))/B(u), and the last quotient is finite as H ∩ B ∼ B(u). To prove 
that H ∼ H ′ = H + B(u) it is enough to show that (H + B(u))/H is finite. But 
(H + B(u))/H ∼= B(u)/(H ∩ B(u)) = B(u)/(H ∩ B ∩ B(u)), where again the last 
quotient is finite as H ∩B ∼ B(u). �
Remark 3.5. A useful consequence of Proposition 3.4 is that we may replace a fully inert 
subgroup H of B such that H ∩ B ∼ B(u) by a subgroup H1 ≥ H with the quotient 
H1/H finite and B(u) a subgroup of finite index in H1 ∩B. Note that H1 will again be 
fully inert in B, as H1 ∼ H, by [2, Proposition 2.1]. Consequently, we shall often find it 
convenient to assume that we are working with a fully inert subgroup H of B with B(u)
of finite index in H ∩B.

3.2. The two extreme cases

We start considering the two extreme cases of H ∩ B ∼ B (that is, H ∩ B has finite 
index in B), and H ∩ B ∼ 0 (that is, H ∩ B is a finite subgroup). These are particular 
cases of when H ∩ B is unbounded or bounded, respectively, that are discussed in the 
next subsections. But we think that it could be of interest to have easier and direct 
proofs of these special cases.

Lemma 3.6. Let H be a fully inert subgroup of the reduced unbounded torsion complete 
p-group B such that H ∩ B is commensurable with B. Then H is commensurable with 
B, that is, B/H is finite.

Proof. Since B/(H ∩ B) ∼= (H + B)/H is finite, there exists a finite subgroup F of B
such that H +B = H +F . Set H ′ = H +F . As H ′ is commensurable with H, it is fully 
inert in B̄ (see the Remark 3.5), and since B ≤ H ′, B/H ′ is divisible. We shall prove 
that H ′ = B. Assume by way of contradiction that B/H ′ �= 0. Then a copy of Z(p∞) is 
contained in B/H ′, so there exists a sequence of distinct cosets {xn +H ′}n∈N (xn ∈ B). 
Write B as a direct sum of cyclic p-groups 〈ei〉, with i ranging over a suitable index set 
I. The fact that B is unbounded ensures that for each n ∈ N there exists a generator 
ein of B of order greater than the order of xn. Therefore we can define a homomorphism 
φ : ⊕n∈N〈ein〉 → B, by sending each ein to xn. Extend this map to a homomorphism 
ψ : B → B by sending ei to 0 for all i �= in. Then extend ψ to an endomorphism ψ of B. 
Then (H ′ +ψ(H ′))/H ′ contains the infinite sequence of distinct cosets xn +H ′ (n ∈ N), 
contradicting the fact that H ′ is fully inert. Therefore B = H ′ and H has finite index in 
B. �
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Consider now the case when H ∩B is finite.

Lemma 3.7. Let H be a fully inert subgroup of the reduced unbounded torsion complete 
p-group B such that H ∩B is finite. Then H is finite.

Proof. Assume for a contradiction, that H is infinite. We define a homomorphism σ :
B → B such that σ(H) is infinite. This will give the desired contradiction, since H∩σ(H), 
being contained in H ∩B, is finite, therefore (H + σ(H))/H ∼= σ(H)/(H ∩ σ(H)) would 
be infinite, contradicting the full inertia of H in B.

The assumption that H is infinite implies that the socle H[p] is infinite. As B is pure-
complete, this socle supports a pure subgroup K of B, by [8, Lemma 5.4, p. 322], and 
the closure K of K in the p-adic topology is a summand of B, by [8, Corollary 3.9, p. 
315].

If K is bounded, then it is an infinite direct sum of cyclic groups and it follows from 
Lemma 3.2 that there is a homomorphism φ : K = K → B such that φ(K[p]) = φ(H[p])
is infinite and this mapping extends to an endomorphism σ of B. Since σ(H) ≥ σ(H[p]) =
φ(H[p]), σ(H) is infinite and we are done.

Assume now that K is unbounded, and let B′ be a basic subgroup of K such that 
K = B

′. The socle B′[p] is infinite and it is contained in K[p] = H[p]. It again follows 
from Lemma 3.2 that there is a homomorphism ψ : B′ → B such that ψ(B′[p]) is infinite 
and this extends to a homomorphism from K to B, which in turn can be extended 
to an endomorphism σ of B, since, as noted above, K is a summand of B. Then as 
σ(H) ≥ σ(H[p]) ≥ ψ(B′[p]), we have that σ(H) is infinite, as required. �
3.3. The unbounded case

Our goal now is to prove the converse of item (1) in Proposition 3.4 for a fully inert 
subgroup H, starting with the unbounded case.

A significant simplification in our arguments in the unbounded situation arises from 
the fact that if B(u) is an unbounded fully invariant subgroup of B, then B = B(u) +B. 
This is because B(u) is then a large subgroup of B in the sense of Pierce - see, for 
example, the discussion in [7, Chapter 10, Section 2].

Proposition 3.8. Let H be a fully inert subgroup of a reduced torsion complete p-group 
B such that H ∩ B is unbounded for some basic subgroup B. If H ∩ B ∼ B(u), then 
H ∼ B(u).

Proof. As noted in the Remark 3.5, we can replace H by the commensurable subgroup 
H ′ = H + B(u), which contains B(u) and has the property that (H ′ ∩ B)/B(u) is 
finite: in fact, (H +B(u))/H ∼= B(u)/(B(u) ∩H) = B(u)/(B(u) ∩H ∩B) is finite. The 
subgroup H ′ is still fully inert in B and clearly H ∼ B(u) if and only if H ′ ∼ B(u). 
Therefore we can identify H with H ′ and assume, from now on, that B(u) is contained 
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in H ∩ B as a subgroup of finite index. We will show that, with this identification, H
contains B(u)) as a subgroup of finite index, which gives the desired result.

Now (H + B(u))/H ∼= B(u)/(H ∩ B(u)), which is an epimorphic image of 
B(u))/B(u)), since B(u)) ≤ H ∩B(u). But we have:

B(u)/B(u) = B(u))/(B(u) ∩B) ∼= (B(u) + B)/B = B/B,

since, as noted above B(u) +B = B in this unbounded situation. Therefore B(u)/B(u)
is divisible, and consequently so too is its epimorphic image (H + B(u))/H. Imitating 
the proof of Lemma 3.6, we will prove that the factor group (H + B(u))/H is zero. If 
not, (H + B(u))/H contains a copy of Z(p∞), hence there exists a sequence of distinct 
cosets {xn + H}n∈N (xn ∈ B(u)).

The subgroup B(u) can be expressed as a direct sum 
⊕

〈paiei〉 where the ei are gen-
erators of B; clearly it suffices to consider a countable collection of these. Now assuming 
the order of ei is pbi , note that B(u) unbounded means that bi−ai tends to infinity with 
i. So given any n, there is an in such that bin is greater than the order of xn+ain

. Now 
define φ : B → B(u) by sending ein to xn+ain

and mapping everything else to 0. This 
means that the image of pain ein will be painxn+ain

and modulo H one will just pick up 
the images xn using the usual relations for Z(p∞).

Extend φ to an endomomorphism ψ of B. Then (H + ψ(H))/H contains (H +
ψ(B(u)))/H, and consequently it contains the infinite sequence xn + H (n ∈ N), con-
tradicting the fact that H is fully inert. Therefore (H + B(u))/H = 0, or, equivalently, 
H ≥ B(u)).

Finally, using the inclusion H ≥ B(u)), we have:

(H ∩B)/B(u) = (H ∩B)/(B(u) ∩B) ∼= ((H ∩B) + B(u)))/B(u)) =

(H ∩ (B + B(u)))/B(u)) = (H ∩B)/B(u)) = H/B(u)).

Since the first term is finite, so too is the last term, therefore H ∼ B(u). �
Corollary 3.9. Let H be a fully inert subgroup of a reduced torsion complete p-group B
such that H ∩ B is unbounded (respectively, bounded) for some basic subgroup B. Then 
H ∩B′ is unbounded (respectively, bounded) for any other basic subgroup B′ of B.

Proof. By Proposition 3.8, if H ∼ B(u) is unbounded, H is commensurable with the 
unbounded subgroup B(u), so H ∩B′ ∼ B(u) ∩B′ = B′(u), which is unbounded, hence 
H ∩B′ is unbounded too. The proof for the bounded case follows immediately. �

More information on the fully inert unbounded subgroup H is furnished in the fol-
lowing proposition.

Proposition 3.10. If H is a fully inert unbounded subgroup of B, then
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(1) B = X ⊕ Z, where pkZ = 0 for some k ≥ 0 and B[p] = H[p] ⊕ Z[p];
(2) H is commensurable with a subgroup H ′ of X such that pkB[p] ≤ H ′.

Proof. (1) We have B[p] = H[p] ⊕ S for some subsocle S. If S = 0, then our claim is 
true for Z = 0 and X = B. If S �= 0, then S supports a pure subgroup Z of the torsion-
complete group B. We shall prove that Z is bounded. Assume, by way of contradiction, 
that Z is unbounded.

The socle H[p] supports a pure unbounded subgroup K of B, which has an unbounded 
basic subgroup C, say. Then, applying Lemma 3.2, we get a homomorphism σ : C →
Z ≤ B such that σ(C[p]) is infinite. Recall that the closure, K, of K in B in the p-adic 
topology is a direct summand of B.

From the pure-exact sequence 0 → C → K̄ → D → 0, where D is a divisible p-
group, we derive the exact sequence Hom(K, B) → Hom(C, B) → Pext1(D, B). Since 
the last term is zero, we can extend σ to a homomorphism from K to B, and then to 
an endomorphism φ of B by sending a complement of K to zero. Then, noting that 
H[p] ∩ Z = 0, we get:

(H + φ(H))/H ≥ (H + φ(H[p]))/H ≥ (H ⊕ σ(C[p]))/H ∼= σ(C[p])/(H ∩ σ(C[p])

that gives the desired contradiction, since σ(C[p]) is infinite and H∩σ(C[p]) ≤ H[p] ∩Z =
0. Therefore Z is bounded, i.e., pkZ = 0 for some integer k ≥ 0. As Z is pure, it is a 
direct summand, hence B = X ⊕ Z for some complement X.

(2) Obviously πX(H) + H = πX(H) ⊕ πZ(H), where πZ : B → Z is the canonical 
projection of B onto Z. We have the inclusions

(H ∩ πX(H)) ⊕ (H ∩ πZ(H)) ≤ H ≤ πX(H) ⊕ πZ(H) = πX(H) + H.

As H is fully inert, (πX(H) + H)/H is finite. We prove now that (πX(H) + H)/πX(H)
is also finite.

Noting that πX(H) ∩H = H ∩X and that H/H ∩X ∼= πZ(H), we have

(πX(H) + H)/πX(H) ∼= H/(H ∩ πX(H)) = H/(H ∩X) ∼= πZ(H) ∼= (H ⊕ πZ(H))/H

where the last term is finite since H is fully inert and H[p] ∩Z[p] = 0 implies H ∩Z = 0. 
Thus we have proved that H ∼ πX(H). Furthermore, noting that pkZ = 0, we have:

pkB[p] = (pkX ⊕ pkZ) ∩ (H[p] ⊕ Z[p]) ≤ pkX ∩ (πX(H[p]) ⊕ Z[p])

≤ pkX ∩ πX(H[p]) ≤ πX(H).

Setting H ′ = πX(H) we get the desired conclusion. �
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3.4. The bounded case

The proof of the bounded case may be considerably simplified if we can replace B(u)
by B[pk], that is, if we may assume that the sequence u is of the form (0, 1, 2, · · · , k −
1, ∞, · · · ). So we start the bounded case by performing this reduction.

Let B = ⊕i≥1Bi, where Bi
∼= ⊕αi

Z(pi) for all i (αi is the i-th Ulm-Kaplansky 
invariant of B). As recalled in Section 2, for every n ≥ 1 we have the direct decomposition

B = B1 ⊕B2 ⊕ · · · ⊕Bn ⊕B�
n

where B�
n = ⊕i>nBi. Let π�

n : B → B�
n and τn : B → B1⊕B2⊕· · ·⊕Bn be the canonical 

projections. Then

B = B1 ⊕B2 ⊕ · · · ⊕Bn ⊕B
�

n

where B
�

n is the torsion-completion of B�
n. Accordingly with the above notation, let 

τn : B → B1 ⊕B2 ⊕ · · · ⊕Bn and π�
n : B → B

�

n be the canonical projections.

Lemma 3.11. Let G ∼= ⊕i∈I〈ei〉, where 〈ei〉 ∼= Z(pn) for all i ∈ I, and let u be the 
sequence (r0, r1, · · · , rk−1, ∞, · · · ). If n ≥ rk−1 + k, then G(u) = G[pk].

Proof. As the inclusion G(u) ≤ G[pk] is trivially true, we prove the converse inclusion. 
If x ∈ G[pk], then pkx = 0 implies that x = pry for a suitable y ∈ G, and an integer 
r ≥ n − k. But then r ≥ rk−1, therefore obviously x ∈ G(u). �
Corollary 3.12. In the notation above, if n ≥ rk−1 + k, then

B(u) = (B1 ⊕B2 ⊕· · ·⊕Bn)(u)⊕B�
n[pk] , B(u) = (B1 ⊕B2 ⊕· · ·⊕Bn)(u)⊕B

�

n[pk].

Proof. The first equality is an immediate consequence of the equality B(u) = (B1 ⊕
B2 ⊕ · · · ⊕ Bn)(u) ⊕ B�

n(u) and of the fact that, by Lemma 3.11, Bi(u) = Bi[pk] for 
each i > n. To prove the second equality, it is enough to show that B�

n(u) = B
�

n[pk]. We 

may use the same proof as in Lemma 3.11. The inclusion B
�

n(u) ≤ B
�

n[pk] is trivially 

true. For the converse inclusion, let x ∈ B
�

n[pk]. Since B
�

n[pk] =
∏

i>n Bi[pk], pkx = 0
implies that x = pry for a suitable y ∈ B

�

n, and an integer r ≥ n −k. But then r ≥ rk−1, 
therefore obviously x ∈ B

�

n(u). �
Let H be a fully inert subgroup of B and assume that H ∩B ∼ B(u), where u is the 

sequence (r0, r1, · · · , rk−1, ∞, · · · ). Fix a positive integer n ≥ rk−1 + k.
Let H1 = H∩(B1⊕B2⊕· · ·⊕Bn), H2 = H∩B�

n and H2 = H∩B�

n. Then Lemma 3.3(ii) 
ensures that τn(H)/H1 and π�

n(H)/H2 are finite, and we have the inclusions

H1 ⊕H2 ≤ H ≤ τn(H) ⊕ π�
n(H).
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So, for our purposes, since H is commensurable with both H1⊕H2 and τn(H) ⊕π�
n(H), 

we may replace H by each one of these fully inert subgroups, that is, we may assume 
that

H1 ⊕H2 = H = τn(H) ⊕ π�
n(H).

Then H ∩ B = H1 ⊕ H2 ∼ B(u) = (B1 ⊕ B2 ⊕ · · · ⊕ Bn)(u) ⊕ B�
n[pk], hence H1 ∼

(B1 ⊕ B2 ⊕ · · · ⊕ Bn)(u) and H2 ∼ B�
n[pk]. The consequence of this fact is that, if we 

want to prove that H ∼ B(u), it is enough to prove that

H2 ∼ B�
n[pk] ⇒ H2 ∼ B

�

n[pk].

More generally, we deduce that it is enough to prove that for the fully inert subgroup 
H of B the following implication holds

H ∩B ∼ B[pk] ⇒ H ∼ B[pk].

Lemma 3.13. Let H be a fully inert subgroup of a reduced unbounded torsion complete 
p-group B such that H ∩ B is bounded. If H ∩ B ∼ B[pk], then H[p] and B[p] are 
commensurable.

Proof. As noted in Remark 3.5, we will assume that H ∩B contains B[pk] as a subgroup 
of finite index. We will prove that H[p] is of finite index in B[p]. Let B[p] = H[p] ⊕X ′

and suppose for a contradiction that X ′ is infinite.
Choose a countable set of basis elements X = {x1, x2, . . . } ⊆ X ′ and form the set X

into a disjoint union of subsets X1, X2, . . . , Xn, . . . (there may be infinitely many subsets 
or just finitely many), where the elements of a given Xn have the property that each 
x ∈ Xn has height sn in B for some fixed integer sn ≥ 0, and s1 < s2 < · · · . Then the 
subgroups generated by the sets Xi consist of direct sums of the form X i =

⊕
j∈Ji

〈xij〉 for 

some (possibly infinite) index set Ji; note that 〈X〉 =
⊕
i≥1

X i. Now each xij gives rise to an 

element yij of B with xij = psiyij and each subgroup 〈yij〉 is a direct summand of B. Set 
Yi =

⊕
j∈Ji

〈yij〉, a summand of B. Note that |Ji| ≤ αsi(B) (the sith Ulm invariant of B) 

and since the Ulm invariants of B and B are equal, we can find corresponding elements bij
in B and corresponding summands B1, B2, . . . , where each Bi is homocyclic of exponent 
si + 1. Now define a map φ :

⊕
i≥1

Bi → B by sending bij �→ yij ; this map extends to an 

endomorphism ψ of B with ψ(Bi) = Yi. Note that each element psibij ∈ B[p] ≤ B ∩H, 
as we assumed that H ∩B contains B[pk], so that each psibij ∈ H[p].

Now H[p] = H ∩ B[p] is fully inert in B being the intersection of two fully inert 
subgroups and so we have that

(H[p]) + ψ(H[p])/H[p] ≥ (H[p]) + ψ(⊕psiBi)/H[p].
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However, the term on the righthand side of the above inequality is isomorphic to 
〈X〉/(H[p] ∩ 〈X〉) and the denominator is 0 since H[p] ∩ 〈X〉[p] = 0. This gives the 
required contradiction and we have established that H[p] is of finite index in B[p] and 
consequently that H[p] ∼ B[p]. �

Using induction, we can now solve the bounded case.

Proposition 3.14. Let H be a fully inert subgroup of a reduced unbounded torsion com-
plete p-group B such that H ∩ B is bounded. If H ∩ B ∼ B[pk], then H and B[pk] are 
commensurable.

Proof. The plan of the proof is the following:

– we know from Lemma 3.13 that H[p] has finite index in B[p], so we may extend H
finitely to obtain a new fully inert subgroup H1 which is commensurable with H and 
has the property that H1[p] = B[p];

– we find a fully inert subgroup H2 ≥ H1 with H2 ∼ H1 such that H2[p2] = B[p2];
– we iterate this process to get eventually a fully inert subgroup Hk ∼ H such that 
Hk[pk] = B[pk];

– finally we prove that H ∼ H[pk], hence H ∼ B[pk].

Let n < k and suppose, for an inductive argument, that we have Hn[pn] = B[pn] for 
some fully inert subgroup Hn of B, where H ∼ Hn. Now consider B[pn+1] and assume 
there are infinitely many elements xi (i ∈ N) in B[pn+1] which are independent modulo 
Hn[pn+1]; clearly each xi /∈ B[pn]. The elements pnxi, which are in the socle, are also 
independent; in fact, assume that α1p

nx1 + · · ·+αrp
nxr = 0, where 0 ≤ αi < p for all i. 

Then pn(α1x1 + · · ·+αrxr) = 0 implies that α1x1 + · · ·+αrxr ∈ B[pn] = Hn[pn], hence 
the independence of the xi modulo Hn[pn+1] ensures that the αi are all 0.

Now we have pnxi = psipnzi for suitable elements zi ∈ B of height 0 and suitable 
integers si ≥ 0; therefore xi = psizi + wi, where wi ∈ B[pn] = Hn[pn]. Note that as 
pnxi is an element of order p and height si + n, it follows from a result of Prüfer - see 
Corollary 5.2.2 in [7] - that zi generates a cyclic direct summand of order psi+n+1 of B. 
Note that the independence of the pnxi means that the zi are also independent and if 
there are κ many zi of a given order then the equality of the Ulm invariants of B and B
will ensure that there are κ many independent elements di in B.

Thus D =
⊕

〈di〉 is a direct summand of B. Hence we may define a map φ : B → B

by setting φ(di) = zi and letting φ act trivially on a complement of D; clearly φ extends 
to an endomorphism ψ of B, with ψ(di) = zi, noting that ψ(psidi) = psizi = xi − wi ∈
xi + Hn[pn+1].

As Hn is fully inert in B, the subgroup Hn[pn+1] is also fully inert in B; we have the 
inclusion:

(Hn[pn+1] + ψ(Hn[pn+1]))/Hn[pn+1] ≥ (Hn[pn+1] + ψ(
⊕

〈psidi〉))/Hn[pn+1]
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where the last term contains the infinite set of nonzero elements {xi + Hn[pn+1]} – 
contradiction. So there are only finitely many elements of B[pn+1] which are not in 
Hn[pn+1]; say X = {x1, x2, . . . xn} are these elements. If Hn+1 = Hn+〈X〉, then certainly 
Hn+1 is fully inert in B, Hn+1 ∼ Hn ∼ H, and B[pn+1] = Hn+1[pn+1].

To conclude, we must prove that H ∼ H[pk]. Up to now we have seen that there 
exists a subgroup Hk of B which is commensurable with H, hence fully inert in B, such 
that B[pk] = Hk[pk]. So it is enough to show that Hk/Hk[pk] is finite, or, equivalently, 
that (Hk/Hk[pk])[p] = Hk[pk+1]/Hk[pk] is finite. Assume, by way of contradiction, that 
there are infinitely many elements yi ∈ Hk[pk+1] (i ∈ N) which are independent modulo 
Hk[pk]. The elements pkyi, which are in the socle, are also independent; in fact, assume 
that α1p

ky1+ · · ·+αrp
kyr = 0, where 0 ≤ αi < p for all i. Then pk(α1y1+ · · ·+αryr) = 0

implies that α1y1+· · ·+αryr ∈ B[pk] = Hk[pk], hence the independence of the yi modulo 
Hk[pk] ensures that the αi are all 0.

Now repeat the proof as before to prove that we reach a contradiction with the prop-
erty of Hk of being fully inert in B. �
3.5. The main result for torsion-complete groups

Collecting the results obtained up to now, we get the main announced theorem.

Theorem 3.15. A fully inert subgroup H of a reduced unbounded torsion complete p-group 
B is commensurable with a fully invariant subgroup of B.

Proof. H ∩B is fully inert in B, by Lemma 3.3, so, as proved in [4], it is commensurable 
with a fully invariant subgroup of B. Such a subgroup of B is of the from B(u). If 
B(u) = B or B(u) = 0 the proof follows from Lemma 3.6 and Lemma 3.7, respectively. 
If B(u) is unbounded, the proof follows by Proposition 3.8. Finally, if B(u) is bounded 
and non-zero, then the proof follows by Proposition 3.14 �
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