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Abstract
The emerging amphibian disease, Batrachochytrium dendrobatidis (Bd), is driving pop-
ulation declines worldwide and even species extinctions in Australia, South and Cen-
tral America. In order to mitigate effects of Bd on amphibian populations, high-exposed 
areas should be identified at the local scale and effective conservation measures should 
be planned at the national level. This assessment is actually lacking in the Mediterranean 
basin, and in particular in Italy, one of the most relevant amphibian diversity hotspots in 
the entire region. In this study, we reviewed the available information on Bd in Italy, and 
conducted a 5-year molecular screening on 1274 individual skin swabs belonging to 18 
species. Overall, we found presence of Bd in 13 species and in a total of 56 known occur-
rence locations for peninsular Italy and Sardinia. We used these occurrence locations and 
climate data to model habitat suitability of Bd for current and future climatic scenarios. 
We then employed electric circuit theory to model landscape permeability to the diffusion 
of Bd, using a resistance map. With this procedure, we were able to model, for the first 
time, the diffusion pathways of Bd at the landscape scale, characterising the main future 
pathways towards areas with a high probability of Bd occurrence. Thus, we identified six 
national protected areas that will become pivotal for a nationally-based strategic plan in 
order to monitor, mitigate and possibly contrast Bd diffusion in Italy.

Keywords  Amphibian conservation · Batrachochytrium dendrobatidis · Circuit theory · 
Connectivity · Habitat suitability model

Communicated by Dirk Sven Schmeller.

Sebastiano Salvidio and Elena Grasselli are equally contributing co-last author.

 *	 Andrea Costa 
	 andrea-costa-@hotmail.it

1	 Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, C.so 
Europa 26, 16132 Genova, Italy

http://orcid.org/0000-0003-4273-6182
http://crossmark.crossref.org/dialog/?doi=10.1007/s10531-021-02224-5&domain=pdf


2808	 Biodiversity and Conservation (2021) 30:2807–2825

1 3

Introduction

As part of the recent "biodiversity crisis," many amphibian populations are declin-
ing worldwide (e.g., Blaustein et al. 1994; Wake and Vredenburg 2008; Catenazzi 2015; 
Scheele et al. 2019). Indeed, the comprehensive analysis by Stuart et al. (2004) indicated 
that about one-third of all amphibian species is threatened with extinction, while almost 
half are experiencing regional or local declines due to often interacting causes, such as 
habitat reduction, pollution, climate change and emerging diseases. Among pathogens, the 
recently described chytrid fungus Batrachochytrium dendrobatidis (Longcore et al. 1999) 
is considered the main cause of population declines in different continents, driving species 
to extinction in Australia, South and Central America (Fisher and Garner 2020; Scheele 
et al. 2019). Batrachochytrium dendrobatidis (Bd) is a highly virulent pathogen that infects 
the skin of all the three orders of amphibians [i.e. Anura (frogs), Caudata (salamanders) 
and Apoda (caecilians)], causing chytridiomycosis, a frequently lethal disease that pro-
duces immunosuppression, depletion of plasma electrolytes and cardiac electric dysfunc-
tions in amphibians (Berger et al. 2004, 2016).

The global Bd occurrence and its effects on amphibian populations have been recently 
reviewed and mapped (Olson et al. 2013; Lötters et al. 2009; Scheele et al. 2019). To date, 
six different Bd lineages have been identified by multilocus sequence typing, but only the 
global pandemic lineage (GPL) seems associated to widespread chytridiomycosis out-
breaks that caused populations declines (Fisher and Garner 2020). The main factor spread-
ing the pandemic Bd lineage in different parts of the world and in different time periods is 
the international trade of amphibians and other aquatic animals for food, research, collec-
tion or company (Olson et al. 2013).

Various studies, in the last fifteen years, mapped the known distribution of Bd-infected 
amphibian populations and analysed the possible future consequences of this disease at 
the global or continental level (e.g. Ron 2005; Becker and Zamudio 2011; Doherty-
Bone et al. 2020; Ribeiro et al. 2020). However, this kind of assessment is lacking at the 
regional level in the Mediterranean biogeographic area, a well-known hotspot of natural 
and human-adapted ecosystems (Blondel and Aronson 1999; Myers et  al. 2000). In par-
ticular, the central Mediterranean region has been shown as a potential suitable area for 
Bd by a variety of global studies (e.g. Fig. 4 in Ron 2005; Fig. 3 in Lötters et al. 2009; 
Fig. 2 in Liu et al. 2013). At the centre of the Mediterranean basin, Italy represents one of 
the most relevant hotspots of biodiversity with a high concentration of amphibian species 
and in particular of endemics (Sindaco et al. 2006). In fact, due to its central geographic 
position within the Mediterranean, complex geological history, contrasted geomorphology, 
variable climates and the long-lasting coevolution between rural landscapes and wildlife 
(Cevasco et al. 2015), Italy hosts a highly diverse and unique amphibian fauna, comprising 
about half of all amphibian species described in Europe (Table 1; Temple and Cox 2009; 
Rondinini et al. 2013). Various local studies have been published on Bd occurrence in Italy 
(see Table 1), but up to now only one mass-mortality event has been observed in Sardinia 
(Bielby et al. 2013; Tessa et al. 2013). In this island the pandemic lineage GPL has been 
recorded (Fisher and Garner 2020). Besides, in some areas along the Apennine mountain 
range the observed decline of the Apennine yellow-bellied toad, Bombina pachypus, was 
attributed to Bd infection (Stagni et al. 2004; Canestrelli et al. 2013). However, declines 
are also observed in other areas where Bd has been screened for, but is apparently absent 
(Canessa et  al. 2013a, 2019). In these latter areas, the Apennine yellow-bellied toads’ 
declines were attributed to major habitat changes rather than pathogens (Canessa et  al. 
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2013b). Therefore, the ecological effects of chytridiomycosis on the conservation status of 
Italian amphibians remain poorly understood, and in some cases enigmatic. For this reason, 
is of primary importance to delineate a nationwide monitoring and intervention plan, and 
model Bd occurrence to forecast possible future outbreaks.

In this research, we reviewed all the available information on Bd occurrence in Italian 
amphibian populations and we added original data, obtained over a five-year screening on 
peninsular Italy (Grasselli et al. unpublished data). Then we used both bibliographic and 
original data to model the present and near-future pathways of Bd diffusion in Italy, by 
both building habitat suitability models and ecological connectivity models at the land-
scape scale (McRae et al. 2008; Dickson et al 2019). This approach allowed us to forecast 
the most probable pathways of Bd diffusion and to better understand the impact of this dis-
ease on amphibian populations, within and outside protected areas, and to possibly identify 
the best mitigation measures to be implemented at the national and regional scale.

Materials and methods

Study rationale and framework

The principal aim of this study was to employ occurrence data of Bd in Italy, both from 
published research and original data, to model its current and future habitat suitability, to 
identify possible pathways in order to define a national monitoring network and to drive 
conservation measures. For that purpose, we collected all the available information on Bd 
occurrence data from published research that confirmed the presence of Bd by PCR and 
that possessed a reliable geographic locality. Moreover, we collected new data from 1274 
skin swabs obtained between 2015 and 2019. Occurrence data were used to build habitat 
suitability models for both current and near future climatic conditions (year 2050), consid-
ering that climate has been found to have a predominant effect on Bd occurrence (e.g. Liu 
et al. 2013; Xie et al. 2016; Flechas et al. 2017). These habitat suitability models, in turn, 
have been used as a basis for building connectivity models by means of electric circuit the-
ory, in order to delineate landscape permeability and to identify actual and future channels 
of Bd diffusion in Italy. Our aim is to identify which national protected areas will be most 
likely interested by massive diffusion of Bd in the near future. In this way, we will be able 
to design a rapid response monitoring network and to close possible knowledge gaps on the 
diffusion of Bd, concentrating the monitoring effort in those areas that will be interested by 
a rapid Bd spread (Fig. 1).

Bd screening in Italy: field sampling and occurrence data

In the present study, we used data from multiple sources: published records and original 
data of Bd in peninsular and insular Italy. Bibliographic data were obtained from pub-
lished research spanning from 2004 to 2015 (Table 1) and yielded 33 occurrence locations 
(Fig. 1; Supplementary Material Appendix 1, Table 1). Original data belong to a nation-
wide screening, conducted between 2015 and 2019 which mainly occurred in four national 
protected areas (Grasselli et  al. unpublished data). We analysed 1274 amphibian swabs, 
belonging to 18 species, from 114 sampling locations. Swabbing procedures were stand-
ardised (Blooi et  al. 2013) and field operators were formed during a 2-days field course 
held by the University of Genova, dedicated to the formation of national Parks’ staff and 
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provided all participants with written instructions. Each swab was obtained by firmly rub-
bing its tip on the abdomen, pelvic area and leg pits of the captured individual (Boyle et al. 
2004). All locations of Bd presence, both from published research and national screening, 
were georeferenced on a 1 × 1 km grid.

The extraction of nucleic acids from skin swabs for qPCR was performed as described 
by Boyle et al. (2004). Briefly, nucleic acids were extracted from swabs using 200 μl Prep-
Man Ultra along with 30–40 mg of Zirconium/silica beads (Biospec Products) and then 
incubated in a bead-beater. After centrifugation (1 min at 13 × 103 × g) and incubation in 
a boiling water bath for 10  min, supernatant was recovered and stored at—80  °C. The 
Bd SYBR green assay (Canessa et al. 2017) was performed in 15 μl reactions containing 
7.5 μl of 2 × iQ™ universal SYBR® Green (Bio-Rad Laboratories, Hercules, CA), PCR 
primers at a concentration of 200 nM (fwd2: 5ʹ-CCT​TGA​TAT​AAT​ACA​GTG​TGC​CAT​-3ʹ; 
rev: 5ʹ-AGC​CAA​ GAG​ATC​CGT​TGT​CAAA-3ʹ) and 5  μl of samples were run in dupli-
cate. Standards from 100, 10, 1, and 0.1 Bd genome equivalents (Bd GE; Verbrugghe et al. 
2019) were a kind gift by Prof. An Martel and Frank Pasmans (University of Ghent, Bel-
gium). Amplification occurred in CFX96 real-time PCR System (Bio-Rad Laboratories) 
with the following conditions: 3 min at 95 °C, followed by 15 s at 95 °C and 30 s at 60 °C 
for 40 cycles.

Habitat suitability models

Habitat suitability models were fitted using Maxent (version 3.4.0), a machine-learning 
algorithm that creates a model of habitat suitability (or probability of presence) for a given 
species, based on gridded predictors at observed species’ occurrence locations (Phillips 

Fig. 1   Study rationale and framework: (1) Batrachochytirum dendrobatidis presence data acquisition; (2) 
modelling Batrachochytirum dendrobatidis habitat suitability; (3) obtaining landscape permeability and 
forecasting possible spread pathways in present and future climate scenarios
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et  al. 2006). It compares environmental data at occurrence locations to the background 
data, where the presence of the species is unknown (Phillips et  al. 2006; Guisan et  al. 
2017). The obtained model of habitat suitability can then be projected onto a different set 
of predictors, representing a different landscape or a future condition, thus obtaining a suit-
ability model for another region or for a future scenario for the species of interest (Elith 
et al. 2011; Merow et al. 2013). This approach has been proved to outperform other meth-
ods based on presence-only (or presence background) data (Elith et al. 2006). Moreover, 
it also may have some advantages for the specific application on Bd data: (i) by relying on 
presence-only data there is no need for absence data that could be difficult to collect in the 
case of Bd, given the non-exhaustive sampling, the mixed origin of the data (i.e. biblio-
graphic and original), (ii) Maxent algorithm proved to be reliable with a small amount of 
presence locations (Pearson et al. 2007; van Proosdij et al. 2016; Bacigalupe et al. 2019), 
which is the case of Bd occurrence data in the present study.

As environmental predictors, 19 bioclimatic variables representative of current and 
future (2050) climatic conditions were downloaded from Climatologies at high resolution 
for the earth’s land surface areas (CHELSA—Karger et al. 2017) website (https://​chelsa-​
clima​te.​org), at a resolution of 1 × 1 km, and cropped at the extent of the occurrence data 
(Italy borders). In order to reduce collinearity and overfitting in the model (MacNally 
2002) we retained only those variables with a Pearson’s correlation coefficient <|0.8| (Dor-
mann et al. 2013; Supplementary Material Appendix 1, Fig. S1). As a result, we retained 9 
bioclimatic variables: BIO1—Annual mean temperature, BIO2—Mean temperature diur-
nal range, BIO5—Max temperature of warmest month, BIO6—Min temperature of coldest 
month, BIO8—Mean temperature of wettest quarter, BIO9—Mean temperature of driest 
quarter, BIO12—Annual precipitation, BIO13—Precipitation of wettest month, BIO14—
Precipitation of driest month. In addition to bioclimatic variables, we also included in 
the predictor set a variable representing the density of the hydrographic network (HYD; 
Ribeiro et al. 2020). For projecting our habitat suitability model on future conditions, we 
considered two Representative Concentration Pathways (RCP): RCP2.6 and RCP8.5, repre-
senting the minimum and the maximum emission pathways for the year 2050 respectively. 
For each RCP we used projections from four CMIP5 Global Circulation Models (GCM): 
CCSM4, HadGEM2-CC, IPSL-CM5A-LR and MPI-ESM-LR. Since our main interest was 
to project Bd habitat suitability and spread to future climatic conditions, we avoided to 
include land cover, vegetation and anthropogenic variables in the models (despite these 
variables may contribute to determine Bd occurrence: e.g. Liu et  al. 2013; James et  al. 
2015; Bacigalupe et al., 2019), because they may experience an unpredictable and radical 
change in a Mediterranean environment by year 2050, and therefore their reliability for 
future projections is doubtful.

For what concerns habitat suitability model building, availability of environmental 
conditions was drawn from 10,000 random background points. Model performance was 
determined using the area under the receiver operating characteristic curve (AUC), which 
ranges from 0.5 for completely random models to 1.0, for perfectly predictive models, and 
considering that models with an AUC > 0.8 have a good predictive ability (Merow et al. 
2013). Random sampling of 75% of the data were used to fit the model while the remain-
ing 25% were used to evaluate model performance. This procedure has been repeated 20 
times and AUC values and habitat suitability model predictions were averaged from these 
repeated runs (Merow et al. 2013; Bacigalupe et al. 2019). Finally, we projected our habi-
tat suitability model to each one of the four potential future climatic conditions forecasted 
by selected GCMs, and then we averaged GCMs projection within the same RCP, hence 
obtaining two habitat suitability model projections for year 2050, for RCP2.6 and RCP8.5 

https://chelsa-climate.org
https://chelsa-climate.org
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respectively (Guisan et  al. 2017; Salas et  al. 2017). Finally, we compared the gains and 
losses of suitability between the current and future bioclimatic conditions.

Landscape connectivity models

Connectivity models for Bd were built using electric circuit theory (McRae et al. 2008). 
Electric circuit theory calculates electrical flow between nodes on a resistance surface, 
with the flow representing dispersal/diffusion pathways across various types of resistances 
across the landscape (McRae et al. 2008). In particular, animal/pathogen movements are 
modelled via random walk (i.e. a random process describing a path that consist of sub-
sequent random steps on the space) across all possible movement pathways, assuming 
that the intensity of current flow between a couple of nodes is proportional to the number 
of times an individual walks the path under consideration (McRae et  al. 2008). In other 
words, current flow equals the likelihood of movement across the landscape, and therefore 
it represents landscape connectivity (McRae et al. 2008; Dickson et al. 2019). Specifically, 
circuit theory analysis produces a map of electric current density, equivalent to the likeli-
hood of use for the given path (McRae et al. 2008), by considering all possible pathways 
connecting these nodes on a resistance/conductance map.

Circuit-theory connectivity models have been typically built by using occurrence loca-
tions or habitat patches as electrical nodes: however, this approach may be restrictive if the 
objective of the study is to estimate landscape permeability in the whole study area (Koen 
et al. 2014; Pitman et al. 2017). To overcome this problem, a “wall-to-wall” or “omnidirec-
tional” approach has been applied: by placing current source and sink nodes outside of the 
study area (Koen et al. 2014; Pelletier et al. 2014; Pitman et al. 2017) or by using a mov-
ing-window algorithm (McRae et al. 2016), thus obtaining a landscape-scale connectivity 
map which is independent of nodes placement. Given the sparseness of Bd data in Italy, we 
opted to use a “wall-to-wall” method, independent of nodes’ placement.

We built circuit theory connectivity models using Omniscape connectivity algorithm 
implemented within Julia programming environment (McRae et  al. 2016; Landau et  al. 
2021). This algorithm applies Circuitscape (McRae et al. 2013; Hall et al. 2021) iteratively 
across the entire map extent using a circular moving window of given radius, and using two 
raster maps as input: (i) the resistance map, defining the cost of crossing each pixel, and (ii) 
the source map, defining the amount of current to be injected in every pixel (McRae et al. 
2016). Omniscape algorithm evaluates connectivity between every possible pair of pixels 
within the moving window, and then the resulting maps are summed to obtain a final map 
of cumulative current flow across the whole landscape.

We converted our habitat suitability models of Bd, for present and future conditions, 
to resistance maps (1- suitability) in order to model landscape permeability, an approach 
that has been successfully employed, among others, for frogs (Falaschi et al. 2018), mar-
tens (Balestrieri et al. 2019), leopards (Pitman et al. 2017), bears (Zeller et al. 2020) and 
elephants (Buchholtz et  al. 2020). Given the sparseness of Bd data and considering that 
habitat suitability models also represent probability of presence of the modelled species 
in a given cell (Guisan et al. 2017), we also employed habitat suitability model values of 
every cell of the map as source values for the amount of current to be injected in the node. 
That is, if a cell has a suitability = 0.9, then a corresponding amount of current will be 
injected trough the corresponding node. We considered this approach to be more informa-
tive, rather than using few occurrence locations that are under-representative of the actual 
distribution of Bd across the study region (McRae et  al. 2016), or by arbitrarily placing 



2815Biodiversity and Conservation (2021) 30:2807–2825	

1 3

nodes outside (or randomly inside) of the study area (Koen et al. 2014; Pitman et al. 2017). 
In our analysis, we set a radius for the moving window equal to 50 km and a block size of 
3 (i.e. a parameter coarsening the source surface: it represents the size, in pixels, of each 
block composing the moving window, at the centre of which the source point is located).

By running Omniscape algorithm, three different outputs for every habitat suitability 
model (one for current conditions and two for future conditions, RCP2.6 and RCP8.5, 
respectively) were produced: (i) cumulative current flow (CCF), which is the total current 
flowing through the landscape, (ii) flow potential (FP), which represents a null model of 
current flow, assuming movement unconstrained by resistance (i.e. using a constant resist-
ance map), and (iii) normalized current flow (NCF; calculated as CCF/FP) which helps to 
distinguish between areas where current is impeded (i.e. movement is contrasted by bar-
riers; NCF < 1), diffuse (i.e. no resistance to movement; NCF = 1), intensified (NFC > 1) 
or channelled (i.e. movement is constrained between barriers and is greater than expected 
by the null model; NFC >  > 1; McRae et  al. 2016). Finally, by overlying national pro-
tected areas’ borders to CCF and NFC maps, we calculated the mean current flow for each 
national protected area and identified those areas where the likelihood of Bd diffusion is 
higher for both present and future conditions (Littlefield et  al. 2017; Choe and Thorne 
2019).

Results

Bd screening in Italy: field sampling and occurrence data

We found presence of Bd in 71 out of 1274 skin swabs (corresponding to 5.5%), and Bd 
infection occurred in 13 species out of 18 tested by qPCR (Table 1). The overall Bd preva-
lence in Italian amphibians was 6% (Bayesian 95% credible intervals 4–7%), with a high 
variation among species (Table 1). Although, the present research does not focus on indi-
vidual Bd load, in general the Bd load obtained by qPCR ranged from 1 to 140 Bd GEs 
per swab, which may be considered as a relatively low infection load. From our screening, 
we obtained 23 original occurrence locations in different parts of peninsular Italy to be 
added to bibliographic data, thus yielding to a total of 56 Bd occurrence location, that were 
employed for building habitat suitability model (Supplementary Material Appendix  1, 
Table 1).

Habitat suitability models

The habitat suitability model built for Bd had a good predictive performance 
(AUC = 0.879 ± 0.021; mean and standard deviation, calculated over 20 replicated runs). 
Out of the 10 predictor variables considered, BIO6 (Min temperature of coldest month), 
BIO8 (Mean temperature of wettest quarter) and BIO13 (Precipitation of wettest month) 
had the highest relative contribution to the maxent model (39.4%; 14.1%; 8.3% of variable 
contribution, respectively). At the same time BIO6 is the variable with the highest gain 
when used in isolation and which determines the highest decrease in gain when omitted 
from the model. As regards the current bioclimatic conditions, Maxent habitat suitability 
model shows that maximum habitat suitability for Bd is predicted in the northernmost and 
southernmost part of the Apennine mountain chain, in Sicily and Sardinia islands, while 
in the central part of Italy and in the Alps the suitability seems markedly lower (Fig. 2). 
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Habitat suitability model projections on future conditions predict a loss of suitability for 
the most suitable areas actually identified with current climatic conditions, and conversely 
an increase of suitability in North-Western Alps and central Italy. This predicted change of 
suitability is markedly higher for the RCP8.5 with respect to RCP2.6 scenario (Fig. 2).

Landscape connectivity models

Cumulative current flow (CCF) and Normalized current flow (NCF), obtained from the 
application of Omniscape algorithm, are presented in Figs. 3 and 4, respectively, for both 
current and future conditions. Cumulative current flow, which is the total current flowing 
through the landscape, shows a higher connectivity in the northernmost and southernmost 
portions of the Apennine mountain chain, and for Sardinia and Sicily islands, while land-
scape connectivity seems to be reduced in the central part of peninsular Italy. For future 
conditions, CCF seems to be reduced in the northern and southern extremes of the Apen-
nine mountain chain, with respect to the current condition model, but landscape connectiv-
ity increases in central Italy, in particular when considering the most severe climate change 
scenario (RCP8.5—Fig. 3). For what concerns NCF, the flow appears as unconstrained in 
the major part of the landscape (Fig. 4), while in some areas the flow is channelled by bar-
riers that create some pinch points: e.g. in the southernmost Apennines, Sicily and Sardinia 
islands and in some Alpine valleys as well. For future conditions NCF seems to be subject 
to smaller changes with respect to CCF, and as a general rule the amount of landscape 
portions with channelled flow is reduced in both RCP2.6 and RCP2.8 scenarios, while dif-
fused and intensified flow increases overall (Fig. 4). At current conditions, there are four 
national protected areas experiencing a potentially high level of Bd diffusion: three in the 

Fig. 2   Habitat suitability model for Batrachochytrium dendrobatidis at current conditions (left side of the 
image) and maps of suitability changes (right side of the image) predicted for future conditions, at year 
2050 under two representative concentration patwhays: RCP2.6 upper right and RCP8.5 lower right. Red 
dots and green diamonds, on the left side panel, represents original and bibliographic occurrence locations, 
respectively
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southernmost part of Italy (Sila, Pollino, Aspromonte National Parks) and one in Sardinia 
(Golfo di Orosei/Gennargentu National Park; Fig.  5). The current flow in the remain-
ing national protected areas is lower or even negligible. Conversely, for what concerns 
future bioclimatic conditions, connectivity models for both RCP2.6 and RCP8.5 predict 
a decrease of potential diffusion in these same protected areas (Sila, Pollino, Aspromonte, 

Fig. 3   Cumulative current flow for Batrachochytrium dendrobatidis, derived from circuit theory connectiv-
ity model, at current conditions (left side of the image) and future conditions (right side of the image) at 
year 2050 under two representative concentration patwhays: RCP2.6 upper right and RCP8.5 lower right

Fig. 4   Normalized current flow for Batrachochytrium dendrobatidis derived from circuit theory connectiv-
ity model, at current conditions (left side of the image) and future conditions (right side of the image) at 
year 2050 under two representative concentration patwhays: RCP2.6 upper right and RCP8.5 lower right
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Golfo di Orosei/Gennargentu National Parks), while an increase of Bd flow for the Circeo 
National Park and Dolomiti Bellunesi National Park is expected (Fig. 5).  

Discussion

In peninsular Italy, Bd is present all along the Apennine mountain chain and also in the Po 
plain, with an overall prevalence of 6%. When this value was compared with other Euro-
pean countries, with a reported sample larger than 1000 individuals, a similar prevalence 
was found in Germany (7%, in 3064 individuals) but a much higher one was observed in 
Spain (20%, in 1149 individuals; data from supplementary materials in Baláž et al. 2013). 
However, this latter high prevalence may be explained by an over-sampling of amphibians 
in areas with well-known Bd outbreaks, such as Central Spain and the island of Majorca 
(Bosch et  al. 2001; Bosch and Martinez-Solano 2006; Walker et  al. 2008; Baláž et  al. 
2013). Concerning the individual Bd load, the Italian data were in the lowest range of those 
reported by Baláž et al. (2013) that measured up to 4067 GEs, but usually much lower.

The application of species distribution and habitat suitability models to the chytrid 
amphibian fungus has been widespread in the last 15 years. Several studies modelled the 
current distribution and habitat suitability of Bd at a global (e.g. Ron 2005; Rödder et al. 
2009; Lötters et al. 2009; Liu et al. 2013; Xie et al. 2016) or continental scale (e.g. James 

Fig. 5   Mean cumulative current flow for Batrachochytrium dendrobatidis in Italian National Parks, derived 
from circuit theory connectivity model, at current conditions (red squares) and future conditions at year 
2050 under two representative concentration pathways: RCP2.6 (green triangles) and RCP8.5 (blue dia-
monds)
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et al. 2015; Rahman et al. 2020; Zimkus et al. 2020); while other studies investigated Bd 
distribution at a smaller, regional scale, focusing on specific amphibian diversity hot-spots 
(e.g. Puschendorf et al. 2009; Seimon et al. 2015; Flechas et al. 2017; Miller et al. 2018; 
Bacigalupe et al. 2019). However, ecological relationships among hosts and parasites are 
complex and the outcomes of their interactions vary in association with global environ-
mental variables but also with the complexity of the biological community at the local 
scale (Benício et  al. 2019, Halliday et  al. 2019). Indeed, this relationship seems to be 
generally non-linear and that high biodiversity may dilute parasite occurrence (Halliday 
and Rohr 2019). This implies that highly diverse and rich ecosystems could inhibit the 
diffusion of wildlife diseases at the local scale. Therefore, the role of areas with complex 
amphibian communities could act as ecological barriers to Bd spread, and should become 
important areas for the monitoring of the chytrid fungus. Among the studies modelling Bd 
occurrence at a global scale, several identify Italy as a high-suitability/high-risk area for 
Bd (Rödder et al. 2009; Lötters et al. 2009; Liu et al. 2013). Within our study, we identi-
fied some specific area of high suitability for Bd in Italy (e.g. Sila, Pollino, Aspromonte 
National Parks), while other areas were predicted to be less suitable at the current climatic 
conditions (e.g. Foreste Casentinesi National Park). The major part of the studies inferring 
habitat suitability and distribution of Bd, highlighted an overwhelming effect of climate. 
For instance: Puschendorf et al. (2009) found that high temperature seems to constrain the 
distribution of the pathogen at small scale in Costa Rica, Flechas et al. (2017) identified 
mean temperature and precipitation seasonality as main drivers of Bd in Colombia, while 
Liu et al. (2013) observed a relationship with annual temperature range at a global scale. 
In this study, among the bioclimatic variables included in the habitat suitability model, 
we observed that extremely high or low temperatures, in particular in the wettest quarter 
of the year, (BIO6 and BIO8) were main predictors of Bd suitability and acted as limiting 
conditions for his occurrence. These results can be explained by both an increased rate of 
epidermal renewal, driven by higher temperatures, which may in turn reduce Bd infection 
(Piotrowski et al. 2004), or alternatively producing physiological stress, which may limit 
Bd reproductive success (Piotrowski et  al. 2004). Besides climate, also vegetation (Liu 
et al. 2013), land cover (James et al. 2015) and anthropogenic factors have been found to 
shape the distribution of Bd (Liu et al. 2013; Bacigalupe et al. 2019).

Habitat suitability and distribution models also confirmed the link between epizo-
otic chytridiomycosis and amphibian worldwide decline, highlighting how areas of 
rapid amphibian decline overlaps with those of higher suitability for Bd at a global scale 
(Rödder et  al. 2009; Lötters et  al. 2009; James et  al. 2015). The majority of studies 
modelling Bd distribution only focused on current climatic conditions, while few stud-
ies also projected distribution and suitability models on future climatic scenarios, pre-
dicting that Bd may decrease globally in some regions by 2100, but with a shift towards 
higher latitude and altitudes (Xie et al. 2016). This trend has also been confirmed at a 
smaller spatial scale (e.g. Seimon et al. 2015; Xie et al. 2016; Miller et al. 2018). In the 
present study we also observed a general contraction of Bd suitable areas by 2050, con-
sidering both circulation pathways. In particular, we observed that the suitability loss 
will mainly occur in southern and coastal Italy, while suitability gain will be observed 
in mountainous areas, such as central Apennines, western Alps and eastern pre-Alps 
and Alps. Despite the variety of approaches employed, local studies identified two main 
issues: (i) the identification of high-risk and refuge area will be of primary importance, 
(ii) the inadequacy of local strategies to monitor and mitigate Bd expansion (e.g. Flechas 
et al. 2017; Bacigalupe et al. 2019; Rahman et al. 2020). In Italy, while we addressed 
the first issue by both collecting new occurrence data and modelling habitat suitability, 
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we also tried to overcome the second problem by modelling diffusion pathways at the 
landscape scale. Applying this procedure, we identified the national protected areas that 
should be more involved in monitoring and prevention actions to mitigate Bd diffusion.

Connectivity models based on electric circuit theory, have been widely adopted to 
model the spread of diseases or pathogens in wildlife populations, such as deer chronic 
wasting disease (Nobert et  al. 2016), or rabies in raccoon populations (Algeo et  al. 
2017). Notably, among the almost 300 studies using circuit theory biology, ecology and 
conservation science (Dickson et  al. 2019), only one involved the amphibian chytrid 
pathogen Bd (i.e. Becker et al. 2017). By modelling forest connectivity between popula-
tions of an Hylid frog in Brazil, Becker et al. (2017) found that skin microbiome simi-
larity and Bd load are related to landscape connectivity and natural vegetation gradi-
ent, but a landscape connectivity model of Bd spread is actually lacking. Therefore, our 
study, at least to our knowledge, is the first one employing circuit theory to model the 
diffusion of Bd at the landscape scale. By applying this method, we were able to iden-
tify four national protected areas (Pollino, Sila, Aspromonte and Golfo di Orosei and 
Gennargentu National Parks) that may experience maximum Bd diffusion for the current 
climatic conditions (i.e. Cumulative Current Flow). These areas of maximum diffusion 
are also identified by the presence of channelled or intensified movement as predicted 
by normalized current flow, meaning that in these areas the spread rate is potentially 
high (McRae et al. 2016).

For these areas, we suggest the development of an intensive molecular screening plan 
in order to track any possible change in Bd presence, population prevalence and individual 
load of resident amphibians. Furthermore, three out of four of these areas are in geographic 
and ecological connectivity (Pollino, Sila and Aspromonte National Parks), as resulted 
from our model, while the fourth area (Maddalena national Park) is in ecological connec-
tion with populations interested by a Bd induced mass-mortality that occurred in Sardinia 
(Bielby et al. 2013; Tessa et al. 2013). Indeed, according to the Italian national biodiversity 
strategy, national parks should become “focal points for research and monitoring networks 
… in terms of biodiversity” (MATTM 2010, page 31). Therefore, national parks identi-
fied as areas of high Bd diffusion will represent a fundamental tool to implement monitor-
ing, awareness and mitigation strategies. Moreover, we suggest that a particular monitoring 
effort should be spent in those area where current and predicted Bd flow is channelled 
between climatic suitability barriers, within a national park or protected area, such as Dol-
omiti Bellunesi in the Alpine region and Circeo National Parks in the central region of the 
Apennine mountain chain. Finally, despite the fact that our study allowed the identifica-
tion of high priority areas, in order to detect early Bd spread and diffusion; our results are 
obtained from an incomplete sampling of the national area. Therefore, the identification of 
National Parks (or other priority areas) involved in the monitoring network could benefit 
from a more intensive sampling effort or from the application of different techniques: such 
as the implementation of a national monitoring programme, relying upon environmental 
DNA sampling and Occupancy modelling (Schmidt et al. 2013).
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