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A B S T R A C T

This paper describes a procedure to perform spatio-temporal analysis of river plume dispersion in prodelta areas
by multi-temporal Landsat-8-derived products for identifying zones sensitive to water discharge and for pro-
viding geostatistical patterns of turbidity linked to different meteo-marine forcings. In particular, we char-
acterized the temporal and spatial variability of turbidity and sea surface temperature (SST) in the Po River
prodelta (Northern Adriatic Sea, Italy) during the period 2013–2016. To perform this analysis, a two-pronged
processing methodology was implemented and the resulting outputs were analysed through a series of statistical
tools. A pixel-based spatial correlation analysis was carried out by comparing temporal curves of turbidity and
SST hypercubes with in situ time series of wind speed and water discharge, providing correlation coefficient
maps. A geostatistical analysis was performed to determine the spatial dependency of the turbidity datasets per
each satellite image, providing maps of correlation and variograms. The results show a linear correlation be-
tween water discharge and turbidity variations in the points more affected by the buoyant plumes and along the
southern coast of Po River delta. Better inverse correlation was found between turbidity and SST during floods
rather than other periods. The correlation maps of wind speed with turbidity show different spatial patterns
depending on local or basin-scale wind effects. Variogram maps identify different spatial anisotropy structures of
turbidity in response to ambient conditions (i.e. strong Bora or Scirocco winds, floods). Since the implemented
processing methodology is based on open source software and free satellite data, it represents a promising tool
for the monitoring of maritime ecosystems and to address water quality analyses and the investigations of
sediment dynamics in estuarine and coastal waters.

1. Introduction

River plumes play a fundamental role in the dynamics of coastal
areas: with waves and currents they contribute to the distribution of
organic and inorganic riverborne particulate thereby affecting not only
the morphology, but also the ecology of coastal waters.

Catchment soils, mobilized by weathering and transported into the
river network, are eventually transferred and deposited in the proximity
of estuaries and deltaic systems (Davidson Arnott, 2010). Furthermore,
rivers are a major route through which nutrients, sediments and pol-
lutants, such as heavy metals and organic compounds, are transported
(Qin et al., 2007; Rao and Schwab, 2007; Zhang et al., 2016).

In water bodies affected by rivers plumes such as lakes (Zhang et al.,

2016) or semi-enclosed coastal regions (Kourafalou, 2001; Brando
et al., 2015), the flow and associated suspended matter can alter the
physical and biogeochemical properties of the basin, modifying ther-
mohaline and dynamical properties (Horner-Devine et al., 2015), and
affecting the exchange of nutrients and the migration of phytoplankton,
zooplankton and fish (Rao and Schwab, 2007; Wang et al., 2012; Marini
et al., 2008; Tesi et al., 2011). Different processes affect the river plume
and its sediments load: advection and mixing drive the general struc-
ture of the plume while the along-coast transport of the riverine ma-
terial is controlled by other processes, including stratified-shear mixing,
frontal processes, mesoscale circulation, tide and wind forcing, as well
as Coriolis effects (Hetland, 2005; Horner-Devine et al., 2015; Geyer
et al., 2004; Nof and Pichevin, 2001).
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Understanding river plume dispersion in prodelta areas and its ef-
fects on the coastal environment is however quite challenging as sus-
pended matter vehiculated by the rivers to the coast is highly variable
over time depending on the hydrology and the distribution of the
precipitation over the catchment. High concentrations of suspended
matter in river plumes can affect water quality, generally decreasing
light penetration with effects on the growth of aquatic vegetation and
consequently the ecology (Kirk, 1994; Gippel, 1995; Milliman and
Farnsworth, 2013; Cannizzaro et al., 2013; Dogliotti et al., 2015). For
these reasons there is a mounting interest in monitoring the turbidity as
an indicator of water quality in estuarine and coastal areas, (i.e., Marine
Strategy Framework Directive (MSDF) or Maritime Spatial Planning
Directive (MSPD)). Cristina et al. (2015) studied how the remote sen-
sing can play a fundamental role in supporting the MSFD, by the use of
MEdium Resolution Imaging Spectrometer (MERIS) sensor products.

The mapping of prodelta area by remote sensing has proven to be a
successful methodology for water quality monitoring (Dogliotti et al.,
2016, 2015; Braga et al., 2017; Brando et al., 2015; Petus et al., 2014;
Nechad et al., 2010) and tracing river plumes (Shen et al., 2010; Falcini
et al., 2012; Petus et al., 2010). Earth observation methods provide the
synoptic perspective required to identify the plume changing features
both in time and space overcoming the problems of spatial and tem-
poral relevance of conventional monitoring techniques.

Satellite sensors such as Advanced Very High Resolution
Radiometer (AVHRR), Sea-viewing Wide Field-of-view Sensor
(SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS)
and Medium Resolution Imaging Spectrometer (MERIS) have been
widely used to describe the dynamics and physical characteristics of
river plumes, their interaction with coastal forcings and seaward dis-
persion (Brodie et al., 2010; Doxaran et al., 2012; Filipponi et al., 2014;
Dogliotti et al., 2016). Despite the low spatial resolution of these sen-
sors (from 250 m to 4 km) they have provided valuable information on
the evolution of river plumes at frequent revisit time from 1 to 3 days
(Robinson, 2010). The integration of sea surface temperature (SST)
with ocean color radiometry also supported the characterization of
these transition ecosystems (Falcini et al., 2012; Otero et al., 2009).
Other sensors with better spatial resolution such as Landsat, SPOT,
permit more detailed investigations, but their low revisit frequency may
reduce the number of available scenes (Zheng et al., 2015; Aldabash
and Balik, 2016).

The availability of wide free-access data catalogues encouraged
their use in the study of spatio-temporal variability of river plumes in
estuaries and coastal waters (Zhang et al., 2010; Nechad et al., 2011;
Chen et al., 2011; Shen et al., 2013, 2011; Petus et al., 2014; Filipponi
et al., 2015; Dogliotti et al., 2016, 2015). These datasets support the
monitoring of river plume dispersion, quantifying their relation to main
natural forcings as discharge, waves, current and wind (Zhang et al.,
2016, 2014; Ruddick and Lacroix, 2006). However, Pahlevan et al.
(2012) evaluated the performances of Landsat-7 imagery for coastal
analysis but found that low signal to noise ratio (S/N) and radiometric
resolution were not sufficient to perform the analysis with good quality.

River mouth plume-dispersion patterns can be now observed with
unprecedented resolution because of the most recent generation of sa-
tellite imageries such as those provided by Landsat-8 and Sentinel-2
(Irons et al., 2012; Pahlevan et al., 2014; Gernez et al., 2015; Lavrova
et al., 2016). Furthermore, Landsat-8 provided continuity to multi-
decadal time series of Landsat scenes allowing to perform long term
analysis (Lymburner et al., 2016). Recently this data has been used by
Brando et al. (2015) to characterize the Po river plume over the pro-
delta using SST and ocean color during the flooding event of 2014/11/
19.

On the same time there are several processing algorithms devoted to
carry out apparent and inherent optical properties and water quality
parameters (Chlorophyll − Chla, suspended particulate matter − SPM,
and colored dissolved organic matter − CDOM) (Odermatt et al., 2012;
Lee et al., 2016a,b herein after). Dogliotti et al., 2015 obtained good

performance of the algorithm for retrieval of turbidity from remotely
sensed data in different regions using field data in estuarine and coastal
waters. This algorithm was then implemented in the software ACOLITE
for atmospheric correction and processing of Landsat-8 and Sentinel-2
data (Vanhellemont and Ruddick, 2016, 2015, 2014).

Even if the earth observation products cannot fully replace buoy
monitoring or field investigations with oceanographic vessels they re-
veal multi-scale surficial spatial patterns in different time frames
otherwise not observable with conventional methods. The combined
use of remote sensing and in situ data, and more recently theoretical
models, are quite promising for quantifying coastal processes
(Bonamano et al., 2016; Brando et al., 2015; Lee et al., 2016a; Braga
et al., 2017). Indeed, the integration of satellite-derived product with
other multidisciplinary data can become a useful tool for a long-term
monitoring system capable of building large data sets for studying these
environments (Bonamano et al., 2016; Filipponi et al., 2015). The link
between earth observation and models has actually been identified as a
critical step in achieving effective integrated ecosystem assessment
(Malone et al., 2014).

The development of a new generation of satellite data for ocean
color and new data policy for free use of NASA and ESA images sig-
nificantly extended the amount of information available on different
spatial and temporal scales for the study of oceanographic processes
and marine ecosystem monitoring. In this context, satellite big data
processing is becoming a challenging task due to the extensive nature of
the analysis, combined with the large amount of data handled (Ma
et al., 2015). Therefore, the capacity to develop specific retrieval al-
gorithms and robust processing techniques for time series analysis is
crucial. It is thus necessary to define a reliable processing chain to
perform temporal analysis for estuarine and coastal zones.

This paper is part of a research focused on the Po River prodelta, a
complex environment located in the northern Adriatic Sea (NAS) Italy,
by means of Landsat-8-derived products. This coastal system is domi-
nated by riverine inputs and hydrodynamic forcings, and their inter-
actions influence the physical and biogeochemical processes of the
whole basin. The turbidity maps on a shorter temporal range has been
just presented by Braga et al. (2017) in order to describe the Po river
plumes and provide some interpretation to the controlling factors
through time and space. Brando et al. (2015) characterized the river
plumes in the NAS during significant flood event in November 2014
adopting Operational Land Imager (OLI) sensor, Thermal Infrared
Radiometer Sensor (TIRS) data and hydrodynamic modelling obtaining
good correlation between turbidity, SST and salinity showing how they
change between different rivers in the NAS. Finally, to complete this
research we considered other quantitative indices to extend the analysis
of controlling factors, in particular this contribution describes a multi-
temporal processing chain based on a workflow written in R language
which adds new outputs and maps also introducing the thermal analysis
and peak detection methods. The paper is organized according the
following sections: the first introduces to the study area providing the
environmental setting, the second defines the satellite data and the
processing chain. Then the results describe the outputs based on two
approaches: punctual extraction of time series from temporal hy-
percubes and spatial pattern analysis. Finally, we discuss these results
in light of comparison with literature and previous researches.

2. Study area

The study area is located in the prodelta of the Po River, the major
Italian river for discharge and extension of the drainage basin. The Po
River is also the largest tributary of the northern Adriatic Sea (NAS) and
its delta extends seaward for about 25 km with five major distributaries
characterized by different and variable partitioning of water discharge
and sediment load. From North to South these branches are called
Maistra, Pila, Tolle, Gnocca, and Goro (Fig. 1). More than half of the
total flow and sediment load are carried by the Po di Pila whose outlet
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is located at the apex of the delta (Syvitski et al., 2005; Tesi et al.,
2011). This system was subjected to large modifications as an effect of
land use and water management in historical time and is presently
classified as a river-dominated delta, although delta lobes of each dis-
tributary have proper morphologies, accretion rates, prodelta geometry
and evolution (Trincardi et al., 2004).

The Po delta system is an important freshwater and sediment input
for NAS basin which can be considered a semi-enclosed regional sea
(Kourafalou, 2001). Its interaction with the general circulation of the
NAS influences the physical and biogeochemical processes of the whole
basin (Marini et al., 2008; Solidoro et al., 2009; Tesi et al., 2011).

The river regime is characterized by two dry periods in winter and
summer, alternated by two seasonal high-discharge periods in early
spring (snow and glacier melting and frontal rainfall) and in late au-
tumn related to the seasonal rainfall (Boldrin et al., 2005; Syvitski and
Kettner, 2007).

It is widely recognized that the Po river delta is the main source of
sediments for the NAS and its finer suspended fraction (< 63 μm) ac-
counts for over 97% of the suspended load (Tesi 2011). Fine sand, silt
and clay are mainly supplied from this river and transported southward
by the coastal current Western Adriatic Coastal Current (WACC)
(Artegiani et al., 1997; Sherwood et al., 2004). Indeed, the main hy-
drodynamic forcings affecting the Po River prodelta are the NAS cy-
clonic current and tidal cycle. The combination of wind and thermo-
haline forcing drive the southward flow of WACC coastal current.
Moreover, two distinct wind regimes, the northeasterly Bora and
southeasterly Sirocco, can affect basin-wide circulation in the NAS
(Orlìc et al., 1994) and control the sediment transport (Friedrichs and
Scully, 2007). Therefore, while transport within the buoyant plume is
important during floods, wave action and the pattern of currents drive
the sediment pathways (Bever et al., 2009). The wave action along the
coast in particular in low tide conditions causes a larger sediment

resuspension on the seafloor increasing turbidity (Friedrichs and Scully,
2007).

3. Materials and methods

The retrieval of spatial pattern of correlation and variability of the
turbidity and SST from Landsat-8 sensors data was performed by a
processing chain developed in R language (R Cran Team, 2013) and
running in Linux operative system adopting different libraries (Bivand
et al., 2013; Hijmans, 2014; Pebesma, 2004) and calling external at-
mospheric correction program in IDL and Nasa web tool as described in
the scheme of Fig. 2.

The optical and thermal satellite data are compared to hydro-
dynamic forcings, the water discharge and the wind, defining the
highest sensitive area, the geometrical patterns of data variability, and
the link between turbidity, SST and water discharge during the floods.

3.1. Landsat-8 image processing

The images used in this study are collected by the Operational Land
Imager (OLI) sensor and by the Thermal Infrared Radiometer Sensor
(TIRS) on board of Landsat-8. OLI sensor has 8 bands the visible, the
near and shortwave infrared spectral regions at 30 m in addition to a
panchromatic band at 15 m; the TIRS has two bands in the long wave
thermal infrared with spatial resolution of 100 m, resampled to 30 m
(Irons et al., 2012). Although the revisiting time of Landsat-8 is 16 days,
being the study area lays common to path 191 and 192 (raw 29), the
scenes were available at intervals of 7 and 9 days.

Landsat-8 images were gathered from Earth Explorer, an USGS web
service to search and download data (http://earthexplorer.usgs.gov/).
The search tool for the period 2013–2016 in the study area, provided a
list of more than 50 images (Fig. 3) images at standard level-one

Fig. 1. Po River prodelta with the five distributaries. The triangles are the meteorological stations; the blue circle is the hydrologic station of Pontelagoscuro. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

C. Manzo et al. Int J Appl  Earth Obs Geoinformation 66 (2018) 210–225

212

http://earthexplorer.usgs.gov/


Fig. 2. Processing scheme based on R language, GDAL libraries and IDL.

Fig. 3. Pseudo-true-colour composite of Landsat-8 time series 02/07/2013—25/01/2016 (50 observations). Path 191 and 192, Row 029—for daytime overpasses. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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terrain-corrected (L1T) with an averaged Root Mean Square Error
(RMSE)<0.5. We wrote a script able to automatically download the
images by excluding those with significant clouds and cirrus, then a
selection for excluding sun glint and thick aerosols was performed ex-
porting true color composite and according Franz et al. (2015). The
thermal data were available for the entire dataset with exception of the
last two Images 16/01/2016–25/01/2016.

OLI images were radiometrically calibrated according to Pahlevan
et al. (2014) and then atmospherically corrected with ACOLITE (At-
mospheric Correction for OLI ‘lite’) described in Vanhellemont and
Ruddick (2014; 2015). The software was run with a SWIR atmospheric
correction mode based on OLI bands 6 and 7 (1609 and 2201 nm) ac-
cording to Vanhellemont and Ruddick (2015) for moderately to ex-
tremely turbid waters. ACOLITE-derived water leaving reflectance
(ρw(λ)) was converted in turbidity (T, expressed in formazin nephelo-
metric unit [FNU]) according the (Dogliotti et al., 2015):

=
−

T
A ρw λ

ρw λ C
( )

(1 ( )/
[FNU]T

λ

λ (1)

where AT and C are two wavelength-dependent calibration coefficients.
The parameter C was calibrated using “standard” inherent optical
properties (IOPs) as described in Nechad et al. (2010), while the AT

coefficient was obtained by a non-linear least-square regression analysis
using in situ measurements of T and ρw(λ) in various European and
South American coastal and estuarine environments.

This algorithm was validated for NAS by Braga et al. (2017) with 32
measurements points, the correlation was statistically significant (r
0.99) and the standard error was 6.2 FNU in the 1–200 FNU turbidity
range. The algorithm (with RMSE=15.62 FNU) was thus deemed
adequate to investigate spatial and temporal variations of the turbidity
patterns.

The retrieval of SST was performed from TIRS1 band 10 data. The
correction of the top of atmosphere brightness temperature LT was
performed applying the Eq. (2) based on the atmospheric transmission
(τ), atmospheric path radiance (Lu) and sky radiance (Ld). These three
parameters were derived by the Atmospheric Correction Parameter
Calculator by means of an external link to the NASA website which use
MODTRAN radiative transfer model (Barsi et al., 2005, 2014). Per each
date the algorithm makes a direct link to this tool (http://atmcorr.gsfc.
nasa.gov/), and selects the corresponding standard atmospheric profiles
switching during the year the mid-latitude summer and winter. Per
each run we honored 30 s time off to avoid the overloading of the web
tool.

Lλ=(τε LT)+ (1-ε)Ld+ Lu (2)

τ is the atmospheric transmission, ε is the emissivity of the water (0.98)
and Lλ is the space-reaching radiance measured by the instrument
(Barsi et al., 2005).

Radiance to temperature conversion was then performed using the
Planck’s Eq. (2).
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K1 and K2, respectively the band-specific thermal conversion con-
stants in watts/meter squared * ster * μm and in kelvin.

3.2. Hydrometereological data

Hydrometereological time series were gathered from one hydrologic
station and two anemometric stations. Wind direction and speed were
measured at the meteorological stations of Acqua Alta Oceanographic
Tower (AAOT), located in the NAS, about 16 km off the coast of Venice
lagoon, and of Foce Po, between mouth of Tolle and Gnocca (Fig. 1,
black triangles), Fig. 4a shows the wind rose diagrams measured in
these two points. The river discharge (Fig. 4b) was measured at

Pontelagoscuro hydrometric station (Fig. 1, blue circle). These wind
diagrams of stations show different sensitivity to the two main wind
drivers in this area Bora (from NE) and Scirocco (SW), because of
geographical factor (Braga et al., 2017). For being located SE of the
delta Foce Po is in fact sheltered from Bora and more exposed to Scir-
occo and local winds, while AAOT is located in the open sea at the north
of delta and is then more affected by Bora.

3.2.1. Hypercubes analysis
Per each scene the procedure provided maps of SST and turbidity

along with wind and water discharge measurements from the hydro-
metereological stations.

The time frame of wind speed and direction data of the investigated
stations was selected by considering a temporal window of 36 h prior to
the satellite overpass. In the case of discharge, data measured between
10 and 36 h before the overpass were instead considered. This choice
permits to account for the typical 10 h time-lag between Pontelagoscuro
gauge station and the mouth of Pila, according to Tesi et al. (2011).
These three temporal vectors were then pixel-based compared to sa-
tellite products.

To calculate the coefficient of variation (CV) of turbidity hypercube
and to locate the point of interests for local time series comparison, the
turbidity temporal stack was normalized by the averaged water dis-
charge (Qa) measured at Pontelagoscuro during the interval from 10 to
36 h before the overpass. A descriptive statistic of temporal variation of
Qa-normalized turbidity was built, in particular the mean (μ) and the
standard deviation (σ) were computed to calculate a CV map (σ/μ),
depicting the dispersion of the turbidity in the temporal range of sa-
tellite overpass.

A set of 44 points of interest was selected considering their position
related to the river delta and their highest and lowest variability in the
study area. These points were identified on the CV Qa-normalized tur-
bidity maps to identify the location for retrieval of the temporal curves
from hypercubes of turbidity and SST. These curves are required to
perform the multi-temporal analysis at local targets along the river
delta and prodelta area, which are supposed to be representative of the
prevailing hydrologic and hydrodynamic conditions. The correlation
between time series of SST and Turbidity per each point was performed
considering a point into the river as reference.

Correlation patterns with hydrometereological data were evaluated
obtaining maps of turbidity sensitivity to wind and water discharge.
The Bravais-Pearson’s linear correlation (rp) and the Spearman’s cor-
relation (rs) methods and the correlation test proposed by Davis (2002)
were applied to assess the relation among water discharge, wind speed
and turbidity. These two indices describe the strength of link between
two variables, Pearson’s require the assumption that the relationship
between the variables is linear, while Spearman’s is a nonparametric
(distribution-free) rank statistic that describes the monotonic relation-
ship between two variables without making any assumptions about the
frequency distribution of the variables. The statistical significance of
the correlation depends on its magnitude and the number of data points
used in its computation (Hauke and Kossowski, 2011).

A peak detection algorithm, based on the first derivative analysis of
the averaged daily discharge, was applied to identify all the events with
discharge higher than 1500 m3/s defining the local maxima in the time
series of the discharge (Fig. 4b). All images acquired within a time
window of three days after the identified peaks were selected in order
to process only data related to flood events. A correlation analysis of
Points Of Interest (POI), considering time series of peak discharge,
turbidity and SST was also performed, applying the Spearman’s corre-
lation (rs) in addition to the Bravais-Pearson’s correlation coefficient
(rp) (Bolboaca and Jantschi, 2006).

A geostatistical analysis was performed to determine the spatial
dependency of the turbidity datasets per each Landsat image, con-
sidering a spatial distance that reduces the scale effects (Van der Meer,
2012). The procedure considered the relation between couples of pixel
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values Z, located at lag distance h, that is given by the half average
squared difference between all such pairs. The semivariance γ(h) for
pixel distance is calculated according to Curran and Atkinson (1998):

= − +γ h E Z x Z x h( ) 1
2

[ ( ) ( )]2
(4)

Where Z(x) and Z(x+h) are the random functions describing the
property of Z at places separated by h, and E is the mathematical ex-
pectation. The larger is the γ(h) the less similar are the pixels (Curran
and Atkinson, 1998). The parameter γ(h) is described by semivariogram
which defines the spatial dependency of the variable in a covariance
stationary process in terms of sill and range. The basic hypothesis is that
closer locations have similar values which change for longer distances

until they are considered statistically different (autocorrelation range)
at sill value (Goovaerts, 1997; Chiles and Delfiner, 1999).

The autofitVariogram (Hiemstra, 2013) and geostatistical routines
from R package gstat (Pebesma 2004) were applied to obtain the range
and the root mean square of each model and the experimental vario-
gram map.

Per each date of turbidity map the semivariance in every compass
direction and distance was calculated in order to identify spatial ani-
sotropy.

The limit of the anisotropy was calculated considering the variance
as maximum difference between two pixels to be considered similar.

The directional variograms along the directions of highest and

Fig. 4. a) The wind speed and direction measured in Foce Po station and AAOT; b) The water discharge values measured at Pontelagoscuro station. The circles are the peaks detected, the
red dot lines and crosses are the Landsat-8 scenes and the black lines are the corresponding peaks with Landsat-8 overpasses. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article).
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lowest variation of variograms are then collected. These plots are cal-
culated considering the pixels within 35 km from the coastline in the Po
River Prodelta and a lag distance of 2300 m thorough which observe
directional dependence in semivariograms.

4. Results

The two approaches provide different outputs: the first derived from
the punctual analysis of temporal hypercube products, and the second
obtained from the spatial statistics.

4.1. Satellite products

The Landsat-8-derived turbidity and SST maps were stacked in two
raster datasets (hypercube) for spatial and temporal processing. As
observable in the two composites of Fig. 5, turbidity and SST show
different patterns and features, both qualitatively (i.e., extent, or-
ientation, shape) and quantitatively (i.e., total amount of suspended
sediment, SST gradients), depending on the different hydrologic and
meteo-marine conditions. Over the entire dataset, turbidity values
ranged from 0.05 to 1500 FNU while SST ranged from 0 to 28 °C.

4.2. Time series derived from the points of interest

The Fig. 6 shows the discharge-normalized coefficient of turbidity
variation map, to which the selected 44 points of interest (POI) are

overlaid. There is the maximum variability near the distributaries,
along the coast and corresponding to river plume with different main
directions.

By considering pt3 (located at 5 km upstream of the mouth of Pila)
as a reference for the temporal variation of turbidity in the river, the
correlation obtained for the other POI is reported in the map of Fig. 6
with a color scale. Pt3 was selected because it is representative of the
turbidity values over the most important distributaries and the time
series of turbidity in pt3 vs. Pila has correlation (rp) of 0.99. For a given
POI, the presence of a higher positive correlation (rp> 0.85) indicates
that the turbidity variations are quite similar to those found in the river.
The points located near Pila and along the southern coast of delta have
high rp. This occurs mainly in stations more affected by the buoyant
plumes (i.e. Pila and S1), suggesting a major role of discharge, as
highlighted by data in Fig. 7, which compares turbidity and discharge
time series. Along the NNE direction from Pila there is a fast reduction
of POI correlation (NNE mouth in Fig. 6). Low or no correlation in-
dicates that other processes (wind and wave action) are driving sus-
pended sediment pattern in the area (as in NNE mouth Fig. 7).

We also compared SST, but no correlation with turbidity variations
in different locations was found considering the whole temporal range.
All SST data are correlated (rp>0.95) with temperature variation in
pt3, showing that variability is predominantly related to seasonality.

4.2.1. The correlation patterns of turbidity with hydrometereological data
The spatial correlation analysis was performed comparing temporal

Fig. 5. a) Time series of turbidity map (on a logaritmic scale). b) Time series of Sea Surface Temperature. In black: rivers and coastline; in grey: pixels with no data (e.g. no values, cloud,
glint, white cups and land). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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curves of each pixel of the hypercube turbidity (Fig. 5) with time series
of wind speed measured at Foce Po and AAOT stations and water dis-
charge measured in Pontelagoscuro (Fig. 4). The comparison provided
the correlation coefficient maps calculated for these three variables.

In Fig. 8 the correlation map describes the sensitivity of turbidity
values to water discharge, in green there are all pixels with a Pearson’s
correlation greater than 0.75. In this area the water discharge values
and turbidity show a linear relationship with each other without con-
sidering presence of other hydrodynamic forcing.

The two maps of correlation of wind speed with turbidity in Fig. 9
show interesting phenomena linked to wind forcing effects. The wind
measured in two points far more than 50 km have different spatial
correlation with turbidity values. The two stations are sensitive to two
different wind patterns, as shown by the wind rose diagrams in Fig. 4a,
defining two different wind stiles, more sensitive to Bora in the case of
AAOT while in the case of Foce Po, more related to local effects. The
different spatial pattern of correlation of these two maps underlines the
different wind measurements and the effects on the NAS basin.

Indeed, Fig. 9a shows that the wind speed measured in AAOT has
correlation with turbidity in the north of prodelta area until the Venice
lagoon (dark red area). Due to local effects of wind in Foce Po station
the measurements were not necessary similar to AAOT, consequently
the correlation coefficient maps calculated are different. Considering
Fig. 9b there is a correlation between the wind speed in Foce Po and the
turbidity values along the coast from Maistra to Bellocchio.

4.3. Peak detection

The peak analysis of the water discharge measured in
Pontelagoscuro selected the Landsat scenes near to water discharge
peak during flooding events. We therefore considered the local maxima
of the discharge and selected all the scene overpasses within 3 days
after the flood.

The comparison of time series of SST, turbidity of the POI and water
discharge, in this case resulted in a better correlation, showing that in
flood conditions there are higher statistical links with turbidity and
temperature variation (Table 1). Moreover, the wind speed had no
statistical link underlining the lower or negligible importance of this
variable in these cases.

As showed in Table 1, near the Po River delta the water discharge
caused a temperature reduction in the Pila area with an inverse cor-
relation of rs=−0.62 and a confidence of 90%, while it has a positive
correlation with turbidity of rp= 0.83 with a confidence of 99%. The
variation of temperature in Pila is directly correlated to the temperature
variation in Tolle with rp=0.89 and is inversely correlated to the
variation of turbidity in Tolle with rs=−0.72.

Some couples have different correlation values, this is due to their
respective calculation which have different assumption, if there are
non-linear correlation the Spearman’s correlation will be higher as in
the case of thermal values of Pila with other points.

Table 1 Correlation intra-parameter and inter-parameter between
water discharge (Qavg), Turbidity and SST time series of Po tributaries,
pt3 and S1with relative confidence>90% (*) and>95% (**). In bold

Fig. 5. (continued)
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relation with correlation> |0.6|
The Fig. 10 shows the point map of correlation among SST retrieved

in pt3 with turbidity values in the POI. The points far from the coast
have no statistical link. Considering these two results, the lower sta-
tistical correlation between temperature and turbidity with water dis-
charge underlines that this is not the unique driver of temperature
variation.

4.4. The geostatistical patterns

The variogram maps describe the spatial variability of turbidity in
every compass direction per each date supporting the identification of
spatial anisotropy structures in the values distributions. This analysis
provided some interesting results in extreme events such as during wind
blowing (as Bora, Scirocco) and floods. The Fig. 11 shows how the
spatial variability of turbidity changes in different forcing conditions,
the anisotropy ellipses show the spatial patterns provided by analysis of
turbidity variation. The limit of autocorrelation was based on the
analysis of directional variograms. Indeed, the variograms along the
main axis of variability and its perpendicular axis show the maximum
distance where two pixel values are no more spatially correlated. In

Fig. 11 − 2014/09/23 the Bora event is the main driver causing wind
resuspension (Braga et al., 2017), the a priori variance of turbidity
(dashed lines in the directional variogram plot) is lower than the other
two cases, this means that the turbidity values have a lower range of
variability, the maximum autocorrelation distance is reached at N20
with a distance of 33 km. In Fig. 11 − 2014/11/19 during “flood
dominant” phase the pixels show a higher variability range and along
W-E direction have low variability with an autocorrelation distance of
25 km, while the minor axis is 15 km. Finally in Fig. 11 − 2015/04/03
there is an example of Scirocco (Southeasterly) wind event during
which the sediments changes along the direction N150 stabilizing the
variogram near the a priori variance. The nugget effect is very high in
this last case underling that neighbor pixels have a higher level of
variability no-spatially correlated. Then the direction N60 reduce the
variation rate with lag distance after 30 km with high variance values,
representing a trend, fining upward.

5. Discussions

The results compare the two measured hydrodynamic forcing, the
water discharge and the wind, with simultaneous optical and thermal

Fig. 6. Coefficient of turbidity variation (σ/μ) (CV) map in the study area. The dots represent the correlation (rp) of turbidity values retrieved in each location with turbidity in pt3.
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Fig. 7. Temporal variation of turbidity (on the left) and SST (on the topright) at pt3, Pila, NNE mouth, S1. Water discharge measured in Pontelagoscuro Station is plotted as grey line. The
rp values bottom right are: the correlation (rp) of turbidity of pt3 with water discharge (Q) and Pila, NNE mouth, S1 turbidities. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. Correlation between water discharge and turbidity values in the study area. In gray scale the correlation of turbidity values pt3 vs. POI. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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satellite data obtaining the highest sensitive area to the measured for-
cings (Figs. 6,8 and 9), the link between turbidity, SST and water dis-
charge during the floods (Table 1) and finally the geometrical patterns
of turbidity variability (Fig. 11). This information is important for de-
termining stresses on the ecosystem since the high concentrations of
suspended matter through the river plumes and wave-driven

resuspension increase the turbidity and decrease light penetration
conditioning the growth of aquatic vegetation and consequently the
ecology.

Landsat-8 data confirmed their capability to analyse the Po River
prodelta in terms of spatial analysis and statistical correlation with
hydrometereological data at the submesoscale enlarging the

Fig. 9. Correlation (rp) map of Turbidity vs Wind Speed measured in the two meteo-station of AAOT (a) and of Foce Po (b). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 1
Correlation intra-parameter and inter-parameter between water discharge (Qavg), Turbidity and SST time series of Po tributaries, pt3 and S1with relative confidence>90% (*)
and> 95% (**). In bold relation with correlation> |0.6|.

SST (°)

Qavg Maistra Pila Tolle Gnocca Goro pt3

Maistra rp=−0.56*
Pila rp=−0.64** rp=0.99**
Tolle rp=−0.49 rp=0.91** rp=0.89**
Gnocca rp=−0.42 rp=0.92** rp=0.88** rp=0.86**
Goro rs=−0.54* rp=0.97** rp=0.95** rp=0.88** rp=0.91**
pt3 rp=−0.65** rp=0.99** rp=0.99** rp=0.89** rp=0.88** rp=0.94**
S1 rs=−0.49 rp=0.97** rs=0.96** rp=0.87** rp=0.90* rp=0.98** rs= 0.96**

Turbidity (FNU)

Qavg Maistra Pila Tolle Gnocca Goro pt3

Maistra rp=0.92**
Pila rp=0.83** rp=0.89**
Tolle rp=0.97** rp=0.96** rp=0.97**
Gnocca rp=0.97** rp=0.94** rp=0.98** rp=1.00**
Goro rp=0.96** rp=0.86** rp=0.99** rp=0.96** rp=0.98**
pt3 rp=0.88** rp=0.87** rp=0.85** rp=0.88** rp=0.81** rp=0.82**
S1 rp=0.93** rp=0.83* rp=0.97** rp=0.94** rp=0.96** rp=0.98** rp=0.98**

SST (°)

vs Maistra Pila Tolle Gnocca Goro pt3 S1

Turbidity (FNU) Maistra rs=−0.66* rs=−0.72** rs=−0.51* rs=−0.48 rs=−0.66** rs=−0.71** rs=−0.64*
Pila rp=−0.49 rp=−0.53** rs=−0.45 rp=−0.41 rp=−0.52** rp=−0.55* rs=−0.31
Tolle rs=−0.68** rs=−0.72** rs=−0.60* rp=−0.42 rs=−0.57* rs=−0.68** rs=−0.55*
Gnocca rs=−0.79** rs=−0.85** rs=−0.68* rs=−0.74** rs=−0.76** rs=−0.85** rs=−0.75*
Goro rs=−0.69** rs= -0.73** rp=−0.59* rs=−0.57** rs=−0.67** rs=−0.74** rs=−0.64*
pt3 rp=−0.56** rp=−0.55** rp=−0.45 p=−0.44 rp=−0.52* rp=0.58* rs=−0.41
S1 rp=−0.63* rp=−0.67 rp=−0.58 rp=−0.53 rp=−0.63* rp=−0.69* rp=−0.58

*= confidence at 90%, **= confidence> 95%.
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environmental analysis of Po river plumes provided by Braga et al.
(2017) and Brando et al. (2015) with other products.

Build upon and extended the previous results, the processing chain
adopts two main processing approaches, one based on punctual ex-
traction of time series of satellite products, another worked on entire
scene. By the first a series of points of interest (POI) were derived in
order to focus on the areas with highest variability linked to strong
changes due to natural forcings. The second approach provided map of
correlation and geostatistical analysis which provided general in-
formation over the study area.

Pila confirms its important role as main distributary of Po River, and
the investigated parameters are in correlation with those found in the
adjacent coastal zones and tributaries. Other factors such as salinity
may be considered for a comprehensive interpretation of the hydro-
logical forcings as demonstrated by Brando et al. (2015) and Marini
et al. (2008), but it is beyond the scope of this paper. The maps of
correlation of turbidity and water discharge show as the Po river plume
in flood conditions affects sediment distribution in the prodelta (values
rp > 0.75). Based on the sole turbidity, the river plume area extends
southward, parallel to the coastline, to a maximum distance of 35 km,

while reaching an offshore distance of 15 km. The extent of the area
impacted by river plume is also evident in the geostatistical pattern
where the autocorrelation distance was within this order of magnitude.
Beyond these limits and in other directions, the spatial distribution of
the turbidity is more affected by dilution trends and other forcings such
as wind, waves and currents.

The choice of the temporal window of hydro-meteorological data to
be considered is quite challenging as satellite images reflect in-
stantaneous situation created by the interaction of different forcings,
each acting on a proper time frame and spatial extent, during the
previous period. We then selected a temporal window of 36 h prior to
the satellite overpass for wind conditions because most wind effects
were registered within this interval, as showed by Braga et al. (2017).

A higher overpass frequency of satellite data would improve the
characterization of the river plume and its evolution. The temporal
window of three days to select images related to discharge peaks pro-
vides in fact a limited number of events (Fig. 4b). MERIS data were used
in this area to perform a temporal analysis of driver effect applying the
empirical orthogonal function EOF (Filipponi et al., 2014) obtaining
interesting results but at coarser spatial resolution. Landsat-8 data

Fig. 10. Correlation (rp) among SST in pt3 and turbidity values in the POI. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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might not be adequate for capturing multi-temporal analysis of inter-
annual and seasonal variability in the NAS, as demonstrated by the
peak detection analysis. Indeed, several peaks were not intersected
(Fig. 4b) and the analysis was performed on a limited number of scenes,
yet obtaining interesting results in terms of higher and significant
correlations.

During a flood, riverine water is colder and with higher turbidity
than NAS, for this reason we consider turbidity and in some cases SST
two proxies of floods. However, the difference of temperature between
Po River and NAS is seasonal, while the variation of turbidity is driven
by riverine discharge peaks or resuspension. Brando et al. (2015)
showed how they change between different rivers in the NAS during a

flood event while in our paper we are focusing on the temporal varia-
tion over Po River prodelta. Focusing on the Landsat images corre-
sponding to the events identified by discharge peak detection (Table 1),
the comparison between SST and turbidity shows good statistical cor-
relations in some points of interest, while the low correlation with wind
suggests that the wind effect is secondary to river discharge. The
Spearman’s coefficients of SST retrieved for Pila versus the values ob-
tained for Gnocca and Goro highlighted that there are monotonic cor-
relations among these points (Table 1). Consequently, during flood
events, these areas are characterized by a similar behavior. SST in pt3
compared to the turbidity values in Pila, Gnocca and S1 has high cor-
relation while it is low in the external points, we interpret this as an

Fig. 11. On the left the turbidity maps in different forcing conditions (color ramp of turbidity in log scale). In the middle column the corresponding variogram maps of turbidity. The dx
and dy axes are separation distances between couples of pixels along E-W and N-S directions, respectively. Each grid cell is the semivariance contribution of each point pair at lag (x,
y)=h being the two-dimensional coordinates of the separation vector. The center of the variogram map (0; 0) is the origin of the variogram map for every direction, and h is geographical
distance among pixels. On the right the variograms of two major and minor axis of variability. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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evidence that the plumes tend to extend from Pila southeastward near
the coast, probably due to WACC as shown by Braga et al. (2017) and
Filipponi et al. (2014). Comparing singularly the turbidity and SST time
series of POI, the Pearson’s correlation is the most relevant in the de-
finition of statistical link. This is probably related to the distance be-
tween POI which mainly drives the parameter variability. Therefore,
cross-comparing the SST and Turbidity of POI time series, the Spearman
statistical correlation is more relevant. The non-linear correlation is, as
expected, related to the presence of more factors playing in the spatial
and interparametric variability. The monotonic correlation showed by
Spearman’s coefficient underlines the effect of water discharge in the
SST variation in the coastal zone, but the weak correlation highlights
also that there are other phenomena that need to be considered. So the
sediment transport and temperature have physical forcing regimes af-
fecting their variability both on spatial and temporal scales. Focusing
only on water discharge peaks, the main driver of turbidity is the water
discharge and the POI were stronger correlated to this parameter than
the temperature. As demonstrated by Brando et al. (2015), satellite-
derived turbidity and SST can be useful to describe flood events, de-
fining the plume morphology and the dilution pathways. However, the
availability of other ancillary data could support the interpretation of
the mixing processes in the prodelta area; for instance, salinity, which
can be provided by numerical modelling (Falcieri et al., 2014) or in situ
measurements (Boldrin et al., 2005).

The geostatistical analysis of satellite-derived turbidity maps
(Fig. 11) identify three main types of spatial patterns in relation to the
different forcings (river discharge, Bora or Scirocco winds), defining
spatial anisotropy with axis and orientations as function of the natural
drivers. In case of small plumes confined to coastal areas, typical of low
discharges and/or Bora wind event (2013/09/23 − Fig. 11) the range
of turbidity is shorter and the main axis of the anisotropy ellipse follow
direction N20, with a low eccentricity. In the case of wider plumes
extending into the basin, as typical of flood events (2014/11/19 −
Fig. 11) and/or Scirocco winds (2015/04/03 − Fig. 11), high turbidity
values are generally found over the prodelta area. In the first case the
anisotropy follows the W-E direction with a main axis of 30 km and
eccentricity higher than in the Bora event. In the case of Scirocco event,
a strong turbidity gradient at small scale can be observed. This situation
is characterized by high nugget values and the variogram shows a trend
model along direction N60. The interaction of wind and water dis-
charge determines ellipses of anisotropy characterized by long auto-
correlation distance, although the mixing and the rotation due to Cor-
iolis force may affect the geostatistical analysis.

6. Conclusions

Understanding the spatial and temporal variability of the Po river
plume is of primary importance for the study of the Adriatic Sea basin
and its evolution. By focusing on the Po River delta, this research tested
a procedure based on Landsat-8-derived products to characterize river
plume dispersion using statistical tools for investigating the effects of
discharge and meteo-marine forcings on sediment transport patterns in
prodelta areas. The pixel-based spatial correlation analysis, based on
the comparison of turbidity and SST hypercubes with in situ data,
confirmed the relationship between turbidity and water discharge in
the area more affected by the buoyant plumes and along the southern
coast of Po River delta. An inverse correlation between turbidity and
SST was observed focusing the analysis on flood events. As shown by
the results of this test, the geostatistical analysis allows to determine the
spatial dependency of the turbidity datasets per each satellite image,
identifying different spatial anisotropy structures of turbidity in re-
sponse to ambient conditions (i.e. strong Bora or Scirocco winds,
floods).

The results obtained provide new perspectives for the analysis of
transitional environments through satellite data, such as turbidity and
SST, identifying their spatial and temporal distributions in relation to

river and wind regimes in the prodelta and adjacent coastal zone.
Although limited by low revisit frequency of Landsat-8 overpasses,

the described methodology is a very promising and robust processing
technique for time series analysis suitable for handling large amounts of
data. This will open chances for a considerable improvement of multi-
temporal analysis of interannual and seasonal variability of river
plumes in case Sentinel-2A and −2B, recently launched by ESA, are
used. The turbidity analysis by the Landsat-8 has shown its potential for
synoptic observations of dynamic environments that could be further
improved by the application of Sentinel-2 data, in terms of spatial and
temporal resolution. Reducing the revisit time, these data will provide
significant advantages in the observation of short time scale processes
like those related to floods and sea storm events. For moderate to low
river flow, the characterization of buoyant plume with satellite-derived
products can benefit from the integration with in situ measurements
and hydrodynamic models, providing a better description of horizontal
and vertical mixing processes.

Future research work will be focused on the processing metho-
dology, implementing new statistical tools for spatio-temporal analysis,
such as empirical orthogonal function to better investigate the temporal
variations of these environments.

Being based on open source software and free satellite data, this
processing chain and its eventual further improvements could become a
tool of general use for monitoring river plumes and the associated load
of sediments and contaminants and for the management of estuarine,
coastal and open sea waters, also supporting directives for the con-
servation of maritime ecosystems.
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