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A B S T R A C T   

Bivalve mollusks are important aquatic organisms, which are used for biological monitoring because of their 
abundance, ubiquitous nature, and abilities to adapt to different environments. MicroRNAs (miRNAs) are small 
noncoding RNAs, which typically silence the expression of target genes; however, certain miRNAs directly or 
indirectly upregulate their target genes. They are rapidly modulated and play an essential role in shaping the 
response of organisms to stresses. Based on the regulatory function and rapid alteration of miRNAs, they could 
act as biomarkers for biotic and abiotic stress, including environmental stresses and contaminations. Moreover, 
mollusk, particularly hemocytes, rapidly respond to environmental changes, such as pollution, salinity changes, 
and desiccation, which makes them an attractive model for this purpose. Thus, bivalve mollusks could be 
considered a good animal model to examine a system’s response to different environmental conditions and 
stressors. miRNAs have been reported to adjust the adaptation and physiological functions of bivalves during 
endogenous and environmental stressors. In this review, we aimed to discuss the potential mechanisms under
lying the response of bivalves to stressors and how miRNAs orchestrate this process; however, if necessary, other 
organisms’ response is included to explain specific processes.   

1. Introduction 

In aquatic ecosystems and aquaculture, there are multiple types of 
potential stress: physical (temperature, dissolved oxygen, light, and 
sound), chemical (water quality, pollution, metabolic waste, and diet), 
and biological [microorganisms (pathogenic and nonpathogenic), 
macro-organisms (parasites), stocking density, lateral swimming space 
requirements), and procedural (handling, hauling, stocking, disease 
treatment, feeding methods (manual and automated)] (Burgos-Aceves 
et al., 2020; Kumar et al., 2015). The stress response is a complex process 
controlled by multiple systems, including the nervous, immune, circu
latory, and endocrine systems (Abdel-Mageid et al., 2020a; Abo-Al-Ela, 
2018a, 2018b). When stress response is triggered, a cascade of 
physico-biochemical changes and neural and neuroendocrine responses 

are developed to facilitate adaptation to stressors (Kumar et al., 2015). 
Although stress response is critical to cope with biotic and abiotic 
stressors, in many cases, particularly chronic stress, such response hin
ders the normal physiological status and organisms’ health (Guo et al., 
2015; Lacoste et al., 2001b). 

MicroRNAs (miRNAs) are endogenous noncoding RNA molecules, 
which are 17–22 nucleotides in length and control almost all known 
biological processes. The miRNA machinery system is an important 
regulator of gene expression at transcriptional and post-transcriptional 
levels by inhibiting or enhancing messenger RNA (mRNA) translation 
(Abo-Al-Ela and Burgos-Aceves, 2020; Bizuayehu and Babiak, 2014). 
miRNAs are rapidly modulated in response to endogenous or exogenous 
changes (Burgos-Aceves et al., 2018a, 2018b). A study on Atlantic cod, 
Gadus morhua L., demonstrated that miRNAs are the novel biomarkers of 
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environmental rearing temperatures: miRNAs related to stress 
(miR-155) and inflammation (miR-21) were upregulated in fish reared 
at 9 ◦C; however, the growth-related miRNA-206 was elevated in fish 
reared at 4 ◦C (Magnadóttir et al., 2020). 

Several miRNAs and their gene targets are conserved and have 
similar function across species; however, their function is necessarily not 
the same among different species. Note that few miRNAs are specific to 
certain organisms (Ha et al., 2008). The low conservation between 
vertebrate and invertebrate miRNA decelerated the progress of research 
on miRNAs in invertebrate species (Biggar and Storey, 2018). For 
aquatic invertebrates, such as crustaceans, many conserved miRNAs 
have been examined, particularly those involved in the disease and 
immune responses (Huang et al., 2012; Song et al., 2014; Tan et al., 
2013). In marine bivalves, certain progress is accomplished, e.g., a 
considerable number of the conserved miRNAs was identified in Cras
sostrea gigas and C. hongkongensis that involved osmotic stress (Zhao 
et al., 2016). However, a lot more remains to be explored in mollusks. 

Thus, miRNA stress response is conserved across phylogeny (Biggar 
and Storey, 2018). Research is ongoing to annotate and identify miRNAs 
that regulate physiological functions in bivalves. This should allow un
derstanding and identifying different pathways involved in certain 
physiological processes, e.g., the let-7 family of miRNA showed a high 
conservation in vertebrates and invertebrates (Lee et al., 2007). More
over, miRNA and mRNA networks have been profiled in the marine 
mussel Mytilus galloprovincialis, which suggested that the highly 
conserved miRNAs let-7 and miR-100 family plays an essential role in 
many metabolic pathways (Yu et al., 2020). miRNAs regulate the in
duction of estivation in terrestrial snails. Of these miRNAs, 
ola-miR-2001-5p, ola-miR-1989-5p, ola-miR-745b-3p, ola-miR-723-5p, 
ola-miR-281-5p, ola-miR-190-5p, ola-miR-12-5p, and ola-miR-2a-3p 
showed a strong upregulation. These miRNAs were involved in regu
lating the cell survival mechanisms that constituted anti-apoptosis, 
tumor suppression, and muscle maintenance responses. Furthermore, 
miR-2 upregulation has been suggested as a conserved invertebrate 
response to cellular stresses under harsh environmental conditions 
(Hoyeck et al., 2019). 

Mollusks are an important bioindicator because they reflect levels of 
environmental contamination (Capillo et al., 2018; Pagano et al., 2017). 
Bivalve mollusks are exposed to environmental fluctuations, particularly 
coastal zones, and they have to adapt to survive (Freitas et al., 2019, 
2020a, 2020b; Stara et al., 2020). Hemocytes are primarily involved in 
the immune response in such aquatic invertebrates: they exert active 
phagocytosis and mediate the expression of immune genes after immune 
stimulation (Burgos-Aceves and Faggio, 2017). Moreover, hemocytes 
are involved in biomineralization and shell formation (Huang et al., 
2018). Hemocytes mediate physiological responses of bivalve mollusks 
against environmental stressors. The open circulatory system of mol
lusks allows the continuous exposure of hemocytes to the external 
environment (Faggio et al., 2016; Pagano et al., 2016; Torre et al., 
2013). In vitro approaches using hemocytes as cell models are efficient at 
determining the effects of different environmental contaminants in 
ecotoxicological studies (Ladhar-Chaabouni and Hamza-Chaffai, 2016). 
Molluscan hemocytes can respond to a stressful stimulus within 2 min in 
which time their numbers can doubled or increase by three- or four-fold. 
The increase in hemocyte numbers continues with continued stress and 
is not attributed to the proliferation of hemocytes. Moreover, increases 
in hemocyte counts drop after a return to optimal conditions. Fluctua
tions in cell counts are considered to be attributed to the disappearance 
or return of circulating eosinophilic granulocytes (Renwrantz et al., 
2013). Seawater acidification and environmental concentrations of 
caffeine may affect the physiological conditions and functionality of 
bivalve hemocytes (Munari et al., 2020). Thus, hemocyte numbers can 
reflect the magnitude of the body’s response to endogenous or exoge
nous stressors in individual organisms at any given time (Renwrantz 
et al., 2013). 

Bivalve hemocytes are frequently used for monitoring the 

genotoxicity of water pollutants (Klobučar et al., 2003; Pavlica et al., 
2001). Recently, many miRNAs, including miR-87, miR-281, miR-723, 
miR-745, miR-1542, miR-1989, miR-1994, miR-2176, miR-6833, and 
miR-7428, showed a potential implication in stress survival in mollusks 
(Hoyeck et al., 2019). Although genomic advances allow the under
standing of several molecular mechanisms, our knowledge of miRNA 
functions in stress-responsive adaptations is far from complete: the 
function of several miRNAs remains unclear. 

2. MicroRNA modulation during stressors and xenobiotics 

2.1. Osmoregulation and osmotic stress 

The marine rocky intertidal zone is an area connecting the ocean and 
land. This area is characterized by harsh environmental conditions, 
including rapid changes in temperature, pH, salinity, oxygen, tidal 
levels, and food availability. This fluctuating environment lead to 
changes in the transcriptome that is linked to processes of cell division, 
metabolism, respiration, and stress responses (Gracey et al., 2008). 

2.1.1. Desiccation 
Desiccation is a stress factor that affects the bivalves that dominate 

the intertidal zone. Oysters, Crassostrea gigas, attempted to adapt to this 
environment and miRNAs were reported to play an essential role in this 
respect. To illustrate, cgi-miR-365, which is involved in the networks of 
biological regulation and metabolic process, is rapidly induced after 
desiccation stress in oysters and their hemocytes (Chen et al., 2017). 
Moreover, the expression of heat shock protein (HSP) 70 and 
CgHSP90AA1 are strongly upregulated, respectively, at different phases 
in the tidal cycle in the California ribbed mussel, Mytilus californianus, 
and after desiccation stress in the oyster (Chen et al., 2017; Gracey et al., 
2008). CgHSP90AA1 is modulated in relation to the expression of 
cgi-miR-365 in which the upregulation of cgi-miR-365 is accompanied 
by a high expression of CgHSP90AA1 and increases in norepinephrine. 
Moreover, the expression of CgHSP90AA1 is induced by norepinephrine 
in oyster hemocytes (Chen et al., 2017). Typically, miRNAs negatively 
regulate their target mRNAs (Abo-Al-Ela and Burgos-Aceves, 2020); 
however, certain miRNAs show evidence of stimulating gene expression 
post-transcription (Vasudevan, 2012). Similarly, CgHSP90AA1 has a 
putative binding site of cgi-miR-365, indicating a direct positive inter
action (Chen et al., 2017). It is possible that norepinephrine increases 
HSP70 gene promoter activity through the α-adrenergic signaling 
pathway in oyster hemocytes (Fig. 1) (Lacoste et al., 2001a, 2001c). 

2.1.2. Low or high salt stress 
Salt stress is another component of intertidal environments. Gill 

tissues are vital for environmental adaptation, particularly during 
osmolality fluctuations. They act as a primary interface between the 
external environment and hemolymph or cytoplasm in marine mollusks 
(Hosoi et al., 2007). Zhao et al. (2016) examined the effects of low 
salinity on miRNA modulation in the gills of two Crassostrea species: 
C. gigas and C. hongkongensis. Two differentially expressed miRNAs, 
upregulated chk-miR-3205 and downregulated chk-miR-2353, were 
identified in C. hongkongensis, and a total of six differentially expressed 
miRNAs (scaffold43364_10952, cgi-miR-92, and cgi-miR-1984 were 
upregulated, and cgi-miR-183, cgi-miR-2353, and cgi-miR-184-3p were 
downregulated) were identified in C. gigas (Zhao et al., 2016). The 
annotation of differentially expressed miRNA target genes suggested a 
similar gene function in both C. gigas and C. hongkongensis after osmotic 
stress. The Gene Ontology enrichment analysis revealed that targeted 
genes are implicated in essential biological processes such as cellular 
component movement, microtubule-based processes, intracellular 
signal transduction, and catabolic and metabolic processes of purine 
nucleoside (Zhao et al., 2016). Note that miR-2353 was downregulated 
in both species; however, its function is still unclear. chk-miR-2353 
appeared to target the cAMP-responsive element binding protein-like 
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2 (CREBL2) and the ATP grasp domain containing protein 1 (ATPGD1) 
genes. Oysters primarily use intracellular-free amino acid metabolism 
pathways to adjust their euryhaline adaptation (Zhao et al., 2016). As a 
member of this pathway, ATPGD1 catalyzes beta-alanine degradation, 
which in turn maintains osmotic equilibrium under hypo-osmotic stress 
conditions. This was demonstrated by the significant upregulation of 
ATPGD1 on the seventh day of hypo-osmotic stress (Meng et al., 2013). 
chk-miR-3205 was reported to target replication factor A protein 1 
(RFP1), hygromycin phosphotransferase, von Willebrand factor D, and 
EGF domain containing protein (VWDE) genes during osmotic stress 
response. RFP1 is involved in the stress response and apoptosis (Morga 
et al., 2012; Zhao et al., 2012), and VWDE was putatively linked to both 
stress and immunity (Buckley and Rast, 2015; Prado-Alvarez et al., 
2009). Together, these properties allow oysters to adapt to osmotic 
changes by adjusting intracellular concentrations of osmolytes and 

regulating cell volume. 
Once again but in crustaceans, the miRNAs of gills participate in 

adaptation and the response to stressors. Chen et al. (2019) demon
strated that various miRNAs can be modulated during low salt stress 
when certain miRNAs were induced in response to different concen
trations of salts. For example, let-7c was downregulated in the three low 
salinity treatments, of 10, 15 , and 20 ppt; however, miR-276b-3p was 
upregulated at 15 and 20 ppt (Chen et al., 2019). Let-7c regulates the 
proliferation and osteodifferentiation of adipose-derived mesenchymal 
stem cells under oxidative stress (Zhou et al., 2019), and it mediates the 
proliferation and migration of heat-denatured dermal fibroblasts by 
targeting HSP70 (Jiang et al., 2016). Let-7c-3p regulates autophagy 
under oxidative stress (Li et al., 2020). Moreover, Chen et al. (2019) 
suggested that several genes that play essential roles in the desaturation, 
cholesterol biosynthesis, fatty acid elongation (i.e., cytochrome b5 
reductase), and catalyzation of the dismutation of reactive oxygen spe
cies (ROS) into H2O2 or oxygen are modulated by miRNAs. These 
expression-mediated miRNAs enable aquatic organisms to adjust the 
permeability of and gas exchange in gill membranes, which, in turn, 
maintains the osmoregulation of the hemolymph. Furthermore, 
miR-2788b was the most abundant miRNA and the only potential reg
ulatory miRNA of S-adenosylmethionine synthetase (SAM) in the gills of 
Portunus trituberculatus under low salinity (Lv et al., 2016). SAM cata
lyzes the formation of S-adenosylmethionine from methionine and ATP 
(Horikawa et al., 1990), and it has a key role in the plant response to salt 
stress (Espartero et al., 1994). 

2.2. Temperature changes stress 

Changes in room temperature are considered a stress factor, espe
cially during both high and low temperatures. Heat stress can mediate 
the expression of certain immune-related miRNAs that enhance the 
environmental adaptation of oysters. Moreover, an immune challenge 
modulated the expression of immune-related miRNAs and ultimately 
modulated the oxidation-reduction (redox) reaction, phagocytosis, and 
apoptosis (Zhou et al., 2014). The expression of cgi-miR-1984 was 
significantly increased, while scaffold631_909 was significantly down
regulated in heat-stressed oyster hemocytes challenged with Vibrio 
splendidus compared with those in the bacteria group (Zhou et al., 2014). 
Interestingly, cgi-miR-1984 was involved in the response to stress that 
was induced by low salinity (Zhao et al., 2016). miR-1984 seems to be a 
mollusk-specific miRNA (Zhou et al., 2014), and miR-184 and miR-10 
are abundant and highly expressed in mollusk hemocytes, suggesting 
their role as key mediators in maintaining the physiological function of 
hemocytes. Note that mir-10c was increased under heat stress in 
genetically improved farmed tilapia, Oreochromis niloticus (Bao et al., 
2018). 

2.3. Heavy metal stress 

Heavy metals (such as mercury, cadmium, copper, arsenic, chro
mium, and lead) contamination is problematic in certain geographic 
areas (Liu et al., 2019; Merly et al., 2019; Safiur Rahman et al., 2019). 
Therefore, heavy metals should be regularly monitored in fresh and 
marine ecosystems. They can occur at detectable concentrations without 
affecting the health of aquatic organisms and act as a potential health 
hazard for marine life and seafood consumers (Merly et al., 2019). The 
high concentration of such metals disrupts the normal physiological 
process, causes tissue damage, inhibits growth and reproduction, and 
modulates early development in aquatic animals including bivalves 
(Cherkasov et al., 2006; Ghazy et al., 2017; Khan et al., 2018; Saidov and 
Kosevich, 2019). Mollusks exhibit a high concentration of heavy metals, 
followed by crustacean and fish (Liu et al., 2019). Oysters are the 
hyperaccumulators of zinc and copper, whereas scallop bivalves are the 
hyperaccumulator of cadmium (Wang and Lu, 2017). Marine bivalves 
are often used to monitor the coastal metal pollution (Mandich, 2018; 

Fig. 1. Norepinephrine mediates the stress response in bivalve hemocytes. 
Stress induces norepinephrine release that, in turn, stimulates downstream 
pathways. Norepinephrine regulates the prophenoloxidase system via α- and 
β-adrenergic receptors, activating immune cells, and mediating cytokine release 
mediated by cyclic-AMP (cAMP). Adrenoceptor antagonists can suppress the 
action of norepinephrine. A strong link was found between serotonin, cAMP, 
dependent protein kinase (PKA), and the expression of the ATP-binding cassette 
transporter gene ABCB. Serotonin has a negative feedback on cAMP levels, PKA 
activities, and ABCB mRNA expression. The ABCB promoter region has several 
putative PKA-related regulatory elements. The transcriptional regulation of the 
ABCB is mediated through the phosphorylation activity of the cAMP-PKA. 
ABCB encodes the P-glycoprotein that is involved in the multixenobiotic 
resistance system (MXR). The MXR helps aquatic organisms to cope with and 
adapt to polluted environments by preventing cellular accumulation of poten
tially harmful xenobiotics. MXR mediates cAMP/PKA activities and many 
genes, including ABCB involved in stress response in bivalves. Moreover, 
norepinephrine can induce the expression of certain microRNA (miRNAs) 
related stress, such as miR-365 during desiccation stress in oysters, and thus 
mediates the expression of several genes, such as heat shock protein (HSP) 
90AA1, which is involved in metabolic processes, biological regulation, and 
response to stimulus. 
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Wang and Lu, 2017). 
The blood clam, Tegillarca granosa, was exposed to the toxic levels of 

cadmium to identify the regulatory function of miRNAs during heavy 
metals stress. Five miRNAs were significantly induced, and 11 were 
significantly repressed during cadmium stress in T. granosa hemocytes 
(Bao et al., 2014). These miRNAs were putatively linked to genes 
implicated in regulating the stress response induced by heavy metals. 
Among the differentially expressed miRNAs, Tgr-nmiR-21, Tgr-nmiR-8, 
and Tgr-miR-2a were significantly downregulated with the highest 
fold-changes by more than six-fold, and Tgr-miR-33-5p, 
Tgr-miR-10a-5p, and Tgr-miR-184b were significantly upregulated by 
more than five-fold (Bao et al., 2014). Of these miRNAs, miR-21 
generally targets genes with a potential impact on melanomagenesis; 
moreover, its upregulation results in the evasion of apoptosis, genetic 
instability, and increased oxidative stress (Melnik, 2015). However, the 
overexpression of miR-21 provides partial protection from H2O2-in
duced ROS activity by interacting with the nuclear factor kappa 
light-chain enhancer of activated B cells (NF-κB) (Wei et al., 2014). 
Moreover, miR-21 is possibly involved in the pathogenetic mechanisms 
underlying heavy metal exposure and albuminuria (Kong et al., 2012). 
The miR-21 expression was negatively correlated with total 
anti-oxidation competence, superoxide dismutase, and catalase con
centrations in gastric cancer patients (Tu et al., 2014). In general, 
miR-21 and let-7 demonstrated crosstalk during stress, ultimately acti
vated several pathways such as NF-κB and RAS signaling pathways 
(Saibyasachi and Yong, 2012), which allow bivalves to cope with stress 
(Fig. 2). There are similar pathways that include other potential miR
NAs; however, the knowledge of their function and pathways remains 
incomplete. 

To address the function of these miRNAs, ionocytes are specialized 

branchial epithelial cells that regulate the maintenance of osmotic ho
meostasis (Bizuayehu and Babiak, 2014). Similar to heavy metal stress, 
the miR-8 family regulates osmoregulation in zebrafish embryos. miR-8 
enables the precise control of ion transport in ionocytes during the early 
developmental stages before gill formation (Flynt et al., 2009). More
over, miR-33-5p promotes osteoblast differentiation (Wang et al., 2016), 
and miR-33 and miR-10a-5p are associated with stress factors (Hao 
et al., 2016; Jovasevic et al., 2015; Sun et al., 2018). miR-10a-5p and 
miR-184b were regulated to maintain normal physiological function 
during a bacteria challenge and heat stress in oyster hemocytes and 
vertebrates (Hao et al., 2016; Zhou et al., 2014). Thus, in bivalves, heavy 
metal stress can modulate osmoregulation. 

Predicted miRNA target analyses have revealed a set of miRNAs that 
target genes involved in the stress response to heavy metals during 
cadmium stress in hemocytes (Bao et al., 2014). Of the regulated miR
NAs, Tgr-nmiR-21 targets the cation diffusion facilitator proteins that 
belong to the family of cation efflux transporters, which possibly play a 
regulatory role in metal homeostasis and tolerance (Blaudez et al., 
2003). Similarly, Tgr-nmiR-8, Tgr-miR-10, and Tgr-miR-67 target heavy 
metal-transporting proteins such as glutamine synthetase, 
metal-transporting ATPase, disintegrin, metalloproteinase, and 
GTPase-activating-like protein (Bao et al., 2014), and they were 
modulated during cadmium stress in plants (Williams et al., 2000). The 
primary responses in blood clam hemocytes are related to genes that 
regulate sulfur acquisition and assimilation (Bao et al., 2014); moreover, 
sulfur-containing metabolites are involved in heavy metal homeostasis 
and detoxification (Ernst et al., 2008). Similarly, the transsulfuration 
pathway is mediated by copper treatment in the hemocytes of the 
mussel, Perna canaliculus, which demonstrated decreases in methionine 
and cysteine (Nguyen et al., 2018). Mitogen-activated protein kinase 

Fig. 2. Proposed schematic representation of 
miR-21 upregulation and let-7 downregulation 
in bivalve mollusks under stress. Some of these 
results were adopted from similar reports on 
mammals. Akt: Akt serine/threonine kinase; 
CAT: catalase; IL6: interleukin 6; NF-κB: nuclear 
factor kappa light-chain enhancer of activated B 
cells; PI3K: phosphatidylinositol 3′-kinase; 
PTEN: phosphatase and TENsin homolog or 
phosphatidylinositol-3,4,5-trisphosphate 3 
phosphatase; RAS: rat sarcoma signaling; SOD: 
superoxide dismutase; Stat3: signal transducer 
and activator of transcription factor 3; T-AOC: 
anti-oxidation competence.   
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signaling was a target for miRNAs (Bao et al., 2014), which mediates 
resistance to acute thermal stress and heavy metal stress (Kefaloyianni 
et al., 2005; Kim et al., 2004). Thus, sulfur compound biosynthesis and 
metabolic processes and mitogen-activated protein kinase signaling are 
primarily involved in heavy metal detoxification, of cadmium in 
particular, in T. granosa. 

3. Other stressors involve microRNA responses 

3.1. Oxidative stress 

Oxidative stress is an imbalance between oxidants and antioxidants; 
when oxidants increase to levels that exceed the defense mechanisms, 
they damage proteins, nucleic acids, and cell membranes (Birben et al., 
2012). The primary player in the oxidative stress is ROS; they include 
nonradical molecules such as peroxides and singlet oxygen, as well as 
free radicals such as superoxide anion and hydroxyl radical (Rezayian 
et al., 2019; Sharma et al., 2012). Imbalance in the ROS level can be 
generated from endogenous sources such as during cellular biochemical 
reactions and exogenous sources such as exposures to xenobiotics, pol
lutants, and heavy (Birben et al., 2012; Sharma et al., 2012). 

As discussed in the previous sections, ROS have an important role in 
the stress response to osmotic stress, temperature, and heavy metals. 
ROS can prompt or repress miRNA expression, and thereby modulate 
downstream biological function by targeting specific genes (Lin, 2019). 
Increasing evidence has demonstrated an interaction between miRNAs 
and components of redox signaling (Gong et al., 2018; Lan et al., 2018; 
Zhou et al., 2014). miRNAs can regulate important components of 
cellular antioxidant machinery such as transcription factors (e.g., NF-κB, 
p53, c-Myc, and nuclear factor erythroid 2 related factor 2 (NRF2)) and 
kinases (e.g., IKK and Akt) (Lin, 2019). Oxidative stress modulates the 
immune function in aquatic organisms and this could affect their health 
status (Abo-Al-Ela, 2019; Abo-Al-Ela et al., 2017a, 2017b). 

Copper induces oxidative stress in mussel hemocytes (Nguyen et al., 
2018). Glutathione is an important antioxidant, which acts as a 
biomarker of oxidative stress (Abdel-Mageid et al., 2020a, 2020b; Rossi 
et al., 2006). Copper exposure causes a remarkable reduction of gluta
thione, which is accompanied by increase in ROS. Moreover, the 
transsulfuration pathway has been identified as a potential primary 
target pathway that involves the metabolism of cysteine and methio
nine, which is considered a cysteine source for glutathione (Nguyen 
et al., 2018). Furthermore, copper increases the number of apoptotic 
hemocytes in a dose-dependent manner, and this is primarily because of 
a high percentage of the late apoptotic sub-population. Copper-exposed 
hemocytes show a remarkable increase in depolarized dead cells. 
Moreover, copper stress results in an increase in alanine and a decrease 
in glutamic acid (Nguyen et al., 2018), which has been reported for 
various cell types driven into apoptosis (Halama et al., 2013; Rainaldi 
et al., 2008). 

A similar investigation in the hemocytes of the white shrimp, Lito
penaeus vannamei, during copper stress disclosed increased ROS pro
duction, thereby inducing oxidative stress and apoptosis in dose- 
dependent and time-dependent manners. In addition to the expression 
of copper–zinc superoxide dismutase and catalase, apoptosis-related 
genes, such as inhibitors of apoptosis protein and caspase-3, and met
allothionein, which is a specific biomarker gene of heavy metal pollu
tion, is markedly upregulated. These genes have been suggested to 
provide protection from copper stress and regulate apoptosis because of 
superfluous ROS generation (Guo et al., 2017). Several miRNAs were 
significantly modulated in the white shrimp under copper stress, and the 
differentially expressed miRNAs were reported to target genes involved 
in xenobiotic metabolism, immune defense, and apoptosis. The targeted 
genes involved immune-related genes; detoxification-related genes such 
as cytochrome p450; glutathione S-transferase and HSP60; and 
apoptotic-related proteins such as p53 and inhibitor of apoptosis pro
tein, which supports certain miRNAs and their target genes as essential 

regulators in intricate adaptive response networks (Guo et al., 2018). Of 
interest, miR-184 has been demonstrated to putatively target most genes 
(Guo et al., 2018), in addition to its role during osmotic stress (Zhao 
et al., 2016; Zhou et al., 2014). Furthermore, miR-183 is modulated 
during low salinity stress in C. gigas (as discussed in Section 2.1.2) (Zhao 
et al., 2016) and copper stress in white shrimp (Guo et al., 2018). 
miR-1175a-3p and miR-1175a-3p and novel-miR-46 were the 
highest-expressed miRNAs during low salinity stress, whereas miR-228 
and novel-miR-8 were the lowest-expressed miRNAs during copper 
stress. These miRNAs are predicted to target immune-related genes. 
miR-1175–3p targets prophenoloxidase, which is an essential gene in 
nonself-recognition and function of the innate defense system in in
vertebrates (Cerenius and Söderhäll, 2004; Söderhäll and Cerenius, 
1998); miR-46 targets Spz3, which is a signaling ligand in innate im
mune response (Boonrawd et al., 2017); miR-228 targets Relish, which is 
a gene that stimulates the expression of several anti-microbial peptides 
(Shi et al., 2015); and novel-miR-8 targets the Kazal-type serine pro
teinase inhibitor, which is an important gene in the immune response, 
regulating the Toll signal pathway in Cyclina sinensis hemocytes and is 
involved in responses to stress such as heat stress (Ren et al., 2015; 
Visetnan et al., 2009). Together, this indicates signal crosstalk and 
regulation between immune function and stress response, indicating 
that stress is a factor that could facilitate pathogen invasion, thus 
causing mortalities. 

During hypoxia stress in the mussel, Mytilus galloprovincialis, hemo
cytes were sensitive to hypoxia and showed increased abilities to pro
duce ROS (Andreyeva et al., 2019; Sui et al., 2016). Such prolonged 
hypoxia could reduce resistance to oxidative stress (Nogueira et al., 
2017). Moreover, hypoxia increases glutathione levels in mussel gills 
(Nogueira et al., 2017). Furthermore, miRNAs exhibit a regulatory 
function during hypoxia in invertebrates. A large number of miRNAs, 
including let-7, miR-101, miR-143, and miR-210, are responsive to 
hypoxia (Wang et al., 2019). Furthermore, both miR-101 and miR-143 
can target the key glycolytic enzyme hexokinase in mammals (Xu 
et al., 2017; Yao et al., 2014) and fish (Soñanez-Organis et al., 2011) 
under hypoxia. However, in marine invertebrates, hexokinase appears 
to be targeted by miR-24-3p, miR-252b-5p, and miR-3966 during hyp
oxic conditions (Wang et al., 2019). It seems that both miR-101 and 
miR-143 may have other roles during hypoxia in marine invertebrates. 
The miR-143 expression may be regulated by p53 (Otsuka and Ochiya, 
2014) as a stress response gene induced during hypoxia (Felix-Portillo 
et al., 2016; Wang et al., 2019). The hypoxia-inducible factor 1 (HIF1) 
transcription factor directly binds to the hypoxia response element of the 
miR-210 promoter (Lin, 2019). Importantly, HIF-1α expression is 
significantly increased in hemocytes and gills of the small abalone 
Haliotis diversicolor under hypoxia and heat stress (Cai et al., 2014). 

3.2. Mechanism underlying microRNA responses through the neural- 
endocrine-immune system 

The nervous system and hemocytes are major players in the neuro
endocrine system with which various molecules, such as neurotrans
mitters, neuropeptides, hormones, and cytokines, interact to regulate 
immune function and responses to environmental stress (Liu et al., 
2018). Norepinephrine is one of the key neurotransmitters in the 
neural-endocrine-immune system that is involved in maintaining ho
meostasis in organisms, including bivalves (Chen et al., 2015). 
Furthermore, it increases during stress and infection (Fig. 1 for more 
details on the role of norepinephrine in mediating the stress response in 
bivalve hemocytes (Abo-Al-Ela, 2020; Chen et al., 2017; Zhou et al., 
2013, 2011). Norepinephrine interacts with members of the multi
xenobiotic resistance system to mediate responses to stress in bivalve 
hemocytes (Fig. 1) (Franzellitti and Fabbri, 2013). The 
neural-endocrine-immune system and adaptation mechanism of oysters 
are greatly controlled by miRNAs (Chen et al., 2015). Thus, it has been 
suggested that miRNAs mediate decreases in the late apoptosis and 
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necrosis rates in oyster hemocytes after neurotransmitter stimulation 
(Chen et al., 2015). 

4. Conclusion and perspectives 

Because hemocytes are involved in antioxidant and stress responses 
and immune defense, this makes them a model for examining systemic 
responses to endogenous and environmental changes. Moreover, he
mocytes are considered bioindicator tools for monitoring environmental 
contamination. The miRNA machinery system regulates most, if not all, 
cellular processes. In silico analyses to predict target genes of miRNAs 
have helped to provide an overview of the cellular microenvironment; 
however, additional studies are required to validate these results and 
address future issues related to the effect of stressors on both environ
mental and human health. 

Such field studies prompted biologists to try to address how miRNA 
regulates the adaptation of bivalves under stress. However, a handful of 
questions require further research: What are the unique miRNAs that 
could act as biomarkers to specific pollutants and stressors? How do 
different tissues interact to adapt to particular stressors? Additional 
research would help to understand the specific mechanisms underlying 
the rapid response of bivalve, particularly hemocytes, to biotic and 
abiotic stress and how such cells organize systematic responses in the 
context of miRNA machinery, particularly since miRNA is most 
conserved between species. An improved understanding of these issues 
may be of some help to enhance aquatic health and the monitoring of 
aquatic environments. 
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