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Abstract. In this paper, it is proven an existence and uniqueness theorem for weak solutions of the equilibrium problem
for linear isotropic dilatational strain gradient elasticity. Considered elastic bodies have as deformation energy the classical
one due to Lamé but augmented with an additive term that depends on the norm of the gradient of dilatation: only one
extra second gradient elastic coefficient is introduced. The studied class of solids is therefore related to Korteweg or Cahn–
Hilliard fluids. The postulated energy naturally induces the space in which the aforementioned well-posedness result can
be formulated. In this energy space, the introduced norm does involve the linear combination of some specific higher-order
derivatives only: it is, in fact, a particular example of anisotropic Sobolev space. It is also proven that aforementioned weak
solutions belongs to the space H1(div, V ), i.e. the space of H1 functions whose divergence belongs to H1. The proposed
mathematical frame is essential to conceptually base, on solid grounds, the numerical integration schemes required to
investigate the properties of dilatational strain gradient elastic bodies. Their energy, as studied in the present paper, has
manifold interests. Mathematically speaking, its singularity causes interesting mathematical difficulties whose overcoming
leads to an increased understanding of the theory of second gradient continua. On the other hand, from the mechanical point
of view, it gives an example of energy for a second gradient continuum which can sustain externally applied surface forces
and double forces but cannot sustain externally applied surface couples. In this way, it is proven that couple stress continua,
introduced by Toupin, represent only a particular case of the more general class of second gradient continua. Moreover,
it is easily checked that for dilatational strain gradient continua, balance of force and balance of torques (or couples) are
not enough to characterise equilibrium: to this aim, externally applied surface double forces must also be specified. As a
consequence, the postulation scheme based on variational principles seems more suitable to study second gradient continua.
It has to be remarked finally that dilatational strain gradient seems suitable to model the experimentally observed behaviour
of some material used in 3D printing process.
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1. Introduction

Strain gradient elasticity deals with those models of continuum media where a strain energy density
depends on the first and second gradients of placements. The mechanical motivation which requires the
introduction of such an energy is related to the existence, at lower scales with respect to the scale where
continuum behaviour is observed, of longer distance interactions among the basic constituents of the
considered deformable body, see, e.g. [58,59,68].

Strain gradient elasticity has been originated not so recently. It is a particular case of the higher
gradient continua already considered in the works by Gabrio Piola, who also recognised the mechanical
mechanism, at lower scales, which may require the introduction of this class of generalised continua.
Later, Le Roux and other scholars see, e.g. [21,51,52] and the reference therein, continued the line of
thought started by Piola and, more recently, also by using the by using a more modern formalism and the
powerful tools given by functional analysis, Paul Germain gave a further impulse to generalised continuum
mechanics, see [28,42,43].
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In the case of fluids, the strain gradient model, which was also at first formulated by Piola, was
studied by Korteweg [49] and by Cahn and Hilliard [15,16] see also [8,29,67]. It has to be remarked
that Piola deduced the strong form of the evolution equations for continua (and in particular for fluids)
using a variational principle, by calculating the corresponding Euler-Lagrange stationarity conditions in
the referential (Lagrangian) description and finally transporting (using so-called Piola transport) these
conditions in the current (Eulerian) description [8,29].

Within rational mechanics approach, the corresponding and needed boundary value problems were
fully formulated by Toupin [73,74] and Mindlin [53,54] by using some techniques from the differential
geometry of surfaces, see also [25] for Nth gradient media. More recently, the model was also applied for
modelling materials at the micro- and nanometer scale [20,40], or composites with high contrast (at a
lower scale) in material properties [2,22,24,26,37,61,62,69,77].

In statics, the boundary value problems, which are deduced from the stationarity condition for a second
gradient energy functional, constitute a system of fourth-order partial differential equations complemented
by consistent boundary conditions. Consistent boundary conditions, as already recognised by Lagrange
and Piola, can be easily deduced by formulating a variational principle (either a minimisation principle
or a stationarity condition) and then integrating by parts to get the so-called strong formulation of
equilibrium condition.

For infinitesimal deformations one assumes that a strain energy density W depends on the first and
second gradients of displacements u, so that we have W = W (∇u,∇∇u), where W is a quadratic form
of its arguments. We call a model gradient complete if the following inequality is valid

W (u) ≥ C1‖∇u‖2 + C2‖∇∇u‖2, ∀u,

where C1 and C2 are positive constants which are independent on u and ‖·‖ denotes the Euclidean norm.
In this case, the analysis of the well posedness is based on the general theory of elliptic PDEs of higher
order [4,38,48]. For the strain gradient elasticity such analysis was provided in [47,50]. In this case, we
have a unique weak solution which belongs to H2(V ).

It is however remarkable that some interesting mechanical problems require the introduction of non-
complete second gradient continuum models [9,13,24,26,32]. Therefore, we must conclude that in addi-
tion to gradient complete models such as those included in the so-called Toupin–Mindlin strain gradient
elasticity, one must consider also models where a strain energy density depends on a subset of second
derivatives of displacements or on particular combinations of them. We call such models gradient in-
complete. It is worth to mention explicitly now the so-called couple stress theory [56,78] with the strain
energy in the form W = W (∇u,∇ × u), where “×” stands for the cross product. This special case of
second gradient continuum models have a peculiarity which made them more acceptable by those who
want to postulate continuum mechanics on the primitive concept of “balance laws” for forces and couples
(or torques). In facts, [21] in the framework of couple-stress theories, the admissible boundary conditions
(naturally deduced from the adapted variational principle) assume a particular for which double-forces
are vanishing, see [28,43] for a detailed discussion of the concept of double force and Alibert et al. [5] for
its interpretation at micro-scales. Let us also note that the concept of double forces and other hypermo-
ments are known in structural mechanics, see comments in [31, pp. 282–283]. As it is rather difficult to
include the boundary conditions involving double forces in the postulation scheme based on balance laws,
then its supporters have the tendency to deny the physical importance of said double forces. Instead, we
believe in the importance of the role of double forces in continuum mechanics and, following the point
of view expressed by Toupin [73,74], we believe that the postulation scheme based on variational princi-
ples is more efficient in producing generalised continuum models. Moreover, if one considers the need of
exploiting numerical integration schemes for getting predictions by using the introduced mathematical
models, it is clear that a great economy of thought is gained by starting the modelling procedure basing
it on variational principles. It is remarkable that in [73,74], the more general theory of second gradient
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elasticity is considered together with couple stress one, albeit in the title only the particular case of couple
stress models is evoked (and the reader is explicitly warned about this circumstance).

Another example of incomplete second gradient models, which already was mentioned above, is the
Korteweg fluid with W = W (ρ,∇ρ), where ρ is a mass density [8,29]. The cited examples are not
exhausting the possibilities explored up to now. Indeed, as already mentioned, it has been proven that
also some materials having a beam-lattice micro-structure can be modelled using gradient incomplete
models [2,7,22,24,26,37,62], for pantographic beam lattice microstructured materials see [30,32]. In all
aforementioned cases of incomplete second gradient models, the analysis of the well posedness of boundary
value problems requires a proper modification of the standard techniques [18,33,39]. We believe that the
correct framework for studying, in an unitary way, many (if not all) incomplete second gradient models is
given by the theory of anisotropic Sobolev’s spaces as formulated by Nikol’skii [55] and other nonclassical
Sobolev’s spaces. Most likely, Nikol’skii fundamental contributions supply a general and powerful tool for
studying the mathematical problems related to the more general class of N -th gradient micro-structured
continua [25].

The aim of this paper is to prove the uniqueness and existence of weak solutions when considering the
particular case of incomplete second gradient model given by the dilatational strain gradient continuum.
Within this specific model, the strain energy density depends on strains and the gradient of dilatation,
i.e. on the gradient of the trace of the strain tensor. Clearly, the model is closely related to the model
of Korteweg or Cahn–Hilliard fluids [8,29,67] and could be treated as a gradient extension of generalised
models with one-dimensional microstructure [17] or of the damage and poroelasticity models presented
in [6,19,41,44,45,60,60,63]. It is also a particular case of the model [80] where the dependence on the
gradient of deviatoric part of strains is neglected. Moreover, the model studied in the present paper could
be useful also when modelling the behaviour of porous media undergoing small deformations including
ones used for 3D printing [79].

The paper is organised as follows. After the short mathematical preliminaries needed to set the used
functional spaces, which are given in Sect. 2, we consider the constitutive equation for deformation energy
and external interactions, and consequently, we formulate the principle of virtual work used to determine
equilibrium configurations (Sect. 3). The class of external interactions which can be applied to dilatational
strain gradient continua were formally determined in [23]. In the present paper, we give the rigorous proof
of the fact that dilatational strain gradient continua can support forces per unit area but also double
forces per unit area at their (Lipschitz continuous) boundaries.

In Sect. 4, based on the formulated principle of virtual work, we introduce the definition of weak
solution that we use, and based on our listed assumptions, we prove that such a solution exists and is
unique. Moreover, we prove that it is a minimiser of the total energy functional. Also in Sect. 4, we remark
that the two Euler laws of dynamics are necessary but not sufficient conditions for the equilibrium of
dilatational strain gradient continua. This remark naturally implies that variational principles seem to
be more suitable to formulate novel mathematical models in applied science, see, e.g. [27,36,70,71].

Some conclusions are presented in the final section, together with some future research perspectives.

2. Mathematical preliminaries

Let V be a bounded connected domain in R
n, n = 2, 3, with C1-regular boundary S ≡ ∂V . For other

possible requirements to S, we refer to [3]. In what follows, we use Sobolev’s spaces Hk(V ), k = 1, 2,
defined as follows

H1(V ) = {u ∈ L2(V ),∇u ∈ (L2(V ))n},

H2(V ) = {u ∈ L2(V ),∇u ∈ (L2(V ))n,∇∇u ∈ (L2(V ))n2},

where L2(V ) is the Lebesgue space of square integrable functions, and ∇ is the spatial nabla operator.
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We denote vectors and tensors of any order using semibold font. So for simplicity, we use the notation
for vector- or tensor-valued functions u ∈ L2(V ), etc., as an equivalent to (L2(V ))n, that means that
each Cartesian component of u ≡ (u1, . . . , un) belongs to L2(V ).

In addition following Jacques Louis Lions [72, p. 100], we introduce the functional space

H(div, V ) = {u ∈ L2(V ),∇ · u ∈ L2(V )},

where ∇ · u is the divergence of u. Obviously, H1(V ) ⊂ H(div, V ). Considering vector-functions u ∈
H2(V ), we also introduce the space

H1(div, V ) = {u ∈ H1(V ),∇ · u ∈ H1(V )}.

Obviously, H1(div, V ) is a separable Hilbert space with the inner product

(u,v)H1(div,V ) =
∫

V

[u · v + ∇u : ∇v + (∇∇ · u) · (∇∇ · v)] dV,

and the norm

‖u‖H1(div,V ) =
[
(u,u)H1(div,V )

]1/2
,

where “·” and “:” stands for the dot and double dot products, respectively. Using Tartar’s example [72,
p. 101], we can see that u = (f1(x1)g1(x2, x3), f2(x2)g2(x1, x3), f3(x3)g3(x1, x3) belongs to H1(div, V )
if fi ∈ H2(V ) and gi ∈ H1(V ). As for Tartar’s example given for H(div, V ), this example gives the
possibility to understand which kinds of discontinuity are possible for functions belonging to H1(div, V ).
For further properties of these spaces, we refer to [3,18,46,72].

3. Strain energy density and the principle of virtual work

For infinitesimal deformations, we introduce a vector of displacements

u = u(x), x ∈ V,

where x is a position vector. The corresponding strain tensor and its trace, i.e. dilatation, are given by

e(u) =
1
2
(∇u + (∇u)T ), θ(u) ≡ tr e = ∇ · u,

where T stands for a transpose tensor.
Within the dilatational strain gradient elasticity, there exists a strain energy density W which depends

on e and ∇θ:

W = W (e,∇θ).

Considering quadratic form of W , we came to

W (u) =
1
2
e : C : e + e : B : ∇θ +

1
2
∇θ : D : ∇θ, (3.1)

where C, B, and D are fourth-order tensors of elastic moduli. In what follows, we restrict ourselves to
isotropic materials, so W takes the form

W (u) =
1
2
λθ2 + μe : e +

1
2
α∇θ · ∇θ, (3.2)

where λ and μ are the Lamé moduli, λ > −2/3μ, μ > 0, and α > 0 is an additional elastic modulus
responsible for strain gradient effects.
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The equilibrium equations and the corresponding natural boundary conditions within the considered
model can be derived using the Lagrange variational principle modified for the strain gradient media as
in [1,8,29]. Let F (u) be the functional of the strain energy

F (u) =
∫

V

W (u) dV.

The first variation of F takes the form

δF (u;v) =
∫

V

δW (u) dV

=
∫

V

[λθ(u)θ(v) + 2μe(u) : e(v) + α∇θ(u) · ∇θ(v)] dV, (3.3)

where v = δu and δ is the variation symbol. After integration by parts, δF can be transformed into

δF (u;v) = −
∫

V

(∇ · T) · v dV

+
∫

S

[n · σ(u) − [∇ · m(u)]n − 2H(n · m(u))n + ∇s(n · m(u))] · v dS

+
∫

S

n · m(u)
∂v
∂n

· ndS, (3.4)

where n is the vector of unit outward normal to S, ∂
∂n means the normal derivative, ∇s = (I−n⊗n) · ∇

is the surface nabla-operator, I is the unit tensor, “⊗” means dyadic product, H = −1/2∇s · n is the
mean curvature of S, and the surface divergence theorem was used as in [31], see details in Appendix.
In addition, here T, σ, and m are the total stress, stress tensors, and double force vector given by the
relations

T = σ − (∇m)T , σ ≡ ∂W

∂e
= λθI + 2μe, m ≡ ∂W

∂∇θ
= α∇θ.

In what follows, we assume kinematic boundary conditions on a part S0 of S

u
∣∣
S0

= 0,
∂u
∂n

· n
∣∣∣∣
S0

= 0, (3.5)

which describe the case when S0 is fixed. So the external loads can be applied on the rest of S that is on
S1 = S/S0.

The form of the first variation (3.4) dictates an admissible form of the work of external forces and
double forces

δA(v) =
∫

V

f · v dV +
∫

S1

(
t · v + c

∂v
∂n

· n
)

dS, (3.6)

where f is a volume force vector, t is a traction vector, c is a surface normal double force.
As a result, we formulate the principle of virtual work

δF − δA =
∫

V

[λθ(u)θ(v) + 2μe(u) : e(v) + α∇θ(u) · ∇θ(v)] dV

−
∫

V

f · v dV −
∫

S1

(
t · v + c

∂v
∂n

· n
)

dS = 0, (3.7)
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for all admissible functions v.
Let us consider (3.7) for rigid body motion, i.e. v given by

v = a + x × b, (3.8)

where a and b are constant vectors and × is the cross product. Let us recall that for such v from (3.7)
can obtain the conditions of equilibrium of a free solid body (S1 = S) in classic linear elasticity [33].
These conditions say that the total force and the total torque must be zero. Substituting (3.8) into (3.7),
we get

δF − δA = −
⎛
⎝

∫

V

f dV +
∫

S

tdS

⎞
⎠ · a

+

⎛
⎝

∫

V

x × f dV +
∫

S

x × tdS

⎞
⎠ · b = 0. (3.9)

So we have again the total force and the total torque as zero

F ≡
∫

V

f dV +
∫

S

tdS = 0, (3.10)

M ≡
∫

V

x × f dV +
∫

S

x × tdS = 0. (3.11)

Note that double forces are not included in these balance equations. For derivation, we used the identities

a · (b × c) = c · (a × b) ∀ a,b, c,
∂x
∂n

= n · ∇x = n · I = n,

(
∂x
∂n

× b
)

· n = (n × b) · n = 0.

Just calculated Eqs. (3.10) and (3.11) express the two Euler laws for dilatational strain gradient
continua. They are necessary conditions for equilibrium. However, one has to remark that they cannot
be sufficient to equilibrium. In facts, in the following section, we prove the existence and uniqueness of
weak solutions for the equilibrium elastic problem when surface forces, volume forces and surface double
forces are given. As the field of double forces c does not appear in found Euler laws, for a given system
of balanced external forces, there exists a different equilibrium solution for every different choice of the
field c. An important consequence of this circumstance seems now evident: the balance laws of forces and
torques (couples) are not sufficient to characterise the equilibrium configurations of considered continua.
Therefore, postulation schemes based only on these two basic laws cannot give the right conceptual
schemes for studying them.

4. Weak solutions and their properties

From (3.7), one can derive the equilibrium equations and the natural boundary conditions as given in
Appendix, see also, e.g. [1,8,29] for more details. Here, instead, we use (3.7) as the principal equation for
determination of weak solutions of the considered problem without using its strong formulation. It has
to be remarked that numerical integration schemes calculate approximations of weak solutions and that
strong formulation does not play any role in the context of numerical computations. The importance of the
integration by part process leading to strong equilibrium conditions resides in the need of determining
which externally applied interactions (i.e. forces, moments, double forces, etc.) can be sustained by a
continuum whose internal structure is characterised by a certain deformation energy.



ZAMP Well posedness of linear dilatational strain gradient elasticity Page 7 of 16 182

Following the classic approach to the analysis of weak solutions, we introduce the natural functional
space for equation (3.7) called energy space. For C2(V ) functions, we introduce the inner product as
follows

(u,v)E =
∫

V

[λθ(u)θ(v) + 2μe(u) : e(v) + α∇θ(u) · ∇θ(v)] dV. (4.1)

Let us note that we treat all quantities as dimensionless ones. Equation (4.1) produces the energy norm

‖u‖E = (u,v)1/2
E . (4.2)

Now, we introduce

Definition 4.1. The energy space E is the closure of C2(V ) functions satisfying (3.5) in the norm ‖ · ‖E .

Obviously, E is a separable Hilbert space. Moreover, using the Korn inequality, we can prove that E
is identical to H1(div, V ). Indeed, we have the Korn inequality [18]∫

V

e : edV ≥ C‖u‖2H1(V )

with a positive constant C. So the norm ‖ · ‖E is equivalent to ‖ · ‖H1(div,V ) as these norms coincide up
to positive factors. Thus, we can use properties of H1(div, V ) for characterisation of weak solutions.

Definition 4.2. We call u0 ∈ H1(div, V ) a weak solution of the boundary value problem under consider-
ation if it satisfies boundary conditions (3.5) and the relation

(u0,v)E = L(v), (4.3)

where

L(v) =
∫

V

f · v dV +
∫

S1

(
t · v + c

∂v
∂n

· n
)

dS

for all v ∈ H1(div, V ) also satisfying (3.5).

With this definition, we formulate the main theorem.

Theorem 4.3. Let V ⊂ R
3 be a bounded connected domain with C1-regular boundary S = S0 ∪ S1,

f ∈ L6/5(V ), t ∈ L4/3(S1), and c ∈ H1(S1). Then, there exists a weak solution u0 ∈ H1(div, V ). It is
unique. Furthermore,

J(u0) = inf
u∈E

J(u),

where

J(u) =
1
2
(u,u)E − L(u).

Proof. The key point of the proof is to show that L(v) is a linear bounded functional in E. Then, using
the Riesz representation theorem, it follows that there is an unique element � ∈ E such that

L(v) = (�,v)E .

As a result, Eq. (4.3) takes the form

(u0,v)E = (�,v)E , ∀v ∈ E, (4.4)

so we get the unique solution u0 = �.
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As C2(V ) is dense in E in what follows, we can use functions in E ∩ C2(V ). The necessary properties
of L(v) follow from the Sobolev imbedding theorems. First, let us consider

L1(v) =
∫

V

f · v dV +
∫

S1

t · v dS.

As H1(V ) ⊂ E, and the imbedding operators from H1(V ) to L6(V ) and L4(S1) are continuous, we find
that

|L1(v)| ≤ ‖f‖L6/5(V )‖v‖L6(V ) + ‖t‖L4/3(S1)‖v‖L4(S1) ≤ C‖v‖E ,

where Hölder’s inequalities were used, and C stands for a positive constant depending on f and t.
Now, let us consider

L2(v) =
∫

S1

c
∂v
∂n

· ndS.

By definition of H1(div, V ), we have that if v ∈ H1(div, V ), then θ(v) = ∇ · v belongs to H1(V ). So θ
has a trace on S1 and θ

∣∣
S1

∈ L4(S1) and θ
∣∣
S1

∈ L2(S1). Obviously, v|S1 ∈ L2(S1). As θ = ∂v
∂n ·n+ ∇s ·v,

we can transform L2(v) using integration by parts as follows

L2(v) =
∫

S1

c [θ(v) − ∇s · v] dS =
∫

S1

[cθ(v) + (∇sc) · v + 2Hcn · v] dS.

Here, we take into account that v|∂S1 = 0 along ∂S1 as this contour is an interface between S0 and S1,
whereas v|S0 = 0. As a result, there is no a contour integral in L2(v).

As a result, with Hölder’s inequality, we get

|L2(v)| ≤ ‖c‖L2(S1)‖θ(v)‖L2(S1) + ‖c‖H1(S1)‖v‖L2(S1) + 2
(

sup
x∈S1

|H|
)

‖c‖L2(S1)‖n · v‖L2(S1) ≤ C‖v‖E .

Thus, L(v) = L1(v) + L2(v) is a linear and bounded functional.
The minimisation property of u0 follows from the fact that J(u) is a quadratic functional and Eq. (4.3)

states that the first variation of J(u) vanishes at u = u0, see, e.g. [33] for more details. �

From the proof, it follows that the weak solution is bounded

‖u0‖ ≤ C
(‖f‖L6/5(V ) + ‖t‖L4/3(S1) + ‖c‖H1(S1)

)

with a positive constant C which depends on V and S1. As a solution is unique, u0 = 0 if and only if
f = 0, t = 0, and c = 0. In particular, if f = 0, t = 0, but c = 0 we have u0 = 0.

Remark 1. If V ⊂ R
2, then the theorem is also valid for f ∈ Lp(V ) and t ∈ Lq(V ) for 1 < p, q < ∞.

Remark 2. In the proof, we use the same assumptions on f and t as for the linear elasticity, see [18,33],
and even more strong assumption was applied to c. In fact, using dual spaces, one can consider more
weak assumptions, such as t ∈ H−1/2(S1), c ∈ H1/2(S1), see [14,46] for trace properties in H(div, V ).
We leave this analysis to forthcoming papers.

Remark 3. Instead of C1-regular boundary, one can consider less regular surface for which we have
required Sobolev’s imbedding theorems [3]. We leave this again to forthcoming papers.
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5. Conclusions

We proved the existence and uniqueness of a weak solution of a specific class of equilibrium problems
within the framework of newly proposed strain gradient elasticity model specified with the adjective “di-
latational”. The external interactions applied to the considered dilatational strain gradient continuum
are dead loads constituted by (i) forces per unit area and (ii) purely normal double forces per unit area
applied at the boundary of the considered continuum, which is occupying a regular domain, and (iii)
volume forces applied at every material point belonging to the same continuum. This result has a con-
ceptual impact as it proves that a consistent mathematical problem can be formulated in which applied
external dead loads cannot be reduced to forces per unit area and couples per unit area, reduction that
is assumed, instead, in [76]. This means that the postulation scheme described there does not include
all conceivable and logically consistent continuum models and that there are continuum models, based
on variational principles, which cannot be obtained by postulating the balance of force and couples for
every subbody of considered continuum. The statement of the theorems presented in Sect. 4 gives a solid
mathematical ground to the discussion presented by Sedov [64–66] and should be sufficient to conclude
the debate between the variational and “balancist” schools in continuum mechanics by establishing the
superiority of variational principle postulation schemes. One has to remark explicitly here that the con-
cept of stress, as developed by “balancists”, is specific for first gradient continua and cannot be easily
generalised to higher gradient continua, see, e.g. [23]. In fact, assuming only balance of forces and couples
for any sub-body, we necessarily come to the Cosserat continuum [34,56] or to the Cauchy continuum if
we neglect couples as independent on forces. For media with microstructure, one has to introduce addi-
tional balance equations, see [17,35]. Instead, for hyperelastic, the concept of deformation energy can be
more easily generalised and leads easily, via a process based on stationarity conditions and integration
by parts, to the strong formulations of mathematically consistent equilibrium problems which naturally
include well-posed natural boundary conditions. Moreover, the concept of deformation energy is based on
the fundamental concept of deformation, which is pure kinematical and is strongly linked to experimental
evidence. Instead, the concept of stress has a complex mathematical nature: in fact, it can be defined as
the linear and continuous functional mapping displacement fields and their gradients into the expended
work, see Eq. (3.3). It is rather difficult to measure stress without having developed a dynamical theory,
and these measurements are always based on the indirect determination based on the direct measure of
deformations and the use of ad hoc postulated constitutive equations. It seems to us rather difficult to
attribute a “more intuitive” physical nature to stress than to deformation.

In the specific considered modelling instance, we consider a very specific case of the energy space
adapted to the postulated deformation energy. We prove that weak solutions to the equilibrium problem
belong to H1(div, V ). This is an intermediate functional space between H1(V ) and H2(V ) and belongs
to the wider class of anisotropic Sobolev spaces introduced by Nikol’skii [55], see also [10–12,57,75] for a
study about traces of functions in these spaces.

This characterisation of the solutions is essential if one wants to solve with numerical methods the
problem of the deformation of dilatational strain gradient continua under the specified class of externally
applied dead loads. In facts, in order to get a reasonable accurate approximation and a convergent
integration scheme, one has to suppose that the applied loads have a regularity compatible with formula
(3.7) and that the used mixed finite elements method exploits a discretisation based on a set of test
functions dense in H1(div, V ).



182 Page 10 of 16 V. A. Eremeyev et al. ZAMP

Acknowledgements

This work was supported by the Russian Science Foundation under Grant 20-41-04404 issued to the
Institute of Applied Mechanics of Russian Academy of Sciences.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Appendix: First variation

Let us discuss the derivation of the first variation given by (3.4). In what follows, for simplicity, we
consider C4(V ) functions. Integrating by parts in (3.3), we get

δF (u;v) =
∫

V

[λθ(u)θ(v) + 2μe(u) : e(v) + α∇θ(u) · ∇θ(v)] dV

= −
∫

V

[∇(λθ(u)) · v + 2∇ · (μe(u)) · v + α∇ · ∇θ(u)θ(v)] dV

+
∫

S

[λθ(u)n · v + 2μn · e(u) · v + αn · ∇θ(u)θ(v)] dS, (5.1)

where S = ∂V and n is a unit vector of outward normal to S. Here, we also used that e is a symmetric
tensor, so e(u) : e(v) = e(u) : ∇v. Introducing stress tensor σ and double force vector m by

σ(u) = λθ(u)I + 2μe(u), m(u) = α∇θ(u),

so the strain energy density takes the form

W (u) =
1
2
σ(u) : e(u) +

1
2
m(u) · ∇θ(u),

we re-write (5.1) in a compact form

δF (u;v) = −
∫

V

[(∇ · σ(u)) · v + (∇ · m(u)) θ(v)] dV

+
∫

S

[n · σ(u) · v + n · m(u)θ(v)] dS. (5.2)

Integrating by part again, we get∫

V

[∇ · m(u)] θ(v) dV ≡
∫

V

[∇ · m(u)] ∇ · v dV

= −
∫

V

∇ [∇ · m(u)] · v dV +
∫

S

[∇ · m(u)]n · v dS. (5.3)

http://creativecommons.org/licenses/by/4.0/
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Substituting (5.3) into (5.2), we transform δF (u;v) as follows

δF (u;v) =
∫

V

[− (∇ · σ(u)) · v + ∇ (∇ · m(u)) · v] dV

+
∫

S

[n · σ(u) · v + n · m(u)θ(v)] dS

−
∫

S

[∇ · m(u)]n · v dS. (5.4)

Using the identity ∇(∇ · m) = ∇ · (∇m)T and introducing the total stress tensor T as

T(u) = σ(u) − (∇m(u))T ,

where T stands for a transpose tensor, we re-write (5.4) in more compact form

δF (u;v) = −
∫

V

[∇ · T(u)] · v dV

+
∫

S

[n · σ(u) − [∇ · m(u)]n] · v dS +
∫

S

n · m(u)θ(v) dS. (5.5)

Let us consider the last surface integral in (5.5). We recall that θ(v) = ∇ · v. We use the following
representation for ∇ · v∣∣

S

∇ · v∣∣
S

=
(

∇s + n
∂

∂n

)
· v,

where ∇s = (I − n ⊗ n) · n and ∂
∂n is the normal derivative. So we get

∫

S

n · m(u)θ(v) dS =
∫

S

n · m(u)
∂v
∂n

· ndS +
∫

S

n · m(u)∇s · v dS. (5.6)

We consider S as a smooth enough surface with a contour C = ∂S. Using the surface divergence
theorem as in [31], we can integrate by parts in the last integral in (5.6) as follows

∫

S

n · m(u)∇s · v dS =
∫

S

[∇s · [(n · m)v] − ∇s(n · m) · v] dS

= −
∫

S

[2H(n · v)(n · m) + ∇s(n · m) · v] dS +
∫

C

(ν · v)(n · m) ds, (5.7)

where H is the mean curvature of S, ν is the unit vector of the outward normal to C such that ν ·n = 0.
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Summarising, we get

δF (u;v) = −
∫

V

[∇ · T(u)] · v dV

+
∫

S

[n · σ(u) − [∇ · m(u)]n − 2H(n · m(u))n + ∇s(n · m(u))] · v dS

+
∫

S

n · m(u)
∂v
∂n

· ndS

+
∫

C

(n · m(u))(ν · v) ds. (5.8)

Note that for bounded domain V , S = ∂V , so C = ∂S = ∂∂V is empty, but we keep it here for the case
of mixed boundary conditions when a part of S is clamped. Then, C is an interface between clamped
part of the boundary and the free one. As on a clamped surface, we have v = 0, the integral over C also
vanishes.

Using standard techniques of calculus of variations from variational equation δF (u;v) = 0 for all
admissible v it follows the homogeneous boundary-value problem for the determination of u(x) ∈ C4(V )

∇ · T(u) = 0, x ∈ V, (5.9)

n · σ(u) − [∇ · m(u)]n − 2H(n · m(u))n + ∇s(n · m(u)) = 0, x ∈ S, (5.10)

n · m(u) = 0, x ∈ S. (5.11)

Obviously, using (5.11), we can simplify (5.10). Indeed, substituting (5.11) into (5.10), we get

n · σ(u) − [∇ · m(u)]n = 0, x ∈ S. (5.12)

Boundary-value problem (5.9)–(5.11) can be easily extended to the case of external loadings. Indeed,
in this case, we have the equilibrium equation and the natural boundary conditions in the form

∇ · T(u) + f = 0, x ∈ V, (5.13)

n · σ(u) − [∇ · m(u)]n − 2H(n · m(u))n + ∇s(n · m(u)) = t, x ∈ S, (5.14)

n · m(u) = c, x ∈ S, (5.15)

where f is a vector of volume forces, t is a traction, and c is a scalar surface double force.
Let us note that in this case can exclude n · m(u) from (5.14). We have

n · σ(u) − [∇ · m(u)]n = t̃, t̃ = 2Hcn + ∇s(c) + t, x ∈ S. (5.16)

At first look, we can replace boundary conditions (5.14) and (5.15) by more simple equations

n · σ(u) − [∇ · m(u)]n = t, n · m(u) = c. (5.17)

with two given functions t and c. But here, we cannot treat t and c independently. For example, we
cannot apply t = 0 with c = 0. For example, for a curved surface (H = 0), a constant double force c
produces normal pressure t̃ = 2Hcn. So one should aware of application of such “simplified” boundary
conditions in the case of strain-gradient continua. This situation is similar to the case of Kirchhoff plates
when at the boundary a combination of transverse forces and moments, see, e.g. [31].

As kinematical counterparts of (5.10) and (5.11), we consider the following essential boundary condi-
tions

u
∣∣
S

= 0,
∂u
∂n

· n
∣∣∣∣
S

= 0.
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Considering mixed boundary conditions on the base of (5.8) and (5.13)–(5.15), we come to the for-
mulation of the virtual work principle in the form (3.7). In the case of C4-functions, (3.7) is equivalent
to (5.13)–(5.15).
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[39] Fichera, G.: Existence theorems in elasticity. In: Flügge, S. (ed.) Handbuch der Physik, vol. VIa/2, pp. 347–389. Springer,
Berlin (1972)

[40] Forest, S., Cordero, N.M., Busso, E.P.: First vs. second gradient of strain theory for capillarity effects in an elastic fluid
at small length scales. Comput. Mater. Sci. 50(4), 1299–1304 (2011)

[41] Gagneux, G., Millet, O.: Modeling capillary hysteresis in unsatured porous media. Math. Mech. Complex Syst. 4(1),
67–77 (2016)

[42] Germain, P.: Functional concepts in continuum mechanics. Meccanica 33(5), 433–444 (1998)
[43] Germain, P.: The method of virtual power in the mechanics of continuous media, I: Second-gradient theory. Math.

Mech. Complex Syst. 8(2), 153–190 (2020)
[44] Giorgio, I., Andreaus, U., Scerrato, D., Braidotti, P.: Modeling of a non-local stimulus for bone remodeling process

under cyclic load: application to a dental implant using a bioresorbable porous material. Math. Mech. Solids 22(9),
1790–1805 (2017)

[45] Giorgio, I., Scerrato, D.: Multi-scale concrete model with rate-dependent internal friction. Eur. J. Environ. Civ. Eng.
21(7–8), 821–839 (2017)

[46] Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer,
Berlin (1986)
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