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Abstract As an important electronic device, filter is applied to all kinds of electronic products. In

this paper, a new }-order R-L High-pass filter (HPF) modeled by the local fractional derivative

(LFD) is proposed for the first time. With the help of the local fractional Laplace transform

(LFLT), we obtain the non-differentiable(ND) transfer function, and present the expressions of

ND amplitude-frequency characteristic (AFC) and ND phase-frequency characteristics (PFC).

The corresponding parameters and properties of the }-order R-L HPF are also studied. What’s

interesting is that the }-order R-L HPF becomesthe ordinary one in the exceptional case at

} = 1. The obtained results in this paper reveal the sufficiency of the local fractional derivative

for analyzing the circuit systems in fractal space.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The fractional calculus, an important branch of mathematics,
was born in 1695. It is only in recent decades that researchers

have realized that it is more expressive power than ordinary
derivatives and can better reflect the changes of things, and
the corresponding theoretical and applied studies have

increased [1–4]. In [5], Kumar D, et al. proposed a fractional
extension of the vibration equation and gave the solution.
Singh J studied the fractional rumor spreading dynamical

model in the social network and presented the solution by
using an iterative scheme in [6]. In [7], the fractional model
of nonlinear wave-like equations is studied and the homotopic
technique is applied to examine it. A new fractional Drinfeld-

Sokolov-Wilson model with exponential memory is analysed
by Bhatter S, et al. in [8]. By using Caputo, Caputo-Fabrizio
and Atangana-Baleanu fractional operators, the fractional

exothermic reactions model with constant heat source in por-
ous media with power, exponential and Mittag–Leffler laws
are studied in [9]. In [10], Ghamisi P, et al. studied the segmen-
tation of images based on fractional calculus. He J H studied

the fractional oscillators in [11]. Liu S, et al. proposed a new
fractal compression method in [12]. In [13], an efficient solu-
tion for the fractional equal width equation arising in cold

plasma is considered by Goswami A, et al.
Recently, a new definition of the local fractional derivative

(LFD) proposed by Yang [20] is used widely to describe many
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ND problems that occur in the fractal engineering. For exam-
ple, the R-C HPF filter described by LFD is proposed in [14].
In [15], Liu J G, et al. studied the nonlinear Korteweg-de Vries

equation with space–time fractional derivatives and presented
the exact solutions. Yang X J, et al. proposed the local frac-
tional diffusion equation in fractal heat transfer in [16]. The

LC-electric circuit modelled by LFD is elaborated in detail
in [17]. In [18], the third order modified KdV equation on frac-
tal set is studied. Wang K L, et al. proposed the local fractional

Kdv-Burgers Equation and gave the physical insight in [19].
The method of (N + 1)-dimensional local fractional reduced
differential transform and its applications are presented in
[20]. So, in this paper, we mainly propose a new }-order R-L

HPF model by using the LFD inspired by some recent results
in fractal engineering. We arrange the overall structure of the
article as follows. In Section 2, we introduce the concepts and

their properties of the LFD and LFLT. In Section 3, we define
the ND lumped elements in datail.The }-order HPF is estab-
lished and studied in Section 4. In Section 5, we mainly analyse

ND AFC and ND PFC. Finally, the conclusion is given in
Section 6.

2. The LFD and LFLT

Definition 2.1 There is the following definition of LFD for the
function e tð Þ with order } (0 < } 6 1) [21]:

eð}Þðt0Þ ¼ d}eðtÞ
dt}

jt¼t0
¼ lim

t!t0

M}ðeðtÞ � eðt0ÞÞ
ðt� t0Þ} ; ð2:1Þ

which for 8. > 0; d > 0 and 0 < t� t0j j < d , satisfies the con-
dition that has:

e}ðtÞ � e}ðt0Þ
�� �� < .}there is M} eðtÞ � eðt0½ Þ� ffi Cð1þ }Þ

eðtÞ � eðt0Þ½ �.
Definition 2.2. We have the definitions of Mittag–Leffler

function, sine function and cosine function on Cantor sets with
a fractal dimension } as follows [21]:

E t}ð Þ ¼
X1
k¼0

tk}

C 1þ k}ð Þ ð2:2Þ

sinðt}Þ ¼
X1
k¼0

ð�1Þp tð2kþ1Þ}

C 1þ ð2kþ 1Þ}½ � ð2:3Þ

cosðt}Þ ¼
X1
k¼0

ð�1Þk t2k}

C 1þ ð2kþ 1Þ}½ � ð2:4Þ

where k 2 N, the LFDs of several functions are shown in
Table 1.
Table 1 The LFDs of several func-

tions on Cantor sets.

eðtÞ eð}ÞðtÞ
k 0

Eðkt}Þ kEðkt}Þ
sk}

Cð1þk}Þ
tðk�1Þ}

C 1þ k�1ð Þ}ð Þ
cosðkt}Þ �ksinðkt}Þ
sinðkt}Þ kcosðkt}Þ
Definition 2.3. By noting thatthe LFLT of function eðtÞ as
L} eðtÞ½ � ¼ Re

} cð Þ, then there is [21]:

L} eðtÞ½ � ¼ Re
} cð Þ ¼ 1

Cð1þ }Þ
Z 1

0

eðtÞE}ð�t}c}ÞðdtÞ} ð2:5Þ

where L} is the LFLT operator. Theorem 1. Suppose that the

LFLT of function eðtÞ is taken as L} eðtÞ½ � ¼ Re
} cð Þ, then there

is:

L} eð}ÞðtÞ� � ¼ c}Re
}ðcÞ � eð0Þ: ð2:6Þ

We list the LFLTs of several functions on Cantor sets in
Table 2.

3. The ND lumped elements modeled by LFD

3.1. The ND resistor (NDR)

Definition 3.1 For the fractal circuit systems, we define the

Ohm’s Law of NDR as:

i};RðtÞ ¼ u};RðtÞ
R}

ð3:1Þ

where R}; i};RðtÞ and u};RðtÞ are the ND resistance, ND cur-

rent and ND voltage of the NDR respectively.
3.2. The ND inductor (NDI)

According to the Faraday law of electromagnetic induction,

there is the following relation between the ND voltage and
ND magnetic flux W}ðtÞ :

u};LðtÞ ¼ d}W};LðtÞ
dt}

; ð3:2Þ

Definition 3.2. We define the ND inductance Lf of the NDI

by LFD as:

L} ¼ W};LðtÞ
i};L tð Þ ; ð3:3Þ

Combing Eqs. (3.2) and (3.3) gives:

u};LðtÞ ¼ L}

d}i};LðtÞ
dt}

; ð3:4Þ

where L}; i};LðtÞ and u};LðtÞ represent the ND inductance, ND

current and ND voltage of the NDI respectively.
Table 2 The LFLTs of several

functions on Cantor sets.

eðtÞ L} eðtÞ½ �
1 1

c}

Eðkt}Þ 1
c}�k

tk}
Cð1þk}Þ

1
c}ðkþ1Þ

cosðkt}Þ c}

c2}þk2

sinðkt}Þ k}

c2}þk2
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4. The }-order R-L HPF model within LFD

Fig. 1 plots the ND HPF model described by the LFD, where
we have the following expression in accordance with the Kirch-

hoff Voltage Laws (KVL):

u};iðtÞ ¼ u};RðtÞ þ u};LðtÞ; ð4:1Þ
With the series theorem, there is:

i};RðtÞ ¼ i};LðtÞ; ð4:2Þ
It is clearly that

u};oðtÞ ¼ u};LðtÞ; ð4:3Þ
By using Eqs. (3.1) and (4.2), we obtain:

u};RðtÞ ¼ i};LðtÞR}; ð4:4Þ
We can get the following relation with the help of Eqs. (3.4),
(4.1), (4.4):

u};iðtÞ ¼ R}i};LðtÞ þ L}

d}i};LðtÞ
dt}

; ð4:5Þ

Combining Eqs. (3.4) and (4.3) gives:

u};oðtÞ ¼ L}

d}i};LðtÞ
dt}

; ð4:6Þ

Applying LFLT to the above equation, it yields:

Ru};i
} cð Þ ¼ R}R

i};L
} cð Þ þ L} c}Ri};L

} cð Þ � i};Lð0Þ
h i

; ð4:7Þ

With the zero-state of i};Lð0Þ ¼ 0, the above equation can be

reduced as:

Ru};i
} cð Þ ¼ R}R

i};L
} cð Þ þ L}c

}Ri};L
} cð Þ; ð4:8Þ

In a similar manner, the Eq. (4.6) can be changed into the fol-

lowing form:

Ru};o
} cð Þ ¼ L}c

}Ri};L
} cð Þ; ð4:9Þ

Eqs. (4.8) and (4.9) yield the result:

H} cð Þ ¼ Ru};o
} cð Þ

Ru};i
} cð Þ ¼

1

1þ R}

L}
c�}

; ð4:10Þ

Then we obtain the following ND transfer function by letting

r} ¼ R}

L}
and c ¼ j-:
Fig. 1 The }-order R-L H
H}ðj-Þ ¼ 1

1þ r} j-ð Þ�} ; ð4:11Þ

which gives the expressions of ND amplitude-frequency char-
acteristic(AFC) and ND phase-frequency characteristics(PFC)
as:

H}ðj-Þ
�� �� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2
}-

�2}
q ; ð4:12Þ

!}ð-Þ ¼ �arctanðr}x
�}Þ: ð4:13Þ

In engineering application, the ND AFC represents the atten-
uation of each frequency after the signal passes through the fil-

ter and the ND PFC reflects the delay of each frequency
component after the signal passes through the filter. Assuming
there is -0 that makes:

H}ðj-0Þ
�� �� ¼

ffiffiffi
2

p

2
H}ðj-Þ
�� ��

max
; ð4:14Þ

In engineering, we call -0 the ND cut-off frequency.
From Eq. (4.12), we get the solution of -0 as:

-0 ¼ ffiffiffiffiffi
r}

}
p

: ð4:15Þ
Of special interest is that the ND HPF converts into the ordi-
nary one in the special situation that } = 1.

5. Analysis of the ND HPF

With the help of Eq. (4.12), we get the ND AFC curves of dif-
ferent fractional orders } at r} = 1 as shown in Fig.2, where it

is found that the attenuation of the curves decrease as the

angular frequency increases. This means that the smaller the
frequency, the greater the attenuation of the signal, on the con-
trary, the greater the frequency, the smaller the attenuation.
This is exactly the characteristic of high pass filter, that is, it

allows the frequency higher than a certain intercept to pass
through and greatly attenuate the lower frequency. Further-
more, the larger the value of fractional orders } is, the faster

the curve decays as the angular frequency decreases. In other
words, the higher the order, the better the filtering characteris-
tics.And the ND-AFC graph versus the fractional orders }
when r} = 1 is shown in Fig.3.

As an important parameter of filter, the ND PFC charac-

teristic is often used to reflect signal delay. Fig.4 plots the curve
PF model within LFD.



Fig. 2 Curves of the ND AFC with } = 0.3, 0.5, 0.6,0.8, 1.0 at r} = 1.

Fig. 3 Three dimensional graph of ND AFC with different fractional orders } at r} = 1.
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of the ND PFC with different fractional orders } = 0.3, 0.5,
0.6,0.8, 1.0 at r} = 1. According to the diagram, the following

conclusions can be obtained: When - increases from 0 to 1,

the absolute value of corresponding phase changes decreases
gradually and approaches zero from p

2
. And the bigger the

order } is, the greater the phase changes with the angular
frequency.

Recall the ND cut-off frequency mentioned earlier, when
the signal angular frequency - is higher than the ND cut-off

frequency -0, the signal can pass through. when the signal
angular frequency - is lower than the ND cut-off frequency
-0, the signal output will be greatly attenuated. The ND cut-

off frequency is defined as the limit of passband and stopband.
In engineering applications, engineers often change the values
of R} and L} to get the appropriate ND cut-off frequency.
6. Conclusions

In this paper, we have successfully modeled the }-order HPF

by LFD in fractal space for the first time. The NDTF is
obtained by applying the LFLT, and the corresponding ND
AFC and ND PFC are presented. We studied the parameters

and properties of the }-order R-L HPF in detail. The results
we presented in this paper are expected to open some new
perspectives towards the characterization of ND filters via
LFDs.
Declaration of Competing Interest

None.



Fig. 4 Curve of the ND PFC with } = 0.3, 0.5, 0.6,0.8, 1.0 at r} = 1.
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