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The current model of three-dimensional perception hypothesizes that the brain integrates the depth cues in a
statistically optimal fashion through aweighted linear combinationwithweights proportional to the reliabilities
obtained for each cue in isolation (Landy, Maloney, Johnston, & Young, 1995). Even though many investigations
support such theoretical framework, some recent empirical findings are at odds with this view (e.g., Domini,
Caudek, & Tassinari, 2006). Failures of linear cue integration have been attributed to cue-conflict and to
unmodelled cues to flatness present in computer-generated displays. We describe two cue-combination
experiments designed to test the integrationof stereo andmotioncues, in thepresenceof consistent or conflicting
blur and accommodation information (i.e., whenflatness cues are either absent, with physical stimuli, or present,
with computer-generated displays). In both conditions, we replicated the results of Domini et al. (2006): The
amount of perceived depth increased asmore cues were available, also producing an over-estimation of depth in
some conditions. These results can be explained by the Intrinsic Constraint model, but not by linear cue
combination.
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1. Introduction

From an evolutionary point of view, it is to be expected that the
human visual system makes use of all the available information to
estimate the three-dimensional (3D) properties of the spatial layout
and of the objects within it. In psychophysics, the sources of
information indicating depth are often labeled as “cues” (e.g., Cutting
& Vishton, 1995). The problem of how information about the 3D
structure of objects is combined from various cues is named depth-cue
combination and has received wide attention (e.g. Bruno & Cutting,
1988; Landy et al., 1995; Massaro, 1988). The purpose of the present
investigation is to test the hypothesis that some of the distortions of
perceived depth that had been reported in the literature can be
explained by the presence of flatness cues in computer-generated
displays (e.g., Adams & Mamassian, 2004; Enright, 1991; Koenderink,
van Doorn, & Kappers, 1994; Rogers, 1995). The role of the flatness
cues will be described by making reference to the current depth-cue
combination model (Jacobs, 2002; Jacobs & Kruschke, 2011; Knill &
Richards, 1996; Körding & Wolpert, 2006; Landy et al., 1995). An
alternative model of depth-cue combination will also be discussed
(Domini et al., 2006).
1.1. Linear cue integration

Bayesian probability theory provides a normative framework for
describing how prior knowledge and information from multiple cues
could be combined to make perceptual inferences (Knill & Richards,
1996; Körding, 2007). Landy, Banks and Knill describe a particular
instantiation of the Bayesian normative model, which gives rise to the
linear models for maximum reliability (Landy et al., 2011). Here, we
focus on linear cue integration, because this model has had the largest
impact on the literature (e.g., Angelaki, Gu, & DeAngelis, 2009; Arnold,
Tear, Schindel, &Roseboom,2010;Dewing&Ernst, 2006;Helbig&Ernst,
2007; Hillis, Watt, Landy, & Banks, 2004; Knill, 2007; Knill & Saunders,
2003; Körding, 2007; Nardini, Jones, Bedford, & Braddick, 2008;
Saunders & Backus, 2006; Todorovic, 2009; Zalevski, Henning, & Hill,
2007). According to linear cue combination, independent estimates of
3D properties are linearly combined for producing the minimum-
variance estimate (Cochran, 1937; Ghahramani, Wolpert, & Jordan,
1997). Suppose thatweare interested in estimating thedepth z from the
image signals d (disparity) and v (motion).1 When both cues are
presented together, the optimal estimate of z is provided by themode of
the posterior distribution

p z jd; vð Þ = p d; v jzð Þp zð Þ
p d; vð Þ ; ð1Þ
provided by motion and disparities is described in the Appendix.
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where p(d,v|z) is the likelihood function, p(z) is the prior, and p(d,v)
is a constant term. In order to find the maximum a posteriori (MAP),
both the likelihood function p(d,v|z) and the prior p(z) must be
specified. As stated by the linear model of cue integration, the
likelihood function of Eq. (1) is:

p d; v jzð Þ = p d jz;pdð Þp v jz;pvð Þ; ð2Þ

where pd and pv are the scene parameters (see Appendix A) and p(d|z ;
pd) and p(v|z ;pv) are Gaussian functions. If the scene parameterspd and
pv are estimated correctly then, through inverse geometry, it is possible
to obtain an unbiased estimate of the true depth-map z0 from d and v.
The likelihood functions provide a model of the noise affecting the
measurement of d and v, and, as a consequence, the estimate of the true
depth-map z0. In Fig. 1, these likelihood functions are shown (in red) for
adisparity signal (toppanel) andamotion signal (middle panel). Inboth
cases, the likelihood functions are generated by the same distal depth
z0=100 mm. When both signals are present, the likelihood function
p(d,v|z) is also peaked at z0=100 mm, but it is characterized by a
smaller uncertainty (bottom panel, red curve).

For Gaussian distributions and for flat prior distributions, the
minimum-variance MAP estimate is found by a weighted linear
combination of the depth estimates computed separately for each
cue:

z′ = ∑
j
wjz′j wj =

σ−2
j

∑jσ
−2
j

ð3Þ

where z′j is the amount of depth specified by cue j, andσj is the standard
deviation of that cue's estimate. The weights wj are non-negative and
Fig. 1. Maximum likelihood estimates of depth (80, 66, 85 mm) for the combination of
disparity information and flatness cues (top panel), motion information and flatness
cues (middle panel), and disparity+motion and flatness cues (bottom panel). The red
curves represent the likelihood functions for disparity, p(d|z ;pd), motion, p(v|z ;pv),
and disparity+motion information, p(d,v|z). These functions are assumed to be
Gaussian and centered at the true depth value (100 mm). Note that the variance of the
disparity+motion likelihood function is smaller than the variances of either of the
individual (motion-only and disparity-only) likelihood functions. The black curves,
peaked at 0 depth, represent the likelihood functions of the flatness cues, p(f|z). The
blue curves are the likelihood functions resulting from the product of the disparity-
only, motion-only, and disparity+motion likelihood functions and the likelihood
function of the flatness cues. The peaks of the joint likelihood functions (blue) for the
depth cues and the flatness cues provide the MLE estimates that are obtained by
combining multiple sources of information.
sum to one. If the reliabilities of the depth estimates derived from the
motion and disparity signals are defined as the reciprocal variances,
rv=1/σv

2 and rd=1/σd
2, then the reliability of the resulting estimate

rc =
1
σ2
c

= rv + rd ð4Þ

will be greater than the reliability of either of the single-cue estimates
(i.e., σ c

2bσ v
2,σ d

2). By combining information from several cues,
therefore, this combination rule yields an estimate having greater
precision than could be obtained by using any one cue alone.

1.2. Cues to flatness in computer displays

The combination rule proposed by the model of linear cue
combination can be used to account for a result often reported in
the psychophysical literature, that is, the mis-estimation of depth
magnitudes and distances in computer-generated displays and
virtual-reality scenes (Allison, Gillam, & Vecellio, 2009; Bradshaw,
Parton, & Glennerster, 2000; Braunstein & Tittle, 1988; Caudek &
Domini, 1998; Caudek, Domini, & Di Luca, 2002; Caudek & Proffitt,
1993; Creem-Regehr, Willemsen, Gooch, & Thompson, 2005; Di Luca,
Domini, & Caudek, 2004; Domini & Caudek, 2003a, 2003b; Domini,
Caudek, & Skirko, 2003; Domini, Caudek, Turner, & Favretto, 1998;
Domini, Caudek & Proffitt, 1997; Domini, Vuong & Caudek, 2002;
Durgin, Proffitt, Olson, & Reinke, 1995; Hibbard & Bradshaw, 2003;
Knapp & Loomis, 2004; Thompson et al., 2004). Such perceptual
distortions often take the form of an under-estimation of depth
(Buckley & Frisby, 1993; Ellis, Smith, Grunwald, & McGreevy, 1991;
Frisby, Buckley, & Duke, 1996; Frisby, Buckley, & Horsman, 1995; van
Ee, Banks, & Backus, 1999). It has been argued that depth under-
estimation may arise from a cue conflict among the depth cues
manipulated by the experimenter and the depth cues inadvertently
provided by the experimental setting (e.g., Buckley & Frisby, 1993;
Frisby et al., 1996, 1995; Tittle & Braunstein, 1993; Todd, Thaler,
Dijkstra, Koenderink, & Kappers, 2007; van Ee et al., 1999; Watt,
Akeley, Ernst, & Banks, 2005). When participants judge 3D shape
properties simulated on a CRT screen, in fact, cues for “flatness” are
always present.

Young, Landy, and Maloney (1993) introduced the notion of “cues
to flatness” by pointing out that cues manipulated in a computer
simulation are always accompanied by “other, extraneous cues
(vergence, accommodation, motion parallax if the head is free to
move, prior knowledge) all of which may signal that the display is flat
(which, in fact, it is)” (Johnston, Cumming, & Landy, 1994, p. 2270).
When the cues manipulated by the experimenter are of low quality,
“more weight is given to these extraneous cues, resulting in a display
which appears flattened” (see also Atkins, Jacobs, & Knill, 2003).

Watt et al. (2005) examined this issue in greater detail and
proposed that depth flattening in computer displays is caused by the
inconsistent information provided by accommodation and by the
retinal blur gradient. In computer-generated displays, in fact, the focal
distance is fixed (because the images are presented on the CRT
monitor) and, consequently, the blur variation in the retinal image is
consistent with the distance of the CRT monitor and not with the
distances of the different points of the simulated 3D object. In a real
scene, instead, the retinal blur varies because the points in the scene
are at different distances with respect to the eye's focal distance: the
retinal image is sharpest for objects at the focal distance and blurred
for points nearer and farther away. A second cue to flatness is
provided by accommodation. Ciliarymuscle contraction is responsible
for the increased refractive power of the lens during accommodation
and it is used to minimize the blur at the fixation point. During the
scanning of a real scene, the focal distance must be adjusted
depending on the depth variation of the 3D object. In a computer
simulation, conversely, the focal and the represented distances do not
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vary appropriately and this can signal the flatness of the display. In a
further investigation, Hoffman, Girshick, Akeley, and Banks (2008)
suggested that perceived depth distortions in computer displays are
reduced (or disappear) when focus cues are correct. Other cues to
flatness are also a visible frame around a 3D scene (Eby & Braunstein,
1995), the monocular movement parallax, the pixellation, or any
marks on the screen.2

1.3. Cue combination and cues to flatness

Depth flattening is easily accounted for by the linear model of cue
combination (e.g., Adams & Mamassian, 2004). Consider a cue-
combination experiment with motion v and disparity d cues. The
cues are presented either in isolation or together. In order to properly
describe the information presented on a flatmonitor, Eq. (2)must also
include a termmodeling the cues to flatness. According to Adams and
Mamassian (2004), cues to flatness (f) can be combined in a single
Gaussian distribution centered at zero depth: p(f|z). Cues to flatness
can be considered as additional cues that are in conflict with the depth
cues. The following equations model optimal cue combination of
disparity, motion, and disparity+motion cues, together with the cues
to flatness:

p d; f jzð Þ = p d jz;pdð Þp f jzð Þ ð5Þ

p v; f jzð Þ = p v jz;pvð Þp f jzð Þ ð6Þ

p d; v; f jzð Þ = p d; v jzð Þp f jzð Þ: ð7Þ

Consider first the situation in which only disparity and flatness cues
are present (Fig. 1, top panel). The likelihood function p(d,f|z) is
centered at a value which lies somewhere in between the depth
estimate from disparity and the depth estimate from the flatness cues.
The position of the center of this distribution depends on the relative
strength of the flatness cues and the disparity cue. In Fig. 1, the spread of
p(f|z) (black curve) is larger than the spreadof p(d|z) (red line), thus the
combined likelihood p(d,f|z) (blue) is centered at a value closer to the
true depth (100 mm). The estimate resulting from the combination of
the disparity and the flatness cues, however, results in an under-
estimation of depth (80 mm). In Fig. 1, the estimate from motion
information is less reliable (middle panel, red curve) than that resulting
from disparity information. The depth underestimation, therefore, is
even larger than before (66 mm). But what happens when both
disparity and motion cues are presented together? The spread of
p(d,v|z) is smaller then the spread of either p(d|z ;pd) or p(v|z ;pv). As a
consequence, the disparity+motion estimate is less affected by the
flatness cues and it results in a smaller depth underestimation (85 mm;
Fig. 1, bottom panel, blue curve). In conclusion, according to linear cue
combination, the cues to flatness produce (a) a depth underestimation
in both single-cue andmultiple-cue displays, and (b) a larger amount of
perceived depth in multiple-cue than in single-cue displays.

1.4. Rationale of the experiments

The purpose of the present investigation was to test the
hypotheses that (i) the depth underestimation found with single-
cue stimuli, and (ii) the “paradoxical” result reported by Domini et al.
(2006) can be both explained, within the linear cue combination
framework, by the flatness cues of computer displays. To test these
hypotheses, we replicated a traditional cue-combination experiment
2 Several methods can be used to weaken the effects of the flatness cues in a 3D
scene. This can be done, for example, by minimizing the value of information about
distance derived from accommodation through an artificial pupil (Kubovy, 1986), by
synoptic or oblique viewing (Koenderink et al., 1994), or by the administration of
atropine, a treatment that has the effect of dilating the pupil and paralyzing
accommodation.
(which isolates disparity and motion cues) by using physical stimuli.
We reasoned as follows. If the same results are found with physical
stimuli as well as with computer displays, then one must conclude
that the distortions of perceived depth that have been described
above cannot be attributed to the flatness cues, because cues to
flatness are absent within natural viewing conditions.

2. Experiment 1

We replicated the cue-combination experiment of Domini and
Caudek (2011) by using physical stimuli. Two vertical rods were
placed on a rotating platform (see Fig. 2) and participants were asked
to set the platform's position so that the perceived depth separation
(Δz) between the two rods appeared to be equal to their horizontal
separation (Δx). The task was performed by providing participants
with different depth cues: motion-only, disparity-only, and disparity
+motion. In the motion-only condition, participants viewed the
stimulus monocularly, while the rods were oscillating about a vertical
axis. In the disparity-only condition, participants binocularly viewed
the stationary stimulus. In the combined condition, participants
binocularly viewed the oscillating rods. Consistent with what was
foundwith virtual stimuli by Domini and Caudek (2011), in absence of
cues to flatness we expected that (i) both single-cue and combined-
cue stimuli are perceived in a non-veridical manner, and (ii)
combined-cue stimuli elicit a larger amount of perceived depth than
the single-cue stimuli.

2.1. Method

2.1.1. Apparatus and stimuli
The stimulus consisted of two 0.1 cm×2.0 cm vertical lines

separated by a lateral distance of 121 mm (see Fig. 2). The stimuli
were created by cutting vertical slits into an opaque black paper mask
Fig. 2. Schematic representation of the side view (top panel) and of the top view
(bottom panel) of the apparatus of Experiment 1. The observer's task was to equate the
perceived distances Δx and Δz.



4 We used the lmer program (lme4 package) in the R system for statistical
computing (queryR Development Core Team, 2010). As indicated by Baayen (2008), p
values and confidence intervals are generated from the posterior distribution of
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and mounting a thin diffuse white sheet over the slits. An Ultra Violet
Light lamp, with wavelengths no longer than 370 nm, was mounted
behind the black mask so that, when viewed from the front, only the
two diffuse white slits were illuminated. The black light was used to
make the two white strips glow in the dark. While the stimuli were
composed of a solid sheet slanted around a vertical axis, the
backlighting was covered and the rest of the room dark so that no
slanted surface was actually visible. The stimulus rested on a motor
driven platform which rotated around the vertical axis.

The rotating stimulus-platformwas placed on a track that could be
translated along the z-axis over a range of 40 to 210 cm. Distances
were measured to the axis of rotation which was centered between
the two vertical slits. The stimuli were presented within a viewing-
box and they were lit by dark light in an otherwise dark room.

The apparatus was endowed with mechanical shutters, which
allowed to intermix, across trials, binocular or monocular vision.
Informal reports collected at the end of the experiment indicated the
participants could not discriminate the trials in which the shutter was
closed for one eye, from those in which it was opened.

Stimuli were randomly presented at distances of 60, 100, and
200 cm, under monocular-motion, static-binocular, and combined
binocular-motion conditions, with counterbalancing across both
positive and negative stimulus angles.3 Binocular/monocular viewing
was automated by shutters attached to HiTech™ servomotors which
were controlled by a Dell™ Dimension 8100 PC running a Python-
based experimental script. A Phidgets™ USB Servomotor controller
and drivers were used to interface the PC to all servomotors. The same
hardware was also calibrated to control stimulus motion, which
consisted of a triangle wave oscillation at 8°/s around the vertical axis
of the stimulus. The initial orientation of the stimuli in each trial was
randomly selected in the range of 20° to 60° from frontal–planar.

In the “motion-only” condition, vision was monocular and the 3D
stimulus structure oscillated about a vertical axis (see Fig. 2). In the
“disparity-only” condition, vision was binocular and the 3D stimulus
structure was kept stationary. In the combined “motion-disparity”
condition, vision was binocular and the 3D stimulus structure
oscillated about a vertical axis (see also Bradshaw et al., 2000).

2.1.2. Participants
Eighteen observers from the Brown University student community

participated in the experiment. All observers were naïve to the
specific hypothesis in the experiment and unaware of the nature of
the stimuli being presented.

2.1.3. Procedure
Themethod of adjustments was used to set the perceived Δx equal

to the perceived Δz (see Fig. 2). Participants indicated with a keypress
which stimulus dimension (Δx or Δz) appeared to be larger. After a
selectionwasmade by pressing a button on the keyboard, the shutters
closed, and the stimulus was rotated in a direction to counter the
observer's judgment. While the stimuli were being reoriented, the
shutters were closed and participants were not able to observe the
stimuli. A mouse key press ended the trial. Participants were seated in
a dark room and their heads were stabilized using a chin-rest to
reduce head movement. The experimenter was present in the room
throughout trials in order to adjust the stimulus platform to the
randomized distance.

2.1.4. Design
A3(distance: 60, 100, 200 cm)×3(cues:motion-only, disparity-only,

motion-disparity) within-subject design was used.
3 In half of the trials, the vertical slits were coplanar to a solid sheet tilted by a
negative angle with respect to the frontal-parallel plane; in the other half of the trials
the “stimulus angle” was positive.
2.2. Results

The results are shown in Fig. 3 in terms of the bias of the observers'
settings, that is, in terms of the difference between Δx and Δz of the
physical stimulus, when observers perceived these dimensions to be
equal. Veridical performance (bias equal to zero) corresponds to
Δz=Δx=85.60 mm. A positive bias means depth overestimation,
because a smaller amount of physical depth is required to match the
perceived amount Δx (ΔzbΔx).

Inferential statistics on the observers' responses are based on a
LinearMixed-Effects (LME)model specifying participants as a random
factor to control for their associated intraclass correlation.4 The
dependent variable is the amount Δz of the physical stimulus that was
set by the observers when they perceived Δz to be equal to Δx (see
Fig. 2). The observed mean together with the 95% C.I. is reported in
Table 1.

The interaction between distance and cues is significant,
χ2

2=23.073, pb .001. As shown in Fig. 3, the disparity-only and the
disparity+motion trials are affected by the viewing distance,
whereas the motion-only trials are not, t322=−0.703, pN.05.

By comparing the 95% C.I. of Table 1 with the “true” value of
85.60 mm, we can see that the settings of Δz in the disparity-only trials
are compatible with a veridical response at the viewing distances of 60
and 100 cm; at 200 cm, instead, depth from disparity is under-
estimated. The settings of Δz in the disparity+motion trials suggest
that, at 60 cm, depth is over-estimated whereas, at 100 and 200 cm, the
observers' settings are compatible with a veridical response.

In conclusion, the results of Experiment 1 show that the
“paradoxical” result of Domini et al. (2006) cannot be attributed to
the presence of cues to flatness: with physical stimuli (i.e., in absence
of flatness cues), observers report larger amounts of perceived depth
when motion is added to disparity information. Interestingly, in our
data, such an increase of perceived depth did not necessarily improve
the accuracy of the perceptual estimate.

3. Experiment 2

The purpose of Experiment 2 was to ask whether virtual stimuli
elicit a smaller amount of depth than an equivalent physical stimulus.
In Experiment 2, we replicated the design of Experiment 1 by using
virtual stimuli identical in shape and dimensions to those used in
Experiment 1; the stimuli were presented with a haploscope, with
vergence information always consistent with simulated distance.

4. Method

4.1. Participants

Four observers from the Brown University student community
participated in the experiment. All observers were naïve with respect
to the hypothesis under investigation.

4.2. Apparatus and stimuli

The stimuli were simulated through a custom C++ program using
OpenGL graphic routines and were presented on a custom stereo
haploscope. Inter-pupillary distance for each participant was measured
and used to adjust the stereoscope viewing geometry so that vergence
angle was consistent with the simulated disparity in binocular
parameter estimates with Markov Chain Monte Carlo methods, using the mcmcsamp

program in the lme4 package with default specifications (e.g., n=1000 samples;
locally uniform priors for fixed effects; locally non-informative priors for random
effects).
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conditions. For monocular presentations, observers wore an eye-patch
over their left eye.
4.3. Design

A 3 (distance: 60, 100, 200 cm)×3 (cues: motion-only, disparity-
only, motion-disparity) within-subject design was used.
4.4. Procedure

In each trial, participants indicated whether the Δx stimulus
dimension appeared to be larger than Δz. An adaptive staircase
method was used which incorporated four interleaved staircases.
Staircases ended after six reversals and each session ended once the
last staircase was completed.

The data were fitted with cumulative Gaussians free to vary in
position (PSE) and slope (JND) using the software package psignifit
(Wichmann & Hill, 2001). From the fitted psychometric functions, we
determined the point of subjective equality (PSE). The PSE corresponds
to the Δz magnitude at which the psychometric function reaches 0.5,
that is, the PSE is the point at which the Δz stimulus dimensions were
Table 1
Experiment 1. Average Δz settings (mm), when Δzwas perceived to be equal to Δx, as a
function of viewing distance and cues (D+M=Disparity+Motion; D=Disparity-
Only; M=Motion-only). Veridical performance corresponds to Δz=Δx=85.60 mm.
Lower values indicate depth under-estimation. 95% confidence intervals are reported in
parentheses. The confidence intervals are generated from the posterior distribution of
parameter estimates with Markov Chain Monte Carlo methods.

Cues Viewing distance

60 cm 100 cm 200 cm

D+M 81.16 [76.30, 84.91] 82.58 [78.72, 87.25] 88.83 [83.94, 93.77]
D 84.42 [79.58, 89.08] 86.20 [82.23, 91.28] 92.95 [87.94, 97.55]
M 90.62 [87.74, 96.49] 92.32 [88.01, 96.54] 89.80 [87.86, 96.86]
equally often judged to be equal to the Δx dimension (see Fig. 2).
Eighteen PSEs were computed for each participant.
4.5. Results

In a LME analysis on the data of both experiments, with cues,
distance, and experiment as fixed effects, the 3-way interaction is not
significant, χ5

2=3.65, p=.60, indicating that similar cues×distance
interaction in both experiments, χ2

2=30.20, pb .001. To perform the
task for the physical stimuli, observers set Δz to lower values than for
the virtual stimuli. In order for Δz to appear equal to Δx, the simulated
depth of the virtual stimuli is 5.74 mm larger on average than the
depth of the physical stimuli, t1037=2.52, pb .02.

Fig. 4 shows the biases of the observers' settings averaged across
participants. The bias is coded as in Fig. 3 of Experiment 1. The
observed mean together with the 95% C.I. is reported in Table 2.

By using as the dependent variable the amount Δz of the physical
stimulus that was set by the observers when they perceived Δz to be
equal to Δx, the interaction between distance and cues is significant,
χ2

2=15.71, pb .001. As in Experiment 1, this interaction indicates that
the disparity-only and the disparity+motion trials are affected by the
viewing distance, whereas the motion-only trials are not, t70=−1.38,
pN .05.
Table 2
Experiment 2. Average Δz settings (mm), when Δzwas perceived to be equal to Δx, as a
function of viewing distance and cues (D+M=Disparity+Motion; D=Disparity-
Only; M=Motion-only). Veridical performance corresponds to Δz=Δx=85.60 mm.
Lower values indicate depth under-estimation. 95% confidence intervals are reported in
parentheses. The confidence intervals are generated from the posterior distribution of
parameter estimates with Markov Chain Monte Carlo methods.

Cues Viewing distance

60 cm 100 cm 200 cm

D+M 81.10 [71.80, 92.11] 86.26 [75.74, 94.57] 94.62 [84.75, 105.95]
D 86.43 [75.77, 96.44] 90.85 [81.19, 100.88] 101.70 [91.37, 112.99]
M 102.67 [89.94, 110.25] 94.87 [88.27, 107.12] 93.57 [82.27, 103.62]
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The 95% C.I. of Table 2 indicate that, at the viewing distances of 60
and 100 cm, perceived depth is veridical; at 200 cm, depth from
disparity is under-estimated. Even though the 95% C.I. do not provide
evidence of depth over-estimation in the disparity+motion trials, the
statistical analyses indicate that, on average, observers reported a
larger amount of perceived depth when motion was added to
disparity information (see Fig. 4).
5. General discussion

In our previous investigation with virtual stimuli, we found that
perceived depth was larger when disparity and motion cues were
shown together, with respect to when each cue was shown in
isolation (Domini et al., 2006). In Experiment 2 of the present
investigation, we replicated this result. As explained in Fig. 1, linear
cue combination can explain this result by hypothesizing that the
“single-cue” estimates are actually “combined-cue” estimates in
which the amount of perceived depth is found by multiplying the
likelihood function of the disparity (or motion) cue by the likelihood
function of the residual cues associated with using a flat monitor (e.g.,
accommodation, vergence, and blur cues — see Adams & Mamassian,
2004; Watt, Banks, Ernst, & Zumer, 2002; Watt, Akeley, & Banks,
2003) and by maximizing the resulting likelihood function. In the
same way, the disparity+motion condition should be described as
disparity+motion+flatness. According to this reasoning, the depth
estimate in the disparity+motion+flatness condition is larger than
in any of the disparity+flatness or motion+flatness conditions
because, when both depth cues are present, the MAP estimate is
affected by the likelihood function of the flatness cues in a smaller
measure than when only a single depth-cue is present. Linear cue
combination, therefore, is consistent with the increase of perceived
depth when motion is added to disparity information, but only in the
case of computer simulations (when cues to flatness are present), not
in the case of physical stimuli (when cues to flatness are absent).

As discussed in the Introduction, the model of linear cue
integration can explain this finding by hypothesizing a reduced effect
of the residual cues associated with using a flat monitor (e.g.,
accommodation, vergence, and blur cues — see Adams & Mamassian,
2004; Watt et al., 2002, 2003). To determine whether this is indeed
the case, we replicated a classical cue-combination experiment by
using a physical object, where accommodation, vergence, and blur
cues are always consistent with the depth of the stimulus display. In
Experiment 1, we found that perceived depth increased when adding
more cues, also with a physical stimulus. This result, therefore, cannot
be explained by the reduced effect of the (absent) cues to flatness.5

The only possibility for linear cue combination to account for depth
over-estimation is to abandon the assumption of unbiased estimates
from single cues. If such assumption is violated, however, linear cue
combination becomes meaningless. In the presence of biased
estimates, in fact, the criterion of maximum reliability does not
guarantee that the least-biased estimate will receive the largest
weight. Therefore, we loose any rational justification for choosing
maximum reliability as the goal of cue combination (see also Domini
& Caudek, 2011).

An alternative explanation of the present result is provided by the
cue-combination model proposed by Domini and Caudek (Caudek,
Fantoni, & Domini, 2011; Di Luca, Domini, & Caudek, 2007; Di Luca,
Domini, & Caudek, 2010; Domini et al., 2006; Domini & Caudek, 2009;
Domini & Caudek, 2010; Fantoni, Caudek, & Domini, 2010; Foster,
5 Some researchers have hinted that depth perception might also be affected by a
prior for frontal-parallel (Adams & Mamassian, 2004). In terms of Fig. 1, one can
imagine that the Gaussian centered at zero might represent not the likelihood function
of the cues to flatness, but rather a prior for frontal-parallel. However, given that to our
knowledge there are not published studies suggesting the biological plausibility for a
prior for frontal-parallel, we don't pursue further such argument here.
Fantoni, Caudek, & Domini, 2011; Tassinari, Domini, & Caudek, 2008).
This approach differs from linear cue combination in an important
respect: according to the proposal of Domini and Caudek, the direct
(i.e., retinal) information about 3D shape provided by different cues is
combined before a metric interpretation is assigned to each signal in
isolation. Specifically, we hypothesized that a piecewise-affine estimate
of the true depth is derived fromeach retinal cue in isolation (Caudek&
Rubin, 2001; Domini, Caudek, & Richman, 1998). These piecewise-
affine estimates are then combined into an optimal weighted sum that
maximizes the Signal to Noise Ratio (SNR).

There are two aspects that are relevant for the present discussion:
(1) the SNR of the combined signal increases as more cues are added;
(2) this combined retinal signal is scaled by assigning larger metric
depth values to larger SNRs (Domini et al., 2006). The approach
proposed by Domini and Caudek, therefore, is consistent with the
present data because it guarantees larger depth estimates with more
cues, without requiring that more information increases veridical
perception.

Consistentwith previous literature, the comparisonof the results of
Experiments 1 and 2 indicates that computer-generated displays
support smaller amounts of perceived depth than physical stimuli,
when equivalent depth information is provided in the two cases.
According to linear cue combination, depth under-estimation in
computer-displays is produced by (a) the low reliability of the
simulated depth cues, and (b) the cue-conflict resulting from the
flatness cues. Both these aspects contribute to decrease the amount of
perceived depth. The approach proposed by Domini and Caudek
explains the different amounts of perceived depth elicited by virtual
and physical stimuli in a differentmanner. According to IC, the flatness
cues in a virtual display are ignored, unless they produce non-zero
retinal gradients. The different depthmagnitudes that are perceived in
matched physical and virtual displays are not attributed to a decrease
of perceived depth caused by the flatness cues, but rather to an
increase in the amount of perceived depth caused by the presence of
additional depth cues within natural viewing conditions (e.g., among
the others, the blur gradient). If all depth cues are combined together,
the SNR of the combined signal will be larger for the physical than for
the virtual stimuli (because a larger number of depth cues are
combined in the first than in the second case). According to IC,
perceived depth depends on the SNR of the combined signal.
Therefore, we should expect a larger amount of perceived depth for
the physical rather than for the matched virtual displays.

5.1. Conclusions

We found that (a) perceived depth from disparity+motion was
larger than perceived depth from either single-cue alone, and (b) the
addition of motion to disparity information produced depth over-
estimation, even if disparity-only information supported veridical depth
perception fromphysical stimuli. Thepresent results cannotbeexplained
by a cue averaging strategy that attributes depth mis-estimations to the
residual flatness cues of the monitor's screen — cues to flatness, in fact,
were absent in the physical stimuli of Experiment 1. The Intrinsic
Constraint model (Domini et al., 2006) is one of the possiblemodels that
are consistent with the results obtained with both the physical
(Experiment 1) and the virtual stimuli (Experiment 2) of the present
investigation.

Appendix A. Information provided bymotion and disparity signals

A.1. Retinal disparities

If the object is small enough, then the relationship between the
retinal disparities and the 3D location of the projecting features can be
characterized by a simple equation. Let us term di the horizontal
disparity of the ith feature point. Assume that the object is placed at a
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fixation distance zf from the observer and that zi is the relative depth
of the ith feature point with respect to the fixation point F. For an
object subtending a small visual angle, Eq. (8) defines the relationship
among the image signals d=(d1,…,dn), the depth map z=(z1,…,zn)
and the scene parameters pd=(zf):

di ≈ IOD
zi
z2f

+ εdi ; ð8Þ

where IOD is the observer's interocular distance and εdi is a Gaussian
random variable representing the noise in the disparity measurements.

A.2. Retinal velocities

Let us term vi the retinal velocity of the ith feature point. If the
observer translates horizontally by Tx while fixating the object, or the
object rotates about a vertical axis centered at the fixation point F,
then the pattern of retinal velocities is

vi ≈ ω
zi
zf

+ εvi : ð9Þ

If the observer moves about an otherwise stationary object, then

ω =
Tx
zf
. εvi is a Gaussian random variable representing the noise in the

velocity measurements. The scene parameters are pv=(zf,Tx).
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