
Multimedia Tools and Applications
https://doi.org/10.1007/s11042-021-10980-3

PhyDSLK: a model-driven framework for generating
exergames

Maria Teresa Baldassarre1 ·Danilo Caivano1 · Simone Romano1 ·
Francesco Cagnetta1 ·Victor Fernandez-Cervantes2 · Eleni Stroulia2

Received: 1 September 2020 / Revised: 31 December 2020 / Accepted: 30 April 2021 /

© The Author(s) 2021

Abstract
In recent years, we have been witnessing a rapid increase of research on exergames—i.e.,
computer games that require users to move during gameplay as a form of physical activ-
ity and rehabilitation. Properly balancing the need to develop an effective exercise activity
with the requirements for a smooth interaction with the software system and an engag-
ing game experience is a challenge. Model-driven software engineering enables the fast
prototyping of multiple system variants, which can be very useful for exergame devel-
opment. In this paper, we propose a framework, PhyDSLK, which eases the development
process of personalized and engaging Kinect-based exergames for rehabilitation purposes,
providing high-level tools that abstract the technical details of using the Kinect sensor and
allows developers to focus on the game design and user experience. The system relies on
model-driven software engineering technologies and is made of two main components: (i)
an authoring environment relying on a domain-specific language to define the exergame
model encapsulating the gameplay that the exergame designer has envisioned and (ii) a
code generator that transforms the exergame model into executable code. To validate our
approach, we performed a preliminary empirical evaluation addressing development effort
and usability of the PhyDSLK framework. The results are promising and provide evidence
that people with no experience in game development are able to create exergames with dif-
ferent complexity levels in one hour, after a less-than-two-hour training on PhyDSLK. Also,
they consider PhyDSLK usable regardless of the exergame complexity.

Keywords Model-driven game development · Rehabilitation exergames ·
Model-driven software engineering

� Maria Teresa Baldassarre
mariateresa.baldassarre@uniba.it

1 University of Bari, Bari, Italy
2 Department of Computing Science, University of Alberta, Edmonton, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-10980-3&domain=pdf
http://orcid.org/0000-0001-8589-2850
mailto: mariateresa.baldassarre@uniba.it


Multimedia Tools and Applications

1 Introduction

Exergames are video-games that require body movements to play and are thought as a form
of physical activity [12]. In recent years, research in the context of exergames has mainly
focused on rehabilitation purposes, although rehabilitation exergames are often not engag-
ing or challenging enough, resulting in a failing therapy. It is our opinion that to overcome
these difficulties, the development process of exergames should be user-centered and not be
effort prone nor require specific programming skills.

To develop games (and thus exergames), developers have to typically translate their
mental models of the envisioned gameplay into code, which is a challenging task since
General-Purpose Languages (GLPs), like Java or C, are not designed to capture such
models [13]. On the other hand, Domain-Specific Languages (DSLs) can be tailored to pro-
vide syntactic constructs that correspond to the requirements that match developers’ needs
for a specific application domain. DSLs are used in Model-Driven Software Engineering
(MDSE) technologies to define models that, after applying transformation chains, are trans-
lated into artifacts (e.g., code for a specific platform). MDSE technologies can be exploited
to ease the game development process (and thus the exergames development process), bridg-
ing the gap between the semantics of GLPs and concepts of a specific application domain.
Bearing this in mind, Guana et al. [13] designed and then implemented a DSL, PhyDSL, to
allows developers to naturally define gameplay models of 2D physics-based games, reflect-
ing the mental models of the developers. They also implemented a transformation chain to
(automatically) translate the defined models into executable code for Android1 devices.

In this paper, we describe our experience in developing a new transformation chain for a
second target platform of PhyDSL [13]. Keeping in mind that PhyDSL was conceived espe-
cially for developers with little programming experience [13] and motivated by the need
to ease the development of exergames for upper-limb rehabilitation exercises, we devel-
oped a second transformation chain, in PhyDSLK, to enable the generation of exergames
for the Kinect sensor and the Unity game engine with Windows as the target platform.
The PhyDSLK framework is made of two main components: (i) an authoring environment
relying on a DSL, PhyDSL, to define the exergame model encapsulating the gameplay
that the exergame designer has envisioned and (ii) a code generator that transforms the
exergame model into executable code. The complete natural interface provided by Kinect-
based exergames can obtain better results as compared to mixed interfaces where users have
to interact with their body along with physical devices such as game controllers or bal-
ance boards. This is especially true for seniors—the end-users of our exergames—, who are
usually not familiar with these devices and may be reluctant to learn how to use them. More-
over, the usefulness of a DSL, like PhyDSL, should increase if it is supported by multiple
transformation chains leading to code generation for multiple platforms (like in our case).

To validate our approach, we performed a preliminary empirical evaluation addressing
development effort and usability of PhyDSLK. To that end, we asked 14 participants with
no experience in game development (and thus exergame development) to develop three
exergames with increasing complexity by using PhyDSLK.

The key contributions of this paper can be summarized as follow:

– A new transformation chain to enable the generation of exergames for the Unity game
engine with Windows as the target platform and user-interaction modality based on
Kinect.

1https://www.android.com

https://www.android.com


Multimedia Tools and Applications

– Three exergames for upper-limb therapies for seniors, representative of the types of
exergames that the PhyDSLK system can produce. Each game has different functional-
ity and different complexity, enabling different types of movements to be accomplished
by the users to reach the goals of the therapies.

– A preliminary empirical study that evaluates PhyDSLK with respect to development
effort and usability. The validation aimed to investigate whether it is feasible for people
with no experience in game development to create exergames with PhyDSLK regardless
of the complexity of the exergame.

The remainder of this paper is structured as follows. Section 2 provides the main concepts
on MDSE and summarizes work related to ours. In Sections 3 and 4, we introduce PhyDSLK
and three exergames developed by using PhyDSLK, respectively. The preliminary empirical
assessment of PhyDSLK and the obtained results are presented in Section 5. Final remarks
conclude the paper, along with our future research agenda.

2 Background and related work

In this section, we review the key concepts on MDSE and discuss an example of applica-
tion of MDSE, namely PhyDSL, the original DSL and code-generation engine on which
our work is based. We then summarize work on the use of exergames in the fields of phys-
ical medicine and rehabilitation, along with work aiming to improve the development of
exergames.

2.1 Model-driven software engineering and PhyDSL

MDSE practices can increase efficiency and effectiveness in software development, creat-
ing a direct line with human mind computational tasks such as abstraction, or, in the more
MDSE specific term, modeling [4]. The core concepts in MDSE are models and transforma-
tions, which need to be expressed in an appropriate modeling language. Modeling languages
are defined using three main components: (i) abstract syntax, which describes the language
and its structure as well as how primitives can be combined at the highest level of abstrac-
tion without taking into account any representation or encoding; (ii) concrete syntax, which
describes the exact representation of the language; (iii) and semantics, which describes the
sense of any element of the language and any combination of them.

In Fig. 1, we show an overview of the MDSE methodology, as a top-down process.
Models are defined according to a DSL (i.e., a programming language built for a specific
domain), in turn, defined using a meta-modeling language. Then transformations are exe-
cuted according to transformation rules specified through a transformation language. In the
end, the artifacts produced can be deployed to the desired platform.

Guana et al. [13] exploited MDSE to ease the development of 2D physics-based games
for Android devices. The core of this work is PhyDSL, a DSL that enables game design-
ers to define gameplay models of 2D physics-based games, reflecting the mental models
of the designers. Guana et al. also implemented a transformation chain that takes as input
the defined gameplay models and produces executable code for Android devices. The
PhyDSL language and code-generation engine rely on a point-and-click user-interaction
model, appropriate for the Android platform; instead, PhyDSLK adopts the Kinect sensor
as the input device, responding to the user’s movements to control the game, whose state is
reflected on a Unity-based environment.



Multimedia Tools and Applications

Fig. 1 Overview of the MDSE methodology (top-down process) [4]

2.2 Exergames

In recent years, exergames have seen ever-increasing popularity in the video game market.
Nintendo Wii and Microsoft Xbox 360 consoles have improved the gameplay paradigm by
introducing new interactive control systems [9]. While the Wii console allows users to inter-
act with games via a remote controller, the Xbox 360 console provides a different and more
immersive experience thanks to the Kinect sensor, which allows users to control the game
solely through their bodies—i.e., without remote controllers. In 2012, Microsoft released
Kinect for Windows along with the Kinect SDK so allowing researchers to explore appli-
cations of the Kinect sensor in fields different from gaming. For example, researchers have
studied applications of the Kinect sensor in the fields of physical medicine and rehabilitation
(e.g., [15, 19]) since Kinect-based exergames allow setting up a cost-effective and enter-
taining exercise system able to collect quantitative data about users’ movements, calorie
consumption, and aerobic activity [22]. Lange et al. [15] observed that people with lim-
ited experience in video games were excited to play a Kinect-based rehabilitation exergame
within a clinical setting. Pastor et al. [19] reported that a stroke survivor was engaged with
a Kinect-based exergame designed for upper-limb rehabilitation and that she was willing
to use it at home. Sáenz-de-Urturi et al. [21] showed how the participation of domain’s
experts at the design phase of a Kinect-based exergame can lead to engaging and effective
gameplay for elder people. Galna et al. [11] assessed the accuracy of the Kinect sensor in
measuring movements in people with Parkinson’s disease and showed that Kinect has the
potential to become a home-based, cost-effective sensor to measure movements in people
with Parkinson’s disease, despite it is not so accurate in measuring small movements such
as toe-tapping. Averell and Know [1] proposed a rhythm-based music game technology to
support stroke rehabilitation and highlighted how the proposed technology was capable of
monitoring, thanks to the Kinect sensor, the progress of stroke survivors. Ofli et al. [18]
showed that Kinect was a viable means to monitor elder people while doing gym exer-
cise at home. Li et al. [16] proposed a system that included rehabilitation exergames for
elder people and reported that the participants involved in a preliminary study were favor-
able to use the system in the future. Despite the above-mentioned studies [1, 11, 15, 16, 18,
19, 21] investigate applications of the Kinect sensor in the fields of physical medicine and



Multimedia Tools and Applications

rehabilitation (just like ours) with encouraging results, none of them presents supporting
tools for developing rehabilitation exergames (unlike our study).

The results of the above-mentioned studies [1, 11, 15, 16, 18, 19, 21] suggest that the
Kinect sensor can be successfully applied in the fields of physical medicine and rehabilita-
tion; however, there are still some obstacles in developing engaging exergames efficiently.
Fernandez-Cervantes et al. [8] developed VirtualGym, a system that aims to simplify the
development process of Kinect-based rehabilitation exergames by providing a language for
specifying postures and movements. The system includes an editor that enables domain
experts to specify the rehabilitation exercise (i.e., a gym exercise) by editing a virtual
demonstration of that exercise. During the exergame, a virtual coach avatar demonstrates the
exercise so that the patient can learn and practice the exercise. The movements of the patient
are then reflected in real-time on the avatar. Feedback is provided to the patient about the
correctness of the execution of the exercise. Fernandez-Cervantes et al. also conducted a pre-
liminary study with potential patients who were asked to do exercises by using VirtualGym;
the study results enabled an improvement of the system interface. While VirtualGym sup-
ports the development of rehabilitation exergames in the form of gym exercises, PhyDSLK
allows developing 2D physics-based exergames (e.g., casual games) for rehabilitation pur-
poses. Also, we evaluated our system by focusing on the development of exergames, unlike
Fernandez-Cervantes et al. who evaluated their system by focusing on how it supports
patients in doing rehabilitation exercises.

Portes et al. [20] proposed a system to ease the development of rehabilitation exergames
for children/teenagers suffering from lower back pain. This system is based on a high-
level language, named PEL, and allows developing exergames in the form of gym exercise.
The therapist defines the exercise requirements (e.g., the trajectory of the rehabilitation
movement), which a developer translates into PEL for then automatically generating the
exergame. The system also aids the patient in doing the exercise. In particular, a virtual
coach avatar shows the exercise that the patient had to then repeat. During the exercise
execution, the system monitors the performance of the patient through the Kinect sen-
sor. Portes et al. also conducted a preliminary study with potential patients who were
asked to do an exercise by using the system. The results suggest that the system facil-
itates the rehabilitation process of patients. One of the main differences between Portes
et al. ’s system and PhyDSLK is the kind of supported exergames (i.e., gym exercises
in the form of exergames vs. 2D physics-based exergames for rehabilitation purposes).
Also, unlike Portes et al., we assessed our system with respect to development effort and
usability.

Mocanu et al. [17] proposed a system to stimulate physical activity adapted to elder
people. The system is based on Kinect and allows creating an exergame where the virtual
patient avatar had to reproduce the gym exercise showed by the virtual coach avatar—i.e.,
gym exercises in the form of exergames. The system allows the therapist to record a gym
exercise that the coach avatar will reproduce. The results from a preliminary evaluation of
the system show that the system can engage patients in physical activity for a long time—
Mocanu et al. did not evaluate development effort and usability of their system.

Hardy et al. [14] proposed a framework for the development and use of customized and
adaptive exergames to train elderly and disabled people. The framework allows experts of
different domains to be involved in the design phase together with game designers, exploit-
ing an authoring environment. Hardy et al. showed the capabilities of the framework by
developing two exergames; the former had an interaction modality based on an ergome-
ter bike, the latter had an interaction modality based on a balance board. Afterward, the
authors evaluated the developed games by involving potential patients and reported that the



Multimedia Tools and Applications

participants accepted the games as an appropriate kind of training. Again, the authors did
not evaluate their system with respect to development effort and usability. Also, Hardy
et al. ’s system allows developing exergames different from PhyDSLK (e.g., the exergames
developed through PhyDSLK are Kinect-based, unlike those developed through Hardy et al.
’s system).

The above-mentioned studies [8, 14, 17, 20] aim to increase the direct contribution
of domain experts in the design stage of exergames, trying to scale down the problem-
implementation gap [10]. That said, we believe this is the right direction to undertake and
more effort is needed to build a complete model-driven system able to address the over-
all complexity of the exergame development process, providing the appropriate abstraction
levels that allow domain experts to be autonomous protagonists in all phases from design to
deploy. Based on this perspective, we developed PhyDSLK, which we describe in the next
section.

3 PhyDSLK

The development process of an exergame through PhyDSLK is depicted in Fig. 2 by using
a UML activity diagram with object flow where rounded rectangles represent phases and
rectangles represent objects consumed/produced by these phases. As depicted in Fig. 2, the
development process of an exergame through PhyDSLK is a pipeline made up of two main
phases:

1. Model Specification. This (main) phase allows the exergame designer to create
the exergame model encapsulating the gameplay she has envisioned. The PhyDSL
language [13] is used to specify the exergame model. This phase comprises eight sub-
phases (see Fig. 2), each of which is conveniently recalled in the following of this
section, and produces the exergame model as the output.

2. Code Generation. This (main) phase takes the exergame model and applies M2T
transformations, which enable the automatic generation of code (i.e., scripts) ready
for the Unity game engine with Windows as the target platform for the exergame
and user-interaction modality based on Kinect. The scripts generated by these M2T
transformations are the output of this phase.

We detail these two phases in the rest of this section.

3.1 Model specification phase

To allow the exergame designer to specify the exergame model, we reused the PhyDSL
plugin for the Eclipse IDE by Guana et al. [13]. The plugin requires the exergame designer
to first create a gameplay design file (i.e., a file with the phy extension)—the sub-phase
Creation of Gameplay Design File in Fig. 2. After creating the gameplay design file, the
exergame designer can specify the exergame model with the support of the plugin, which
extends the Eclipse IDE by providing a text editor for the PhyDSL language including
automatic-completion and static-checking of PhyDSL code (i.e., code saved in phy files).
In Fig. 3, we show these two features of the PhyDSL plugin.

Guana et al. conceived the PhyDSL language to help the game designer to translate
her mental model of the gameplay into code [13]. To that end, the language requires the
exergame designer to provide an answer to five questions, each of which is associated with a
concept of the gameplay. The answers to these questions are provided through five gameplay



Multimedia Tools and Applications

Fig. 2 Development process of
an exergame through PhyDSLK

1. Model Specification

1.1. Creation of Gameplay Design File

1.2 Declaration of Exergame Types

1.5 Definition of Exergame Activities

1.4 Definition of Exergame Layout and
Environment

1.6 Definition of Exergame Scoring Rules

1.7 Definition of Exergame Controls

1.8 Export of Exergame Model

1.3 Definition of Exergame Actors

2. Code Generation

:Scripts for Unity

:Exergame Model

definition sections, respectively. The questions and the corresponding gameplay definition
sections are shown in Table 1.

The PhyDSL language is based on enumerated types to specify concrete values for the
variables that will be then used to define gameplay concepts (e.g., actors or layout). The



Multimedia Tools and Applications

Fig. 3 Automatic-completion (on the left-hand side) and static-checking (on the right-hand side) of PhyDSL
code in the PhyDSL plugin

Types definition section is where exergame designers specify these types—the sub-phase
Declaration of Exergame Types in Fig. 2. In Fig. 4, we show an example of the Types
definition section for an actual exergame, namely AlienMiner.

In the Actors definition section, it is possible to define the exergame actors—the sub-
phase Definition of Exergame Actors in Fig. 2—along with their properties, which are:
density, elasticity, friction, image, size, shape, mobility, and type. In Fig. 5, we show the
Actors definition section for the AlienMiner exergame. The density, elasticity, and friction
properties specify how the actor will interact with physics; while image and shape specify
its appearance. The value of the shape property (i.e., either circle or square) is also used to
determine how to manage the collisions. The mobility property can be either dynamic or
static. The former will let actors be affected by physical forces such as gravity and collisions,
while the latter will not. Finally, the type property is used to specify if the actor will be
abstract, concrete, or main. An abstract actor will not interact with other actors and its
physical properties will be ignored by the game engine. A concrete actor will support all
physical interactions. The main actor will be the one controlled by the player and, if a
continuous camera is defined (see the Layout and Environment definition section), it will
be followed by the camera.

In the Layout and Environment definition section, exergame designers can specify where
to locate the actors of the exergame, as well as the gravity, background image(s), touch
capabilities, and camera behaviors—the sub-phase Definition of Exergame Layout and
Environment in Fig. 2. In Fig. 6, we provide an example of the Layout and Environment
definition section for the AlienMiner exergame. The locations of the actors can be specified
by using the coordinate system of Unity where 1 unit is equal to 100 pixels and the origin of

Table 1 Questions related to gameplay concepts with the corresponding gameplay definition sections

Questions related to gameplay concepts Gameplay definition sections

Q1: Who is the player? S1: Actors

Q2: Where does the player live? S2: Layout and Environment

Q3: What are player’s challenges? S3: Activities

Q4: What are player’s goals? S4: Scoring Rules

Q5: What are player’s available actions? S5: Controls



Multimedia Tools and Applications

Fig. 4 An example of Types definition section for AlienMiner

the x and y axes is located in the middle of the first background image—each background
image is resized to 1920x1080 pixels. As for the gravity, it is merely set by choosing one
of the gravity values defined in the Types definition section. The background is set thanks
to two parameters: image and segments. The former is related to the custom resource type
defined in the Types definition section and refers to image file(s). The latter lets the game
engine understand how many images will compose the background. The exergame designer,
indeed, can use multiple images that will be horizontally tiled. Exergame designers must

Fig. 5 An example of Actors definition section for AlienMiner



Multimedia Tools and Applications

Fig. 6 Example of Layout and Environment definition section for AlienMiner

follow a naming convention to correctly build the background: consecutive numbers must
be put at the end of the file names (e.g., bg1, bg2, bg3, and so on). The touchscreen-enabled
property was conceived by Guana et al. [13] to allow, or not, the player to interact with the
game by using the touch gesture of Android mobile devices. We reinterpreted this property
since in our case the user-interaction modality is based on Kinect. In particular, the exergame
designer can set the touchscreen-enabled property to false if she wants to enable “soft”
virtual on-screen hands, or true if she wants to enable “hard” virtual on-screen hands. The
former will let the hands overlap the objects of the exergame so that the player can touch
these objects by using the closed-hand gesture. The latter will let the hands interact with
the objects when colliding with them—i.e., the closed-hand gesture is disabled since it is
not needed. Given the exploratory nature of our research, we decided not to modify the
PhyDSL language (and the corresponding Eclipse plugin). That is to say that we planned
to customize the PhyDSL language in case of promising results from our initial empirical
assessment. The camera property manages the camera behavior during the exergame. It can
be set to continuous or none. A continuous camera will continuously follow the main actor,
moving smoothly through the exergame world and its frustum will always frame the scene
respecting its boundaries. Conversely, a camera set to none will be static, and its frustum
will always frame the center of the world.

The Activities definition section allows exergame designers to set up the activities of
the exergame—the sub-phase Definition of Exergame Activities in Fig. 2. We show an
example of the definition section for Alien Miner in Fig. 7. An activity is used to model
an exergame event that is not directly triggered by the actions of the player. To define an
activity, the exergame designer must specify the actor, frequency, angular velocity, linear
speed, and position properties. The actor is the protagonist of the activity; the frequency
indicates how often the event must be repeated; the angular velocity and linear speed specify
the movement of the actor; and finally, the position defines where the actor has to appear.

The Scoring Rules definition section (see the example in Fig. 8) allows defining the
scoring rules—the sub-phase Definition of Exergame Scoring Rules in Fig. 2. Three
types of scoring rules are available: time-based rules; collision-based rules, and touch-based
rules. Any scoring rule, regardless of its type, can trigger four different actions: update
the exergame score, end the exergame, give sound and/or haptic feedback, and let an actor

Fig. 7 Example of Activities definition section for AlienMiner



Multimedia Tools and Applications

Fig. 8 Example of Scoring Rules definition section for AlienMiner

disappear. In PhyDSLK the haptic feedback property is ignored due to the interaction-
modality based on Kinect.

Finally, in the Controls definition section (see the example in Fig. 9), exergame designers
can set up the control system of the main actor—the sub-phase Definition of Exergame
Controls in Fig. 2. It is possible to define moving and shooting controls. For both kinds of
controls, Guana et al. [13] conceived the image and position properties to allow defining,
respectively, the appearance and position of the corresponding buttons on the screen of
Android mobile devices. In PhyDSLK, the image and position properties are ignored since
the interaction-modality is based on Kinect (i.e., no button is visualized on the screen). To
define moving controls, the moves property must be set: it specifies the force vector to apply
to the main actor (i.e., the intensity of the movement to be applied to the main actor as well
as the direction of that movement). In PhyDSLK, the x and y coordinates of the force vector
allow also the recognition of the arm gestures, namely:

– Right-arm gestures, if x is greater than zero;
– Left-arm gestures, if x is less than zero;
– Either-arm-up gestures, if x is equal to zero and y is greater than zero.

For right-arm gestures, the angle defined by the force vector, with respect to the x axis, is
used to recognize this kind of gestures. That is, a right-arm gesture is recognized when the
angle defined by the right arm of the player, with respect to the x axis, is equal to or greater
than the angle defined by the force vector. As for left-arm gestures, the recognition is similar
but this time, instead of considering the angle defined by the right arm, the angle defined by
the left arm is considered. As for either-arm-up gestures, the player must lift either arm over
her head to allow the recognition of such a kind of gestures. We would like to recall that,
for any gestures, the force vector defines the intensity of the movement to be applied to the
main actor as well as the direction of that movement. To define shooting controls, the shoots
and projectile properties must be set. The former specifies the force vector to be applied
to the projectile, while the latter specifies which actor will be the projectile. In PhyDSLK,
shooting controls corresponds to Lasso-hand gestures. The x coordinate of the force

Fig. 9 Example of Controls definition section for AlienMiner



Multimedia Tools and Applications

vector allows determining if the corresponding lasso-hand gesture will be performed with
the left hand (x less than zero), right hand (x greater than zero), or either hand (x equal to
zero).

Once the exergame designer has provided the answers to the five gameplay concepts in a
phy file, she can then export the exergame model—the sub-phase Export of the Exergame
Model in Fig. 2. To that end, the PhyDSL plugin allows the exergame design to generate an
xmi file, which stores the exergame model.

3.2 Code generation phase

When developing a code generator, three fundamental aspects must be considered: how
much to generate, what to generate, how to generate [4]. A choice between a full generation
or a partial one must be taken. Furthermore, the generated code should be maintainable and,
at the same time, as concise as possible. To achieve such a (twofold) goal, reusable soft-
ware components (e.g., libraries or framework) can be used so that the generator limits itself
to generate mostly dynamic code (i.e., code that is different from a game to another one),
while reusable software component encapsulates static code (i.e., code that is in common
among games). Bearing this in mind, we developed (i) PCAL to encapsulate the static code
concerning Unity and (ii) inherited and tailored two scripts of the Kinect v2 asset to encap-
sulate the static code concerning Kinect—these scripts are referred, from here onwards, to
as Kinect-interaction utility scripts. Thanks to these reusable software components, our code
generator limits itself to perform four M2T transformations that lead to generate only four
scripts, which depend on PCAL and Kinect-interaction utility scripts. The generated scripts
follow:

– MainScript. This script manages all the logic of the exergame.
– BodySourceView. It visualizes the virtual hands of the player on the screen.
– KinectGestures. This script defines the gestures to interact with the exergame.
– GestureListener. It listens to the player when she executes the gestures defined

through the KinectGestures script.

The latter three scripts are inherited and tailored from the Kinect v2 asset.
The code generator leverages the Acceleo transformation language to transform the

exergame model into the above-mentioned scripts. Since Acceleo is a template-based trans-
formation language, we defined a template for each script to be generated. Templates are
made up of meta-makers and text fragments. Meta-makers are placeholders that have to be
interpreted and evaluated while text fragments do not need to be interpreted. That is, at run-
time, the template engine interprets meta markers and then replaces them with some text
to produce the output files—in constant to text fragments that are reported as they are in
the output files. In Fig. 10, we show an excerpt of the mtl file we used to define our four
templates. An excerpt of the generated script is also shown.

To deploy the exergame, the generated scripts are added to a Unity template project,
which encapsulates PCAL and Kinect-interaction utility scripts. A description of these two
software components follows.

3.2.1 PCAL

The design of PCAL is based on the pure code approach [7]. It is an approach to design
Unity-based games that minimizes the use of the Unity GUI editor while maximizing pure
coding. PCAL consists of the following scripts:



Multimedia Tools and Applications

Fig. 10 On top, an excerpt of the mtl file we used to define our templates. On bottom, an excerpt of the
generated script

– ResourcesManager. The purpose of this script is to manage exergame resources
such as loading sprites and audio clips.

– ActorsManager. This script replaces the standard Unity prefab system by creat-
ing custom prefabs of the actors defined in the exergame model, which are ready to
be instantiated when needed. This scripts thus handle the creation and destruction of
the actors; moreover, it provides the functionality to keep the main actor within the
boundaries of the exergame world.

– LayoutManager. It allows locating the actors according to the specified coordinates.
– EnvironmentManager. This script manages the creation of the world scene. It pro-

vides methods for creating the background, the world borders, and the game camera
along with the gravity setting.

– ActivitiesManager. This script provides the functionality for executing the
activities defined in the exergame model.

– ScoringRulesManager. It allows handling time-based, collision-based, and touch-
based scoring rules.

– ControlsManager. This script deals with managing the movements of the main
actor, as well as shooting capabilities.

– EventForwarder. The purpose of this script is to manage the events of every game
object in the scene, such as collision or update events.

– EventForwarderManager. This class deals with the event forwarder component
attachment to game objects that need one. It saves references to the specific object in
appropriate data structures, which allow future retrievals and action-performing.

– GUIManager. The purpose of this script is to manage the user interface. Thus, it
exposes the methods for instantiating the canvas and the event systems, and the ones for
creating and managing (i.e., editing, showing, or hiding) GUI elements such as splash
screens, timeboards, and scoreboards.

The use of PCAL leads to a very clean, neat, and readable MainScript, which mostly
contains dynamic code, while the static code is mostly encapsulated in the library. This
should allow having a positive impact of the maintainability of MainScript.

3.3 Kinect-interaction Utility Scripts

To allow the interaction with Kinect, the following two utility scripts are needed:



Multimedia Tools and Applications

– KinectManager. This is the main Kinect-related script. It manages the communica-
tion between the Kinect sensor and the Unity-based exergame. It initializes the sensor,
gets raw data from the cameras and processes them, gets body position and orientation,
computes position of joints and their orientation starting from the main joints, computes
confidence and state of hands, and detects the progress of gestures.

– BodySourceManager. The purpose of this script is to continuously retrieve the body
data from the sensor and store them in an appropriate data structure.

4 Exergames

PhyDSLK allows end-users to develop different types of Kinect-based exergames, such as
platform, shooter, puzzle, maze, and casual games. In the following of this section, we
provide an overview of the capabilities of the system through three exergames we devel-
oped by using PhyDSLK, namely: KeepTheBalloons, PopTheBalloons, and AlienMiner.
These exergames have an increasing level of complexity. To develop KeepTheBalloons
and PopTheBalloons, we took into account the requirements defined by the Department
of Occupational Therapy of the University of Alberta. This is because both KeepThe-
Balloons and PopTheBalloons have been included in the Virtual Gym project, which has
practical applications in upper-limb therapies for elder people [8]. As for AlienMiner, it
was developed to include all features of PhyDSLK in a unique, fun, engaging exergame.
AlienMiner is our Kinect-based exergame version of the game developed by Guana et
al. for the Android platform [13]. Games were developed embracing criteria of Green
IT [6].

4.1 KeepTheBalloons

KeepTheBalloons is a casual exergame (see Fig. 11). There is no main character to be
moved. The exergame world is a bright and slightly cloudy sky. The goal of the exergame is
to keep the balloons in the air as long as possible. All balloons come into view at the begin-
ning of the exergame by falling from the sky. The player can interact with the balloons as

Fig. 11 A screenshot of KeepTheBalloons



Multimedia Tools and Applications

she would do in real life, namely by pushing them with more or less strength based on how
close the balloons are to the ground. The score is incremented every five seconds based on
the number of balloons in the air. In particular, each balloon in the air provides 5 points
every 5 seconds. Three different difficulty levels are available, namely: easy, medium, and
hard. The higher the difficulty level is, the higher the number of balloons that come into
view during the exergame is, as well as the greater the diversity of color and shape of the
balloons are. It is worth mentioning that, at the current stage of this research, each level of
the exergame actually corresponds to a new exergame. The exergame ends when one of the
balloons reaches the floor or after two minutes. KeepTheBalloons was developed for use in
upper-limb therapies. In particular, it aims to let players (i.e., elder people) familiarise them-
selves with the exergaming world by trying to emulate natural gestures, such as lifting an
arm to push a balloon, along with any possible natural movement that makes the exergame
challenging for arms.

4.2 PopTheBalloons

PopTheBalloons is a casual exergame as well (see Fig. 12). There is no main character to
be moved. Similar to KeepTheBalloons, the exergame world is a bright and slightly cloudy
sky. The balloons come into view during the exergame by falling from the sky. The goal of
the exergame is to pop the balloons before they reach the floor. The player can pop the bal-
loons by performing a closed-hand gesture when the corresponding virtual hand overlaps
the balloon. Each popped balloon lets the player score be incremented by five points. Con-
versely, the score does not change when balloons reach the floor so popping by themselves.
This choice is to avoid discouraging low-performing players. Three different difficulty lev-
els are available, namely: easy, medium, and hard. The higher the difficulty level, the higher
the number of balloons that come into view during the exergame, as well as the greater
the diversity of colors and shapes of the balloons. The exergame ends after two minutes.
PopTheBalloons was developed to let players (e.g., elder people) move their arms up, down,
and to the sides, as well as lead them to bend their torso to reach and pop balloons that
would be not accessible otherwise.

Fig. 12 A screenshot of PopTheBalloons



Multimedia Tools and Applications

4.3 AlienMiner

AlienMiner is a 2D game initially developed by Guana et al. [13]. We upgraded the game
with a new Kinect-based interaction and new shooting capabilities. The exergame starts with
an alien (i.e., the main actor) located on a foreign planet. To complete a level, the player has
to drive the alien towards the spatial portal. The planet is full of dangers and obstacles, along
with precious gems that the player should collect to increase the score. The controls are
based on arm movements (i.e., arm gestures). The player can collect gems in different ways.
For example, emeralds are collected when reached by the alien—for each collected emerald,
the score of the player is increased by 30 points. Diamonds are, instead, collected when the
player closes her hand (i.e., closed-hand gesture) while the respective virtual hand overlaps
the gem on the screen. In this case, the score is incremented by 20 points. The player should
avoid collisions with meteorites. When this happens, the player is penalized by 20 points.
Meteorites can be shot by the player. In particular, the player can shoot fireballs towards
meteorites by performing the Lasso-hand gesture with her left or right hand. The exergame
ends when the spatial portal is reached by the alien or after two minutes. Some screenshots
of AlienMiner are shown in Fig. 13.

5 Empirical study

In this section, we present the empirical study we carried out to preliminary evaluate
PhyDSLK, along with the obtained results.

5.1 Study planning and execution

We planned and executed our empirical study by bearing in mind the guidelines by Wohlin
et al. [24].

Fig. 13 Some screenshots of AlienMiner



Multimedia Tools and Applications

5.1.1 Study goal

We define the goal of our empirical study by using the Goal/Question/Metric template [3]
as follows:

Analyze PhyDSLK for the purpose of evaluating it with respect to the effort to develop
exergames and its usability regardless of the exergame complexity from the point of
view of researchers and end-users in the context of undergraduate students.

Based on the above-mentioned goal, we defined and investigated the following Research
Questions (RQs):

RQ1. What is the effort to develop exergames by using PhyDSLK regardless of the
exergame complexity?

RQ2. What is the usability of PhyDSLK regardless of the exergame complexity?

5.1.2 Study participants

We asked 14 undergraduate students, taking the Software Engineering course at the Univer-
sity of Bari (Italy) and Polytechnic of Bari (Italy), to voluntarily take part in the empirical
study. Based on a pre-questionnaire the participants had filled in before the study took place,
no one was familiar with either Unity or Kinect. Furthermore, they had no experience with
game development and did not know the PhyDSL language. Therefore, we can assume the
participants as representative of end-users (e.g., therapists) that do not have experience in
game development but want to define the gameplay of exergames and then develop the
exergames.

5.1.3 Variable selection

The dependent variables we used to answer, respectively, RQ1 and RQ2 are:

– Effort. It is measured through two metrics: (i) time (in hours) consumed by a participant
to develop an exergame by using PhyDSLK; and (ii) LOC (Lines of Code, excluded
blank and commented lines) of the phy file a participant wrote to develop an exergame.
For both metrics, the greater they are, the greater the effort to develop an exergame is.

– Usability. We used the System Usability Scale (SUS) questionnaire [5] to compute the
SUS Score, which is a metric of usability. This questionnaire consists of ten statements,
each of which can be rated on a 5-point scale—i.e., from 1 (“I strongly disagree”) to 5
(“I strongly agree”). The questionnaire alternates five positive statements (e.g., “I think
that I would like to use this system frequently”) to five negative statements (e.g., “I
found the system unnecessarily complex”). Let Scorei be the score (from 1 to 5) of the
i-th statement, the SUS Score is computed according to the following formula [5]:

SUS Score = 2.5 ∗
10∑

i=1

{
Scorei − 1 if the i-th statement is positive
5 − Scorei if the i-th statement is negative

The SUS score ranges in [0, 100]. The greater a SUS score is, the better the usability
of PhyDSLK is. A SUS score greater than or equal to 70 indicates a good usability [2].

The participants in the study were asked to develop, by using PhyDSLK, three exergames
with increasing complexity, namely: KeepTheBalloons, PopTheBalloons, and AlienMiner.



Multimedia Tools and Applications

Therefore, Exergame is an independent variable that assumes three values (i.e., KeepThe-
Balloons, PopTheBalloons, and AlienMiner).

5.1.4 Study design

The participants took part in four sessions, which were held in the same week. The first
one was a training session conceived to let participants became familiar with PhyDSLK.
The remaining ones were the actual experimental sessions in which each participant was
asked to define the gameplay of three exergames—i.e., one experimental session for each
exergame to be developed.

The training session consisted of two 50-minute blocks divided by a 10-minute break.
The first part presented PhyDSLK while the second part consisted of a tutorial on the use of
PhyDSLK where each participant familiarized with the system by using a sample exergame.

In each experimental session, a participant was asked to perform an experimental task;
namely, she was asked to develop an exergame by using PhyDSLK. In particular, she had
to: (i) create the exergame model encapsulating the gameplay for the assigned exergame;
(ii) generate the four scripts from the exergame model; and (iii) deploy the exergame to
verify it worked as expected. To do so, the participant was provided with the specifications
of the exergame (see Section 5.1.5), the folder of multimedia resources (e.g., it contains the
background images), and the documentation of PhyDSLK.

The exergames were assigned to the participants from the least to the most complex. In
particular, KeepTheBalloons was the first task, PopTheBalloons was the second one, and
AlienMiner was the last one. To mitigate the fatigue effect, the experimental sessions took
place on different days.

For each experimental task, we keep track of the time each participant consumed to
develop the exergame. After performing the experimental task, each participant was asked to
rate the usability of PhyDSLK by filling in the SUS questionnaire [5]. Finally, we extracted
the LOC from the phy file each participant wrote to develop the exergame.

5.1.5 Experimental tasks

A description of each task, along with the specifications of the corresponding exergame we
supplied to each participant, follows.

KeepTheBalloons The goal of the task was to investigate how the participants addressed a
relatively simple exergame scenario, which did not involve all features of PhyDSLK. The
specifications of KeepTheBalloons follow:

– The goal is to let a player move her arms/hands in order to push and keep some balloons
in the air as long as possible.

– All balloons must come into view at the beginning of the exergame by falling from the
sky.

– The background must consist of one image only (so the size of the background is
1920x1080 pixels).

– The camera must be static.
– The exergame must last at most two minutes.
– The exergame must end when a balloon reaches the ground.
– Time is the metric that governs the score of the player (i.e., the higher the exergame

time, the higher the score).



Multimedia Tools and Applications

– The choice of further implementation details is left to each participant (e.g., number,
color, or size of the balloons).

PopTheBalloons The task required the participants to define the gameplay of a more
challenging exergame, which involved more PhyDSLK features as compared to KeepThe-
Balloons.

– The goal is to let a player move her arms/hands and bend her torso to pop as many
balloons as possible.

– Balloons must come into view dynamically during the exergame (i.e., new balloons
must come into view with time).

– The player can pop the balloons by means of the closed-hand gesture.
– Balloons must pop when they reach the ground.
– The background must consist of one image only (so the size of the background is

1920x1080 pixels)
– The camera must be static.
– The number of popped balloons governs the score of the player (i.e., the higher the

number of popped balloons, the higher the score).
– The exergame must last two minutes.
– The choice of further implementation details is left to each participant (e.g., number,

color, or size of the balloons).

AlienMiner This task aimed to investigate how the participants addressed a complicated
exergame scenario that involved all PhyDSLK features.

– The goal is to let a player move her arms/hands so that the alien (i.e., the main actor)
can reach the spatial portal.

– The alien is located on a planet with obstacles (i.e., bricks), meteorites, and gems (i.e.,
emeralds and diamonds).

– The player can control the alien through specific arm gestures: left/right arm extended
outwards (i.e., horizontally) to move the alien towards the left/right side; left/right arm
extended upwards to move the alien up; left/right arm extended diagonally upwards to
move the alien up-left/up-right.

– The player can let the alien shoot fireballs by using hand gestures: lasso-hand gesture
performed with the left hand to shoot towards left; lasso-hand gesture performed with
the right hand to shoot towards right.

– Bricks, emeralds, diamonds, and spatial portal must be located statically.
– Meteorites must come into view dynamically during the exergame.
– The player can collect emeralds when the alien collides with them.
– The player can collect diamonds by performing a hand-closing gesture.
– Meteorites disappear when colliding with each other or with the alien.
– Fireballs can destroy the meteorites only.
– The background must consist of multiple images.
– The camera must be dynamic (i.e., it must follow the main actor).
– The number of collected gems and collisions with meteorites governs the score of the

player. In particular, the former let the score increase, while the latter lets the score
decrease).

– The exergame must last two minutes.
– The exergame must end when the alien reaches the spatial portal.



Multimedia Tools and Applications

– The choice of further implementation details is left to each participant (e.g., position of
bricks or gems).

5.1.6 Data analyses

We analyzed the data by using the R environment for statistical computing.2 We computed
descriptive statistics (e.g., mean, median, etc.) and performed exploratory data analyses
(e.g., boxplots) to summarize the distributions of the metrics. We then tested whether the
exergames (represented by the Exergame independent variable) had affected the metrics.
Given the data dependency due to repeated measures—we measured each participant three
times—, we used either the Linear Mixed Model (LMM) by modeling the participants
as random independent variable, or its non-parametric alternative, namely the Friedman
test [23]. In particular, we used the former, if the assumption of normality underlying the
LMM was satisfied, while we used the latter, otherwise. To check the normality assumption,
we applied the Shapiro-Wilk test. For any test of statistical hypotheses, we fixed the signif-
icance level, α, at 0.05. This implies that the effect of the exergame was deemed significant
if the p-value returned by the test of statistical inference (e.g., LMM) was lower than α.

5.1.7 Threats to validity

Although we addressed as many threats to validity as possible, some of them are unavoid-
able. We discuss the threats to validity that might affect our empirical study, and its results,
based on internal, external, construct, and conclusion validity (if any) [24].

Internal Validity. It concerns factors that might influence the obtained results without
researchers’ knowledge [24]. The participants voluntarily took part in the empirical study.
This might influence the results since volunteers are generally more motivated than the
entire population (i.e., threat of selection) [24]. A threat of maturation might affect the
results. That is, some participants might react differently as time passes (e.g., fatigue effect).
To mitigated this threat, we executed each of the experimental tasks in different days.

Construct Validity It refers to how well the study results support the theory behind the
study. Using a single metric or performing a single measurement to quantify an independent
variable might imply a threat of mono-method bias. While we measured the development
effort by using two metrics (i.e., time and LOC) and performing three measurements for
each metric (and each participant), we measured the usability of PhyDSLK by using a single
metric (i.e., SUS score). However, for each participant, we performed three measurements
for the SUS score to mitigate such a threat.

External Validity. It refers to the degree to which researchers can generalize the results
of a study to other participants, conditions, times, and places. We selected the participants
as being a representative sample of end-users that have no experience with game develop-
ment, such as therapists. As so, we selected students who attended the Software Engineering
course without experience in game development. The use of students as participants fits for
studies whose nature is theory testing [24] (just like ours). Furthermore, the PhyDSL lan-
guage, which PhyDSLK is based on, has been conceived for non-programming experts [13]

2https://www.r-project.org/

https://www.r-project.org/


Multimedia Tools and Applications

and can be learned in short time—our participants were capable of using PhyDSLK after a
training of about 100 minutes. Having said that, we are aware that this represents a threat
to the generalizability of the results (i.e., threat of interaction of selection and treatment)
since, for instance, therapists are more knowledgeable of the application domain (i.e., reha-
bilitation exergames) and less expert in programming than the students involved in the
study. Given the above-mentioned considerations, we believe the study results can be safely
accepted although further studies with domain experts would strengthen the external validity
of the results. Furthermore, the results of our study could help us to motivate more expen-
sive studies (e.g., studies with therapists, which are more difficult to recruit than students).
Finally, the used exergames might affect the results (interaction of setting and treatment).
In particular, while PopTheBalloons and KeepTheBalloons have been applied in elder peo-
ple therapies within the Virtual Gym project [8], AlienMiner has not been applied yet in
that application field. We chose AlienMiner to introduce a more complex exergame than the
other two, which also included all features of PhyDSLK, and implemented a game for other
devices (i.e., Android phones) [13].

5.2 Results

In Table 2, we report the values of min, mean, median, max, and Standard Deviation (SD)
for each metric by considering each exergame and all exergames.

5.2.1 Answering RQ1

By looking at Table 2, we can notice that it took roughly the same time to develop the
three exergames despite they differed in complexity. In particular, all participants spent one
hour per exergame with the following three exceptions: just one participant spent two hours
developing KeepTheBalloons and just two participants spent, respectively, two and three
hours developing AlienMiner. This trend seems to suggest that the exergame, as well as

Table 2 Descriptive statistics for each metric when considering each exergame and all exergames

Metric Statistic KeepTheBalloons PopTheBalloons AlienMiner All

Time Min 1 1 1 1

Mean 1.071 1 1.214 1.095

Median 1 1 1 1

Max 2 1 3 3

SD 0.267 0 0.579 0.37

LOC Min 67 65 205 65

Mean 105.5 126.286 249.571 160.452

Median 104 135.5 251 138.5

Max 138 172 277 277

SD 21.929 31.517 22.149 69.027

SUS Score Min 72.5 50 70 50

Mean 81.964 80 79.286 80.417

Median 82.5 81.25 78.75 80

Max 97.5 100 87.5 100

SD 6.443 15.128 5.041 9.752



Multimedia Tools and Applications

its complexity, did not significantly affect the hours needed to develop that exergame. To
confirm such a result, we ran a test of statistical inference. In particular, we could not apply
LMM because the normality assumption was not satisfied as suggested by the Shapiro-
Wilk test (p-value ≈ 0). Therefore, we ran the Friedman test, which returned a p-value
(0.156) greater than 0.05 so confirming that the exergame, as well as its complexity, did not
significantly affect the hours needed to develop the exergame.

On the other hand, we can notice (see Table 2) that the LOC tends to increase when pass-
ing from the least to the most complex exergame. For example, the LOC are on average
105.5 for KeepTheBalloons, and increase up to 126.286 and 249.571 for PopTheBalloons
and AlienMiner, respectively. By looking at the boxplots in Fig. 14, such an increas-
ing trend is more evident. In fact, the boxes for KeepTheBalloons and PopTheBalloons
mostly overlap one another, although the one for PopTheBalloons is higher than the one for
KeepTheBalloons, and the box for AlienMiner is higher than the others without overlapping
them. We then analyzed the effect of the exergame on the number of LOC the participants
wrote. To this end, we used the LMM since the assumption of normality was satisfied as
suggested by the Shapiro-Wilk test (0.21). The p-value returned by the LMM was approxi-
mately equal to 0 so indicating that there is a statistically significant difference between the
exergames with respect to the LOC.

The above-mentioned results seem promising since our empirical study shows that peo-
ple without experience in game development, but with a 100-minute training on the use of
PhyDSLK, can develop exergames with different complexity levels in one hour, on aver-
age. As for the amount of code needed to develop exergames, it can vary when moving
from a simpler to a more complex exergame. Nevertheless, one working hour seems to be
enough to address a more complex exergame like AlienMiner, which requires the gameplay
designer to write, on average, 250 LOC.

5.2.2 Answering RQ2

As shown in Table 2, the participants tended to rate the usability of PhyDSLK as good. For
example, whatever the exergame was, the SUS score was on average not inferior to 70 so
indicating a good usability for PhyDSLK. The boxplots in Fig. 15 confirm that most of the

100

200

300

KeepTheBalloons PopTheBalloons AlienMiner
Exergame

LO
C

Fig. 14 Boxplots summarizing the distributions of LOC for each exergame



Multimedia Tools and Applications

50

60

70

80

90

100

KeepTheBalloons PopTheBalloons AlienMiner
Exergame

SU
S.
Sc

or
e

Fig. 15 Boxplots summarizing the distributions of SUS scores for each exergame

participants rated the usability of PhyDSLK as good. In particular, we can notice that the
distributions of the SUS scores for KeepTheBalloons and AlienMiner are entirely above
70. As for the distribution of the SUS scores for PopTheBalloons, it indicates that most of
the SUS scores are above 70. We can also observe that the boxes overlap one another. This
seems to indicate that there is no significant difference due to the exergame to be addressed.
We used the Friedman test to confirm this observation because the data did not satisfy the
assumptions of normality behind the use of the LMM—the Shapiro-Wilk test returned a p-
value equal to 0.045. The p-value (0.465) returned by the Friedman test did not suggest a
significant difference in the SUS scores due to the exergame to be addressed.

Summing up, our empirical investigation shows that people with no experience in game
development consider PhyDSLK usable; furthermore, the usability of PhyDSLK does not
depend on the exergame to be addressed and its complexity.

6 Conclusion and future work

Exergames are complex software systems, demanding expertise in exercise principles,
user-interaction models, and challenging hardware/software development. To mitigate this
complexity and enable the prototyping and development of exergames by developers with
relatively little programming experience, we developed PhyDSLK, a model-driven software
toolkit for the user-centered development of exergames.

We evaluated PhyDSLK with an empirical study designed to assess its usability and the
degree to which it simplifies development effort. Our results are promising and confirm the
appropriateness of PhyDSLK as a framework to support end-users in creating exergames
without needing to be knowledgeable with either Unity and Kinect or have specific pro-
gramming experience. Our results point out that, even if the complexity of the exergames
increases, the development effort remains relatively the same. Moreover, we provide evi-
dence that end-users consider the PhyDSLK framework highly usable, given the average
SUS score achieved (i.e., 80/100), regardless of the complexity of the exergame to develop.
These initial results are quite promising and encourage us to further investigate PhyDSLK.

Our future research agenda includes:



Multimedia Tools and Applications

– Replicating our preliminary study to extend the external validity of the obtained results.
In particular, we are going to conduct in-vivo replications to assess development effort
and usability when domain experts, such as therapists, had to create exergames for
their patients through PhyDSLK. Although such a kind of studies is expensive because
therapists are more difficult to recruit (as compared to students), we believe that the
promising results presented in this paper can foster the participation of therapists in our
replications.

– Upgrading the DSL (i.e., PhyDSL), by introducing new types of activities (e.g., disap-
pear activities) and scoring rules (e.g., frequency-based rules) in order to match domain
experts’ needs more accurately, as well as expanding the control system to include
lower-limb gesture recognition so that experts can design a more complete exercise
regimen and create whole-body therapeutic exergames.

– Developing new exergames for rehabilitation purposes and evaluating them with
potential patients.

Acknowledgements This work is the result of a research collaboration between SERLAB (University of
Bari – Department of Informatics), SSRG (University of Alberta, Computer Science Department) and (Uni-
versity of Alberta, Occupational Therapy Department). During his research stay Francesco Cagnetta received
a grant from UofA. Drs. Noellanah Neubauer and Lili Liu have provided their expertise and feedback to the
development of VirtualGym, which has also been instrumental for this work. We thank all the students that
volunteered to be part of the empirical study.

Funding Open access funding provided by Università degli Studi di Bari Aldo Moro within the CRUI-
CARE Agreement. This study has been partially funded by the Project “HEVOLUS+” (Cod.OH4JBL3)
funded by FSC - APQ Sviluppo Locale 2007–2013-Titolo II-Capo 2 - Regione Puglia.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Averell E, Knox D (2019) A rhythm-based game for stroke rehabilitation. In: Proceedings of Interna-
tional Conference on Immersive and Interactive Audio. Audio Engineering Society

2. Bangor A, Kortum PT, Miller JT (2008) An empirical evaluation of the system usability scale. Int J
Human-Comput Interact 24(6):574–594. https://doi.org/10.1080/10447310802205776

3. Basili VR, Rombach HD (1988) The tame project: towards improvement-oriented software environ-
ments. IEEE Trans Softw Eng 14(6):758–773. https://doi.org/10.1109/32.6156

4. Brambilla M, Cabot J, Wimmer M (2017) Model-driven software engineering in practice, nd edn.
Morgan & Claypool Publishers

5. Brooke J (1996) Usability evaluation in industry. CRC Press
6. David Patón-Romero J, Baldassarre MT, Piattini M, de Guzmán IGR (2017) A governance and

management framework for green it. Sustainability 9:1761. https://doi.org/10.3390/su9101761
7. Dunstan J (2015) A pure code approach to unity app code design. https://jacksondunstan.com/articles/

2914
8. Fernandez-Cervantes V, Neubauer N, Hunter B, Stroulia E, Liu L (2018) Virtualgym: A kinect-based

system for seniors exercising at home. Entertain Comput 27:60–72. https://doi.org/10.1016/j.entcom.
2018.04.001

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1109/32.6156
https://doi.org/10.3390/su9101761
https://jacksondunstan.com/articles/2914
https://jacksondunstan.com/articles/2914
https://doi.org/10.1016/j.entcom.2018.04.001
https://doi.org/10.1016/j.entcom.2018.04.001


Multimedia Tools and Applications

9. Fernandez-Cervantes V, Stroulia E, Hunter B (2016) A grammar-based framework for rehabilitation
exergames. In: Proceedings of International Conference on Entertainment Computing. Springer, pp 38–
50

10. France R, Rumpe B (2007) Model-driven development of complex software: A research roadmap. In:
Proceedings of Future of Software Engineering, pp 37–54

11. Galna B, Barry G, Jackson D, Mhiripiri D, Olivier P, Rochester L (2014) Accuracy of the microsoft
kinect sensor for measuring movement in people with parkinson’s disease. Gait Post 39(4):1062–1068

12. Gao Z, Lee JE, Pope Z, Zhang D (2016) Effect of active videogames on underserved children’s classroom
behaviors, effort, and fitness. Games Health J 5(5):318–324. https://doi.org/10.1089/g4h.2016.0049

13. Guana V, Stroulia E, Nguyen V (2015) Building a game engine: A tale of modern model-driven
engineering. In: Proceedings of International Workshop on Games and Software Engineering. IEEE,
pp 15–21

14. Hardy S, Dutz T, Wiemeyer J, Göbel S, Steinmetz R (2015) Framework for personalized and
adaptive game-based training programs in health sport. Multimed Tools Appl 74(14):5289–5311.
https://doi.org/10.1007/s11042-014-2009-z

15. Lange B, Chang C, Suma E, Newman B, Rizzo AS, Bolas M (2011) Development and evaluation of low
cost game-based balance rehabilitation tool using the microsoft kinect sensor. In: Proceedings of Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, pp 1831–1834

16. Li J, Erdt M, Lee JCB, Vijayakumar H, Robert C, Theng Y (2018) Designing a digital fitness game sys-
tem for older adults in community settings. In: Proocedings of International Conference on Cyberworlds,
pp 296–299

17. Mocanu I, Marian C, Rusu L, Arba R (2016) A kinect based adaptive exergame. In: Proccedings of
International Conference on Intelligent Computer Communication and Processing, pp 117–124

18. Ofli F, Kurillo G, Obdržálek S, Bajcsy R, Jimison HB, Pavel M (2016) Design and evaluation of an inter-
active exercise coaching system for older adults: Lessons learned. IEEE J Biomed Health Inf 20(1):201–
212. https://doi.org/10.1109/JBHI.2015.2391671

19. Pastor I, Hayes HA, Bamberg SJM (2012) A feasibility study of an upper limb rehabilitation system
using kinect and computer games. In: Proceedings of Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pp 1286–1289

20. Portes CG, Lacave. C, Molina. AI, Vallejo. D, Sánchez-Sobrino. S (2020) Personalising exergames for
the physical rehabilitation of children affected by spine pain. In: Proceedings of International Conference
on Enterprise Information Systems. SciTePress, pp 533–543

21. Sáenz-de-Urturi Z, Garcı́a Zapirain B, Méndez Zorrilla A (2015) Elderly user experience to improve
a kinect-based game playability. Behav Inf Technol 34(11):1040–1051. https://doi.org/10.1080/01449
29X.2015.1077889

22. Staiano AE, Calvert SL (2011) The promise of exergames as tools to measure physical health. Entertain
Comput 2(1):17–21

23. Vegas S, Apa C, Juristo N (2016) Crossover designs in software engineering experiments: Benefits and
perils. IEEE Trans Softw Eng 42(2):120–135

24. Wohlin C, Runeson P, Hst M, Ohlsson MC, Regnell B, Wessln A (2012) Experimentation in software
engineering. Springer

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1089/g4h.2016.0049
https://doi.org/10.1007/s11042-014-2009-z
https://doi.org/10.1109/JBHI.2015.2391671
https://doi.org/10.1080/0144929X.2015.1077889
https://doi.org/10.1080/0144929X.2015.1077889

	PhyDSLK: a model-driven framework for generating exergames
	Abstract
	Introduction
	Background and related work
	Model-driven software engineering and PhyDSL
	Exergames

	PhyDSLK
	Model specification phase
	Code generation phase
	PCAL

	Kinect-interaction Utility Scripts

	Exergames
	KeepTheBalloons
	PopTheBalloons
	AlienMiner

	Empirical study
	Study planning and execution
	Study goal
	Study participants
	Variable selection
	Study design
	Experimental tasks
	KeepTheBalloons
	PopTheBalloons
	AlienMiner

	Data analyses
	Threats to validity
	Internal Validity.
	Construct Validity
	External Validity.


	Results
	Answering RQ1
	Answering RQ2


	Conclusion and future work
	References


