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Abstract
We consider the Lidstone–Euler interpolation problem and the associated Lidstone–
Euler boundary value problem, in both theoretical and computational aspects. After a
theorem of existence and uniqueness of the solution to the Lidstone–Euler boundary
value problem, we present a numerical method for solving it. This method uses the
extrapolated Bernstein polynomials and produces an approximating convergent poly-
nomial sequence. Particularly, we consider the fourth-order case, arising in various
physical models. Finally, we present some numerical examples and we compare the
proposed method with a modified decomposition method for a tenth-order problem.
The numerical results confirm the theoretical and computational ones.

Keywords Boundary value problem · Lidstone polynomials · Euler polynomials ·
Bernstein polynomials · Interpolation · Extrapolation
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1 Introduction

Agarwal et. al. (see [6] and references therein) introduced the so-called Lidstone
boundary value problem, consisting of the general 2r -th order differential equation

(−1)r y(2r)(x) = f (x, y(x)) , x ∈ [0, 1] , r > 1 (1)
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where y = (y, y′, . . . , y(q)
)
, 0 ≤ q ≤ 2r − 1 is fixed, and the boundary conditions

y(2 j) (0) = α j , y(2 j) (1) = β j , j = 0, . . . , r − 1. (2)

f in (1) is continuous at least in the interior of the domain of interest. If f ≡ 0
then the problem (1)–(2) has a unique solution

y(x) = Pr (x) =
r−1∑

i=0

[αiΛi (x) + βiΛi (1 − x)] , (3)

where {Λi }i is the polynomial sequence, called Lidstone sequence [27], defined by

{
Λ0(x) = x, Λ′′

n(x) = Λn−1(x)

Λn(0) = Λn(1) = 0, n ≥ 1.

The polynomial in (3), according to (2), is called Lidstone interpolating polynomial
for the function y(x).

Consequentely, (1)–(2) is called Lidstone boundary value problem. The Lidstone
boundary value problem has attracted considerable attention (see [4–6,16–18,42] and
references therein) particularly because of its special cases that frequently occur in
engineering and other branches of physical sciences.

In recent years the Lidstone polynomial sequence {Λi }i has been much studied (see
[4,5,11,12,14,16–18]) and new polynomial sequences of the same family have been
considered.

One of these is the sequence {εk}k , with εk satisfying the conditions

⎧
⎨

⎩

ε′′
k (x) = (2k + 1)2k εk−1(x)

εk(0) = 0, k ≥ 0, ε′
k(1) = 0 k ≥ 1,

ε0(x) = x .

(4)

Polynomials εk are connected to the classic Euler polynomials Ek by the following
relation [14]

εk(x) = 22k+1E2k+1

(
x + 1

2

)
. (5)

Also, they are fundamental polynomials for the interpolation problem

Q(2 j)
r (0) = α j , Q(2 j+1)

r (1) = β j , j = 0, . . . , r − 1. (6)

In fact, the polynomial Qr , given by [16]

Qr (x) =
r−1∑

i=0

1

(2i + 1)!
[
βiεi (x) − αiε

′
i (1 − x)

]
,
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is the unique polynomial that solves the interpolation problem (6).
Thereforewe call {εk}k oddLidstone–Euler polynomial sequence and (6) Lidstone–

Euler interpolation conditions, or boundary conditions.
The sequence {εk}k is not known in the literature, but the polynomials

pk(x) = ε′
k(x)

2k + 1
, k ≥ 0

have already been used [14,17,36,38,44]. In fact these polynomials are fundamental
polynomials in the modified Abel expansion [36,38,44].

We can consider [16] the Lidstone–Euler boundary value problem (LEbvp in the
following):

⎧
⎨

⎩
(−1)r y(2r)(x) = f

(
x, y, y′, . . . , y(q)

)
(7a)

y(2i)(0) = αi , y(2i+1)(1) = βi , i = 0, . . . , r − 1, (7b)

with 0 ≤ q ≤ 2r − 1 fixed, αi , βi , i = 0, . . . , r − 1, finite real constants.
Problem (7a)–(7b), in the general case, does not appear in the literature. In [9] the

following problem is considered:

{
(−1)r y(2r)(x) = f

(
x, y, y′′, . . . , y(2(r−1))

)

y(2i)(0) = y(2i+1)(1) = 0, i = 0, . . . , r − 1,
(8)

and in [29] the more general problem

⎧
⎨

⎩

y(2r)(x) = f
(
x, y, y′, . . . , y(2r−2)

)+ r(x)

αi y(2i)(0) − βi y(2i+1)(0) = 0,
γi y(2i)(1) + τi y(2i+1)(1) = 0, i = 0, . . . , r − 1

(9)

is studied. Sufficient conditions for the existence of at least one solution for problems
(8) and (9) are established under appropriate assumptions on f .

Some special cases of the LEbvp are important for their applications in numerous
branches of applied sciences [31,32,45,46].

This paper is intended to be a contribution to the study of Lidstone–Euler interpo-
lation and of LEbvp.

The paper is organized as follows: in Sect. 2 we consider the Lidstone–Euler inter-
polation problem and we get some known and new relations that will be used in the
sequel. In Sect. 3 we give some theoretical results on Lidstone–Euler boundary value
problems. We provide sufficient conditions for the existence and uniqueness of the
solution. Section 4 is devoted to presenting a method for the numerical solution. In
Sect. 5 we propose an algorithm for effective calculation of the numerical solution of
the considered boundary value problem. In Sect. 6 we consider the special case r = 2,
and we provide illustrative numerical examples. In order to compare the proposed
method with other existing ones, we apply the new method and the Modified Decom-
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position method presented in [43] to the numerical solution of a LEbvp of order 10.
The last Section contains some conclusions and notations on future works.

2 Lidstone–Euler polynomials and related interpolation

The so-called Lidstone–Euler polynomials have been introduced in [14,16,17] in a
broader theoretical and applicative framework. They, however, at least in the even
case, are known as Abel polynomials since they are fundamental in the modified Abel
series [36,38,44]. In this Section we will recall some known results on odd Lidstone–
Euler polynomials sequence {εk}k , and introduce new properties in order to solve the
LEbvp.

The k-th odd Lidstone–Euler polynomial has degree 2k +1 and satisfies conditions
(4).

Proposition 1 The Lidstone–Euler polynomials εr can be expressed at any x ∈ [0, 1]
as

εr (x) = (2r + 1)!
∫ 1

0
Kr (x, t) t dt, r ≥ 1, (10)

where

K1(x, t) =
{−t t ≤ x

−x t > x,
(11)

Kr (x, t) =
∫ 1

0
K1(x, s)Kr−1(s, t) ds, r ≥ 2. (12)

Proof The proof follows by induction. From the theory of differential equations the
solution ε1 of the boundary value problem

{
ε′′
1(x) = 6x

ε1(0) = ε′
1(1) = 0

can be written as

ε1(x) = 6
∫ 1

0
K1(x, t) t dt .

Next, suppose that (10) is true for r ≥ 1. Then the solution εr+1 of the boundary value
problem

⎧
⎨

⎩
ε′′

r+1(x) = (2r + 3)!
∫ 1

0
Kr (x, t) t dt

εr+1(0) = ε′
r+1(1) = 0
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can be written as

εr+1(x) =
∫ 1

0
K1(x, s)

[
(2r + 3)!

∫ 1

0
Kr (s, t) t dt

]
ds

= (2r + 3)!
∫ 1

0

[∫ 1

0
K1(x, s)Kr (s, t) ds

]
t dt

= (2r + 3)!
∫ 1

0
Kr+1(x, t) t dt .

��
Remark 1 From (11), K1(x, t) ≤ 0, 0 ≤ x, t ≤ 1. Thus, in view of (12),

0 ≤ (−1)r Kr (x, t) =
∣∣∣Kr (x, t)

∣∣∣, 0 ≤ x, t ≤ 1.

Hence, from (10) we get

(−1)rεr (x) ≥ 0, 0 ≤ x ≤ 1. (13)

Proposition 2 For the function Kr the following relations hold

(i) Kr (0, t) = 0;
(ii)

∂

∂x
Kr (x, t)

∣∣∣∣
x=1

= 0;

(iii)
∂2s

∂x2s
Kr (x, t) = Kr−s(x, t), s = 0, . . . , r − 1;

(iv)
∂2s+1

∂x2s+1 Kr (x, t) = ∂

∂x
Kr−s(x, t), s = 0, . . . , r − 1.

Proof The (i) and (i i) follow from Proposition 1 and the boundary conditions εk(0) =
0 = ε′

k(1) = 0.
The (i i i) follows by induction. From (11)–(12)

Kr (x, t) = −
∫ x

0
sKr−1(s, t)ds −

∫ 1

x
x Kr−1(s, t)ds.

By differentiating, we get

∂

∂x
Kr (x, t) = −

∫ 1

x
Kr−1(s, t)ds. (14)

By differentiating again we obtain

∂2

∂x2
Kr (x, t) = Kr−1(s, t),
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and this proves (i i i) for s = 1. Now, suppose that (i i i) is true for s. Then

∂2(s+1)

∂x2(s+1)
Kr (x, t) = ∂2

∂x2

(
∂2s

∂x2s
Kr (x, t)

)
= ∂2

∂x2
Kr−s(x, t) = Kr−(s+1)(x, t).

��
Relation (iv) easily follows from (i i i).

Proposition 3 For the function Kr the following inequalities hold

∫ 1

0

∣∣
∣Kr (x, t)

∣∣
∣dt ≤ 1

2r
, r ≥ 1; (15)

∫ 1

0

∣∣∣∣
∂

∂x
Kr (x, t)

∣∣∣∣ dt ≤ 1

2r−1 , r ≥ 1. (16)

Proof For r = 1 a direct computation gives

∫ 1

0
|K1(x, t)|dt =

∫ x

0
t dt + x

∫ 1

x
dt = x − x2

2
≤ 1

2
.

Next, for r > 1, relation (12) yields

∫ 1

0
|Kr+1(x, t)|dt =

∫ 1

0

∣∣
∣∣

∫ 1

0
K1(x, s)Kr (s, t)ds

∣∣
∣∣ dt ≤ 1

2r+1 .

In order to prove the (16), from (14) we get

∫ 1

0

∣∣∣∣
∂

∂x
Kr (x, t)

∣∣∣∣ dt ≤
∫ 1

0

(∫ 1

x
|Kr−1(s, t)| ds

)
dt =

∫ 1

x

(∫ 1

0
|Kr−1(s, t)| dt

)
ds.

From (15) we obtain

∫ 1

0

∣∣∣∣
∂

∂x
Kr (x, t)

∣∣∣∣ dt ≤ 1

2r−1

∫ 1

x
ds ≤ 1

2r−1 .

��
The polynomial sequence {εk}k is useful in the interpolation problem [16]. In fact

it is fundamental in the solution of Birkoff interpolation problem given by

P(2 j)
r (0) = α j , P(2 j+1)

r (1) = β j , j = 0, . . . , r − 1. (17)

The following two theorems have been proved in [16]:

123



Lidstone–Euler interpolation and related high even order… Page 7 of 24 25

Theorem 1 The polynomial

Pr (x) =
r−1∑

i=0

1

(2i + 1)!
[
βiεi (x) − αiε

′
i (1 − x)

]
(18)

is the unique solution of the interpolation problem (17).

The conditions (17) are called Lidstone–Euler conditions.

Theorem 2 Let f ∈ C2r [0, 1]. The polynomial

Pr [ f ](x) =
r−1∑

i=0

1

(2i + 1)!
[

f (2i+1)(1)εi (x) − f (2i)(0)ε′
i (1 − x)

]

is the unique polynomial of degree 2r − 1 such that

P(2 j)
r [ f ] (0) = f (2 j)(0), P(2 j+1)

r [ f ] (1) = f (2 j+1)(1), j = 0, . . . , r − 1.(19)

The polynomial Pr [ f ] is called the Lidstone–Euler interpolating polynomial of the
function f .

Proposition 4 For the derivatives of the Lidstone–Euler interpolating polynomial
there exist constants C2i and C2i+1 such that

∣∣∣P(2i)
r [ f ] (x)

∣∣∣ ≤ C2i ,

∣∣∣P(2i+1)
r [ f ] (x)

∣∣∣ ≤ C2i+1, 0 ≤ x ≤ 1, i = 0, . . . , r − 1,

with

C2i = 2

3

r−i−1∑

k=0

22k

(2k)!π2k−1

[
2
∣∣ f (2(k+i)+1)(1)

∣∣

(2k + 1)π
+
∣∣∣ f (2(k+i))(0)

∣∣∣

]

(20)

and

C2i+1 =
∣∣∣ f (2i+1)(1)

∣∣∣+ 2

3

r−i−1∑

k=1

22k−1

(2k − 1)!π2(k−1)

[∣∣∣ f (2(k+i)+1)(1)
∣∣∣
1

kπ
+
∣∣∣ f (2(k+i))(0)

∣∣∣
]
, (21)

with
0∑

k=1

· = 0.

Proof The proof follows after easy calculations from Theorem 2, relations (4) and

from the inequality for the n-th Euler polynomial
∣∣∣En(x)

∣∣∣ ≤ 2

3πn−1 for 0 ≤ x ≤ 1

([24, p. 303]). ��
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Now, ∀x ∈ [0, 1] let Rr [ f ](x) = f (x) − Pr [ f ](x), be the interpolation error.

Theorem 3 (Peano representation) If f ∈ C2r [0, 1], then

Rr [ f ](x) =
∫ 1

0
Kr (x, t) f (2r)(t) dt .

Proof From Theorem 2, Rr [ f ] satisfies

R(2i)
r [ f ](0) = 0, R(2i+1)

r [ f ](1) = 0, i = 0, . . . , r − 1.

From the theory of differential equation it is sufficient to prove that R(2r)
r [ f ](x) =

f (2r)(x), x ∈ [0, 1]. But it follows immediately from

R(2r−2)
r [ f ](x) =

∫ 1

0
K1(x, t) f (2r)(t) dt .

��
Corollary 1 For the kernel Kr the following explicit representation holds

Kr (x, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r−1∑

i=0

t2(r−i)−1

(2(r − i) − 1)!(2i + 1)!ε
′
i (1 − x), t ≤ x

−
r−1∑

i=0

(1 − t)2(r−i−1)

(2(r − i − 1))!(2i + 1)!εi (x), t > x .

(22)

Proof This can be proved from the comparison between Theorem 3 and Theorem 5.2
in [16], after observing the uniqueness of Peano’s kernel. ��
Theorem 4 (Cauchy representation) If f ∈ C2r [0, 1], then

Rr [ f ](x) = f (2r)(ξx )

∫ 1

0
Kr (x, t) dt, ξx ∈ (0, 1).

Proof In view of Remark 1, (−1)r Kr (x, t) ≥ 0, 0 ≤ x, t ≤ 1. The result follows
from the mean value Theorem for integrals, since f ∈ C2r [0, 1]. ��

3 The Lidstone–Euler boundary value problem

As we said, the Lidstone–Euler boundary value problem consists of a general non-
linear differential equation of order 2r as in (7a) with boundary conditions as in (7b).

If f ≡ 0, the problem (7a)–(7b) has the unique solution y = Pr , where Pr is
defined in (18).

So far we are not aware of any proof of the existence and uniqueness of problem
(7a)–(7b). For similar problems there are existence theorems in the literature. For
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example, in [9] the existence of positive solutions is studied for the problem (8) and
also for the same differential equation as in (8) but with different boundary conditions.
In [29] the existence of solutions of the two-point boundary value problem (9) is
analyzed (for other examples see [8,48] and references therein).

The following theorem provides sufficient conditions for the existence and unique-
ness of the solution of general LEbvp (7a)–(7b).

Theorem 5 Suppose that

(i) ki > 0, 0 ≤ i ≤ q, are real given numbers and let Q be the maximum of∣∣∣ f
(
x, y0, . . . , yq

)∣∣∣ on the compact [0, 1] × D, where

D = {(y0, . . . , yq
) : |yi | ≤ 2ki , i = 0, . . . , q

};

(ii) C2i < k2i , i = 0, . . . ,
[ q
2

]
, C2i+1 < k2i+1, i = 0, . . . ,

[
q−1
2

]
, where C2i and

C2i+1 are defined in (20) and (21) respectively;

(iii)
Q

2r−i
≤ k2i , i = 0, . . . ,

[q

2

]
; Q

2r−i−1 ≤ k2i+1, i = 0, . . . ,

[
q − 1

2

]
;

(iv)
∣∣
∣ f
(
x, y0, . . . , yq

)− f
(
x, z0, . . . , zq

)∣∣
∣ <

q∑

i=0

Li |yi − zi | , Li > 0;

(v) θ =
q∑

i=0

Li

2r
< 1.

Then the boundary value problem (7a)–(7b) has a unique solution on D.

Proof From the results in [20] it follows that the boundary value problem (7a)–(7b) is
equivalent to the Fredholm type integral equation

y(x) = Pr [y](x) +
∫ 1

0

∣
∣∣Kr (x, t)

∣
∣∣ f (t, y(t)) dt := T [y](x), (23)

with y = (y, y′, . . . , y(q)
)
. If we introduce in Cq [0, 1] the finite norm

‖y‖ = max
0≤s≤q

{

sup
0≤t≤1

∣∣∣y(s)(t)
∣∣∣

}

,

it becomes a Banach space. Let’s define B[0, 1] as the set

B[0, 1] =
{

y ∈ Cq [0, 1] : sup
0≤t≤1

∣
∣∣y(i)(t)

∣
∣∣ ≤ 2ki , i = 0, . . . , q

}

.

Wewill show that the operator T : Cq [0, 1] → C2r [0, 1] defined in (23) maps B[0, 1]
into itself. Obviously, any fixed point of T is a solution of the boundary value problem
(7a)–(7b).
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Let y ∈ B[0, 1]. Then

(
T [y])(2i)

(x) = P(2i)
r [y](x) +

∫ 1

0

∂2i

∂x2i

∣∣∣Kr (x, t)
∣∣∣ f (t, y(t)) dt

and hence, from hypothesis (i), Propositions 2 and 3, we obtain

∣
∣∣
(
T [y])(2i)

(x)

∣
∣∣ ≤ C2i + Q

∫ 1

0

∣
∣∣Kr−i (x, t)

∣
∣∣dt

≤ k2i + Q

2r−i
≤ 2k2i , i = 0, . . . ,

[q

2

]
.

(24)

Similarly,

∣∣∣
(
T [y])(2i+1)

(x)

∣∣∣ ≤ C2i+1 + Q
∫ 1

0

∣∣∣∣
∂

∂x
Kr−i (x, t)

∣∣∣∣ dt

≤ k2i+1 + Q

2r−i−1 ≤ 2k2i+1, i = 0, . . . ,

[
q − 1

2

]
.

(25)

Relations (24) and (25) prove that T B[0, 1] ⊆ B[0, 1]. Moreover, the inequalities
(24)–(25) imply that the sets

{(
T [y])(i) : y ∈ B[0, 1]

}
, 0 ≤ i ≤ q,

are uniformly bounded and equicontinuous in [0, 1]. From the Ascoli–Arzela theorem
it follows that T B[0, 1] is compact. Thus, from the Shauder fixed point theorem, there
exists a fixed point of T in D.

Now we will prove the uniqueness. Let’s suppose that there exist two distinct
solutions y, z ∈ D, that is there exist two fixed points of T in B[0, 1]. Then from (iv),
(v) and Proposition 3, it results

∣∣
∣T [y − z](x)

∣∣
∣ =

∫ x

0

∣∣
∣Kr (x, t)

∣∣
∣
∣∣
∣ f (x, y(x)) − f (x, z(x))

∣∣
∣dt

≤
q∑

i=0

Li

∣
∣∣y(i) − z(i)

∣
∣∣
∫ 1

0

∣
∣∣Kr (x, t)

∣
∣∣dt ≤ θ ‖y − z‖ ,

with θ < 1. Hence the uniqueness of the solution follows. ��
Remark 2 Let f (x, y(x)) = L2y(x), with L < ∞, L �= 0, defined and continuous
on [0, 1] × D, where D = {y ∈ R : |y| ≤ 2k0, k0 > 0}. Let’s consider the LEbvp

{
− y′′ = L2y, x ∈ [0, 1]
y(0) = α0, y′(1) = β0, α0, β0 ∈ R.

(26)
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The interpolating polynomial is P1[y](x) = β0x + α0. Moreover,

|P1[y](x)| ≤ |α0| + |β0| < C0 = 2

3
(π |α0| + 2|β0|) .

If Q = max
(x,y)∈[0,1]×D

| f (x, y)|, we have Q ≤ 2L2k0. If we set k0 = C0 + 1, then

C0 < k0. Hence, if L2 < 1, then
Q

2
< k0. Thus the hypothesis of Theorem 5 are

satisfied and the LEbvp (26) has a unique solution in D

y(x) = α0 cos Lx + β0 + α0L sin L

L cos L
sin Lx .

For L2 = π2

4
> 1,α0 = 0,β0 �= 0, the problemhas no solution. For L2 = π2

4
> 1,

α0 = β0 = 0, the problem has infinite solutions.

4 The numerical solution

High order boundary value problems arise in themathematical modelling of viscoelas-
tic and inelastic flows, deformation of beams, plates deflection theory and in many
other applications in engeneering, physics and science.

Only a limited number of this type of problems can be solved analytically. For
this reason many researchers have proposed numerical solutions (see, for instance,
[1,13,19–21,33,34,43]). Different approaches have been considered, among which
collocation, also with spline functions and Lagrange interpolation, Galerkin weighted
residual, decomposition, variational techniques.

Here we present a general method for higher order LEbvp, inspired to the idea in
[20]. Next we consider in more detail the important case r = 2, that arises in many
applications. We consider also a tenth-order LEbvp and compare the proposed method
with a Modified Decomposition method [43].

The proposed method is based on extrapolated Bernstein polynomials [10].

4.1 The extrapolated Bernsteinmethod

The extrapolated Bernsteinmethod is based on the asymptotic expansion for Bernstein
polynomials [10] and the classical Richardson extrapolation process [39].

For a given n, consider the equispaced points xk = k

n
, k = 0, . . . , n, in [0, 1]. Let’s

consider the Bernstein polynomial of degree n that approximates y(2r) on [0, 1]:

Bn

[
y(2r)

]
(x) =

n∑

k=0

bn,k(x)y(2r) (xk) , (27)

123
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where

bn,k(x) =
(

n

k

)
xk(1 − x)n−k, k = 0, . . . , n,

are the Bernstein basis polynomials.

Theorem 6 [10] Let f ∈ C2q [0, 1], q ≥ 1, and h = 1

n
. Then the Bernestein polyno-

mial for the function f has following asymptotic expansion

Bn[ f ](x) = f (x) +
q∑

i=1

hi Si [ f ] (x) + hq+1Eh[ f ](x), (28)

where the functions Si [ f ], i = 1, . . . , q, don’t dependent on h and Eh[ f ] vanishes as
h → 0.

Theorem 7 Let n, m be two positive integers and h = 1

n
. Moreover, let y ∈

C2(r+m)[0, 1] be the solution of the LEbvp. The following asymptotic expansion holds

y(x) = φn [y] (x) +
m∑

i=1

hi Si [y] (x) + hm+1Eh [y] (x) , (29)

where

φn [y] (x) = Pr [y] (x) +
n∑

k=0

pk,n(x)y(2r)

(
k

n

)
, (30)

pk,n(x) =
∫ 1

0

∣∣∣Kr (x, t)
∣∣∣bn,k(t) dt, (31)

Si [y] does not dependent on h, and Eh [y] vanishes as h → 0.

Proof As usual, the solution y of the LEbvp can be written as

y(x) = Pr [y] (x) +
∫ 1

0

∣∣∣Kr (x, t)
∣∣∣y(2r) (x) dt, (32)

where Pr [y] is the polynomial interpolating the boundary conditions and Kr is the
related Peano kernel. For the function y(2r) Theorem 6 holds. Hence from (28) we get

y(x) = Pr [y] (x) +
∫ 1

0

∣
∣∣Kr (x, t)

∣
∣∣
[

Bn

[
y(2r)

]
(t)

−
m∑

i=1

hi Si

[
y(2r)

]
(t) − hm+1Eh

[
y(2r)

]
(t)

]

dt
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where Bn
[
y(2r)

]
is as in (27), Si

[
y(2r)

]
(t) , i = 0, . . . , m are coefficients independent

on h, and Eh
[
y(2r)

]→ 0 as h → 0. After easy calculations we get the relations (29),
(30), (31). ��
Corollary 2 For the solution y of the LEbvp we get

lim
n→∞ φn[y] (x) = y(x) (33)

uniformly in x ∈ [0, 1].
The expansion of Theorem 7 suggests the following extrapolation procedure.

Theorem 8 Let y ∈ C2(r+m)[0, 1], with m a given integer. Let {nk}k be an increasing
sequence of positive integers and hk = n−1

k . We define a sequence of polynomials of
degree ni+k as follows

⎧
⎪⎨

⎪⎩

T (i)
0 := T (i)

0 [y](x) = φni [y](x), i = 0, . . . , m,

T (i)
k := T (i)

k [y](x) = hi+k T (i)
k−1 − hi T

(i+1)
k−1

hi+k − hi
,

k = 1, . . . , m − 1,
i = 0, . . . , m − k.

(34)

For a fixed i

lim
hi →0

T (i)
k = y(x), k = 1, 2, . . . , m − 1, i = 0, . . . , m − k.

Moreover, the following representations of the error and of T (i)
k hold

T (i)
k − y(x) = (−1)khi hi+1 . . . hk

(
Sk+1[y](x) + O (hi )

)
,

T (i)
k [y](x) =

k∑

j=0

l j (0) φn j [y](x), l j (h) =
k∏

i=0,i �= j

hi − h

hi − h j

Proof See [10,40]. ��
The proposed numerical method consists in approximating the solution y of the

LEbvp by the extrapolated polynomial T (0)
m−1[y], being nm the last element of the con-

sidered numerical sequence {ni }i . We observe that our method is a continuos method
since it provides an approximating convergent polynomial sequence. Of course, for
any z ∈ [0, 1], y(z) is approximated by T (0)

m−1[y](z).
Several choices for the increasing sequence ni can be, for example [15,28]:

– ni = ρi , ρ ≥ 2 positive integer (Romberg sequence)
– ni = bi or ni = n bi , where bi are the Bulirsch numbers bi =
2, 3, 4, 6, 8, 12, 16, . . .

– ni = 2i , double harmonic sequence (Deuflhard sequence)
– ni = n + i, n ∈ N
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– ni = n
m (m + i), with m fixed constant as n/m is integer.

In [15] the five sequences above have been compared.
In the next Section we outline an algorithm for computing of the approximating

extrapolated polynomial.

5 An algorithm for computing the extrapolated polynomial

In order to calculate the approximate solution we observe that from (30) φn [y] is an
implicitly defined polynomial. Moreover

y(2r) (xk) = f
(

xk, y (xk) , y′ (xk) , . . . , y(q) (xk)
)

, k = 0, . . . , n, 0 ≤ q ≤ 2r − 1.

Therefore, in order to compute φn [y] (x) at x ∈ [0, 1], we need the values

y(s)
k = φ

(s)
n [y] (xk), k = 0, . . . , n, s = 0, . . . , q,

with s �= 2 j, j = 0, . . . ,
[ q
2

]
, for k = 0,

and s �= 2 j − 1, j = 1, . . . ,
[

q+1
2

]
, for k = n.

(35)

These values can be obtained by solving the following algebraic non-linear system

y(s)
k = P(s)

r [y](xk) +
n∑

i=0

p(s)
i,n (xk) f (xi , yi ) (36)

with k, s as in (35), and yi =
(

yi , y′
i , . . . , y(q)

i

)
.

The system (36) can be written in the form

Y − A FY = C . (37)

where Y = (Y 0, . . . , Y q)T , with Y 2 j =
(

y(2 j)
1 , . . . , y(2 j)

n

)
, j = 0, . . . ,

[ q
2

]
, Y 2 j−1 =

(
y(2 j−1)
0 , . . . , y(2 j−1)

n−1

)
, j = 1, . . . ,

[
q+1
2

]
. A is the diagonal block matrix

A =

⎛

⎜⎜⎜⎜
⎝

A0 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 A2r−1

⎞

⎟⎟⎟⎟
⎠
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with Ai ∈ R
n×(n+1),

A2 j =

⎛

⎜⎜
⎝

p(2 j)
0,n (x1) · · · p(2 j)

n,n (x1)
...

...

p(2 j)
0,n (xn) · · · p(2 j)

n,n (xn)

⎞

⎟⎟
⎠ , j = 0, . . . ,

[q

2

]
,

A2 j−1 =

⎛

⎜
⎜
⎝

p(2 j−1)
0,n (x0) · · · p(2 j−1)

n,n (x0)
...

...

p(2 j−1)
0,n (xn−1) · · · p(2 j−1)

n,n (xn−1)

⎞

⎟
⎟
⎠ , j = 1, . . . ,

[
q + 1

2

]
.

Moreover FY = (Fn, . . . , Fn︸ ︷︷ ︸
q

)T with Fn = ( f0, . . . , fn)T , being fi = f (xi , yi ),

and C = (
C0, . . . , Cq

)T with C2 j =
(

P(2 j)
r−1 [y](x1), . . . , P(2 j)

r−1 [y](xn)
)
, j =

0, . . . ,
[ q
2

]
, C2 j−1 =

(
P(2 j−1)

r−1 [y](x0), . . . , P(2 j−1)
r−1 [y](xn−1)

)
, j = 1, . . . ,

[
q+1
2

]
.

Let L =
q∑

i=0

Li , being Li the Lipschitz constant for f as in Theorem 5. Then for

the existence and uniqueness of solution of (37) the following theorem can be proved
with standard techniques [20].

Theorem 9 If Θ = L‖A‖∞ < 1, system (37) has a unique solution which can be
calculated by an iterative method

(Yn) j+1 = G
(
(Yn) j

)
, j ≥ 0

with a fixed (Yn)0 = (α0, . . . , α0) ∈ R
n(q+1) and G (Yn) = A FYn + C .

Moreover, if Y is the exact solution of the system (37),

∥∥(Yn) j+1 − Y
∥∥∞ ≤ Θ j

1 − Θ
‖(Yn)1 − (Yn)0‖∞ .

Proof If L‖A‖∞ < 1, G is contractive. Hence the result follows by applying the
contraction mapping theorem. ��

6 Numerical examples

First, we consider the case r = 2. In this case the LEbvp becomes

y(4)(x) = f
(
x, y, y′, y′′, y′′′) , (38)

with the boundary conditions

{
y(0) = α0, y′(1) = β0,

y′′(0) = α1, y′′′(1) = β1.
(39)
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We observe that (38) is a general non-linear fourth-order differential equation. It
often arises from mathematical modeling of many physical phenomena in numerous
branches of applied sciences. For example it models the equilibrium states of traveling
waves in a suspension bridge [26]. Different boundary conditions represent types
of bridge being modeled. Often fourth-order differential equations are called beam
equations [32,47], for their relevance in beam theory. In this case the boundary value
problem (38)–(39) describes the equilibrium state of the deformation of an elastic
beam column with one of its end simply supported and the other end is clamped by
sliding clamps. The deformation is caused by a load f ; y′′ represents the bending
moment stiffness, y′′′ represents the shear force and y(4) is the load density stiffness.
Equation (38) can be equipped also with different boundary conditions, for example
[31]:

– y(0) = y(1) = y′′(0) = y′′(1) = 0,
– y(0) = y(1) = y′(0) = y′(1) = 0.

The method proposed in this paper provides the explicit expression of the approx-
imating polynomials φn [y] and of the extrapolated polynomials T (i)

k [y]. Particularly,
in the case of problem (38)–(39), we have

T (i)
k [y](x) =

k∑

j=0

l j (0) φn j [y](x),

with

l j (h) =
k∏

i=0,i �= j

hi − h

hi − h j
, hi = 1

ni
,

φn j [y] (x) = P2 [y] (x) +
n j∑

k=0

pk,n j (x) f

(
k

n j

)
,

where

P2[y](x) = y(0) +
(

y′(1) − y′′(0) − y′′′(1)
2

+
)

x + y′′(0)
2

x2 + y′′′(1)
6

x3

and

pk,n j (x) = n j !
k!

n j −k∑

i=0

(−1)n j −k−i

(n j − k − i)!
∫ 1

0

∣∣∣K2 (x, t)
∣∣∣tn j −i dt, (40)

with

K2(x, t) = 1

6

{ − t3 + 6t x − 3t x2, x ≥ t

− 3t2x + 6t x − x3, x < t .
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The elements of each block matrix Ak , k = 0, . . . , 3, are

ai,l =
⎧
⎨

⎩

p(k)
l,n j

(xi+1) , k even

p(k)
l,n j

(xi ) , k odd
i = 0, . . . , n j − 1, l = 0, . . . , n j .

Observe that the integrals that appear in (40) are easily calculable exactly since the
integral functions in (40) are polynomials. Therefore also the elements of the matrix
can be easily calculated.

So far we are not aware of any specific methods for the numerical solution of
problem (1)–(2) even in the case r = 2 (see [7,22,23,25,30–32,35,37,41,45–47] and
references therein). The reason for this could be the non-symmetry of the boundary
conditions. Not even specific numerical examples we have found in the literature.

Pending further clarification of these aspects, in the following we report two exam-
ples to validate the theoretical results previously given. Since the analytical solutions
of the considered examples are known, ∀x ∈ [0, 1] we compute the true absolute
errors

en(x) = |y(x) − φn[y](x)| and Em(x) =
∣∣
∣y(x) − T (0)

m [y](x)

∣∣
∣ .

Example 1 Consider the following problem

⎧
⎨

⎩

y(4)(x) − 2y′′(x) + y(x) = −8ex , x ∈ [0, 1]
y (0) = 0, y′(1) = −e,
y′′(0) = 0, y′′′(1) = −9e.

(41)

The theoretical solution is y (x) = x(1 − x)ex .
The first approximating polynomials, obtained by using equidistant nodes, are

φ2[y](x) = 0.5617x − 0.2909x3 − 0.3333x4 − 0.1690x5 − 0.03815x6

φ3[y](x) = 0.7118x − 0.3649x3 − 0.3333x4 − 0.1496x5−0.03860x6−0.00317x7

φ4[y](x) = 0.7854x − 0.4004x3 − 0.3333x4 − 0.1411x5 − 0.03754x6

− 0.00467x7 − 0.000167x8

φ5[y](x) = 0.8291x − 0.4211x3 − 0.3333x4 − 0.1379x5 − 0.03672x6

− 0.00541x7 − 0.000342x8 − 5.11617 · 10−6x9

φ6[y](x) = 0.8581x − 0.4347x3 − 0.3333x4 − 0.1355x5 − 0.03614x6

− 0.00581x7 − 0.000482x8 − 0.0000148x9 − 6.04527 · 10−8x10.

Figure 1 shows the graphs of the error functions eni with ni = 2i , i = 2, . . . , 5
(Figure 1a) and the graph of E3 (Figure 1b).

Figure 2a contains the plots of the error functions by using the first terms of the
Bulirsh sequence for the degree of the approximating polynomials φni [y]. Figure 2b
shows the graph of E4.
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(a)
(b)

Fig. 1 Error functions for ni = 2i , i = 2, . . . , 5—Problem (41)

(a)
(b)

Fig. 2 Error functions for ni = 2, 3, 4, 6, 8—Problem (41)

The errors in x = 1
2 by using extrapolation for different sequences ni are displayed

in Table 1.

Example 2 Consider now the following nonlinear problem

⎧
⎨

⎩

y(4)(x) = sin x + sin2 x − (y′′(x)
)2

x ∈ [0, 1]
y (0) = 0, y′(1) = cos(1),
y′′(0) = 0, y′′′(1) = − cos(1).

(42)

The theoretical solution for this problem is y (x) = sin(x).
Figure 3a contains the plots of the error functions eni with ni = 7+ i , i = 1, . . . , 5;

Fig. 3b shows the graph of E4.
Table 2 contains the errors in x = 1

2 by using extrapolation for different sequences
ni .
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Table 1 Extrapolation error in
x = 1

2 - Problem (41) ni i
∣∣∣y
(
1
2

)
− T (0)

m

(
1
2

)∣∣∣

2i 2,3,4 2.91073e−05

2,3,4,5 8.03646e−07

5i 2,3,4,5 1.67093e−07

1,2,…,6 2.42555e−09

2,3,…,7 9.34760e−10

2i 2,3,…,8 2.88037e−09

3,4,…,10 3.19960e−11

2,3,…,10 8.13144e−12

2, 3, 4, 6, 8 1.75321e−07

2, 3, 4, 6, 8, 12 2.74009e−08

(a)
(b)

Fig. 3 Error functions for ni = 8, 9, 10, 11, 12—Problem (42)

Table 2 Extrapolation error in
x = 1

2—problem (42) ni i
∣
∣∣y
(
1
2

)
− T (0)

m

(
1
2

)∣∣∣

7 + i 1,2,3,4 2.44272e−08

1,2,3,4,5 7.66639e−10

0,1,2,3,4,5 2.83940e−11

2i 3,4,5,6 3.29654e−08

2,3,4,5,6 3.40628e−09

3, 4, 6, 8, 12 1.26028e−08

3, 4, 6, 8, 12, 16 3.23031e−10
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6.1 Comparisons

Nowwe apply the Bernstein extrapolation method proposed previously for the numer-
ical solution of a higher-order LEbvp. To show the reliability of our method, in the
absence of existing specific methods for problem (7a)–(7b), we compare it with the
modified decomposition method for boundary value problems presented in [43]. The
method in [43] is a modified Adomian decomposition method [2,3], providing the
solution of boundary value problems in the form of a rapidly convergent series with
components that are recursively computed.

Example 3 Consider the following tenth-order nonlinear problem

{
y(10)(x) = e−x y2(x) x ∈ [0, 1]
y(2i) (0) = 1, y(2i+1)(1) = e, i = 0, . . . , 4.

(43)

The theoretical solution for this problem is y (x) = ex .
In [43] the same differential equation is considered, but with different boundary

conditions.
The modified decomposition method applied to equation in (43) with boundary

conditions y(2i) (0) = 1, i = 0, . . . , 4, yields the series

y(x) = 1 + Ax + 1

2! x2 + 1

3! Bx3 + 1

4! x4 + 1

5!Cx5 + 1

6! x6

+ 1

7! Dx7 + 1

8! x8 + 1

9! Ex9

+ 1

10! x10 +
(

1

19958400
A − 1

39916800

)
x11

+
(

1

1197510400
A + 1

159667200

)
x12 + · · · .

Stopping the series at x12 and imposing the conditions y(2i+1)(1) = e, i = 0, . . . , 4,
we have the approximating polynomial

yW (x) = 1 + 1.01167x + x2

2
+ 0.161868x3 + x4

24
+ 0.0089245x5

+ x6

720
+ 0.000164121x7

+ x8

40320
+ 3.8058 ∗ 10−6x9 + x10

3628800
+ 2.5637 ∗ 10−8x11

− 2.1851 ∗ 10−9x12.

If we apply the proposed method, in order to get a polynomial of degree 12, we can
consider a single step of the extrapolation scheme with sequence ni = i + 1, i = 0, 1.
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Table 3 Comparison between
the Bernstein extrapolation
method and the method in [43]
for Problem (43)

xi

∣∣∣y (xi ) − T (0)
1 (xi )

∣∣∣ |y (xi ) − yW (xi )|

0.0 0.00000 0.00000

0.1 8.50785e−06 1.1623e−03

0.2 1.68064e−05 2.2960e−03

0.3 2.46914e−05 3.3731e−03

0.4 3.19688e−05 4.3673e−03

0.5 3.84594e−05 5.2539e−03

0.6 4.40033e−05 6.0111e−03

0.7 4.84638e−05 6.6203e−03

0.8 5.17308e−05 7.0665e−03

0.9 5.37239e−05 7.3382e−03

1.0 5.43938e−05 7.4302e−03

Table 4 Extrapolation errors for Problem (43)

x ni = 10 + i, i = 0, . . . , 4 ni = 2, 3, 4, 6, 8, 12 ni = 2, 3, 4, 6, 8, 12, 16

0.0 0.00000 0.00000 0.00000

0.1 7.11653e−13 1.21081e−12 1.66533e−14

0.2 1.61293e−12 2.39631e−12 4.15223e−14

0.3 2.13829e−12 3.50431e−12 3.24185e−14

0.4 3.76321e−12 4.54459e−12 5.44009e−14

0.5 4.05054e−12 5.45652e−12 5.26246e−14

0.6 5.36038e−12 6.24945e−12 7.37188e−14

0.7 2.78444e−12 6.88560e−12 6.57252e−14

0.8 1.93978e−12 7.32303e−12 2.79776e−14

0.9 2.79243e−12 7.64677e−12 8.74856e−14

1.0 3.73435e−12 7.72582e−12 7.50511e−14

In this case we obtain the following extrapolated polynomial:

T (0)
1 (x) = 1 + 0.999915x + x2

2
+ 0.166702x3 + x4

24
+ 0.00832904x5 + x6

720

+ 0.000198645x7 + x8

40320
+ 2.75565 ∗ 10−6x9 + x10

3628800
+ 2.18959 ∗ 10−8x11 + 3.52584 ∗ 10−9x12.

In Table 3 we show the absolute errors in equidistant points in [0, 1], obtained by
using the two 12−th degree polynomials T (0)

1 (x) and yW (x).
The Table 3 shows that the numerical performance is better for the extrapolated

Bernstein method. Both methods provide a succession of converging approximations.
The computational cost is not comparable, as the modified decomposition method
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requires preliminary analytical work and, therefore, does not produce automatic codes,
unlike our method.

We can have better results by considering approximating polynomials of higher
degree. In Table 4 we show the absolute errors in equidistant points in [0, 1], obtained
by using the extrapolation technique for several sequences ni .

7 Conclusions

In this paper we considered the Lidstone–Euler interpolation problem andwe obtained
new properties, for example the Cauchy representation of the error, a new representa-
tion of the Peano Kernel, bounds for the Kernel and for its derivatives. Moreover we
considered the associated Lidstone–Euler boundary value problem, in both theoretical
and computational aspects. We introduced a method for the numerical solution of the
LEbvp. This method uses the extrapolated Bernstein polynomials. Hence we gave
an approximating, convergent polynomial sequence for the numerical solution of the
LEbvp. An algorithm for effective calculation is given too. Numerical examples sup-
port theoretical results and show that high accuracy in the approximation is achieved
by using extrapolation, both in theoretical and computational aspects. A comparison
with a modified decomposition method is given for a tenth-order problem.

For future developments we note that the existence and uniqueness theorem can be
improved, especially in inequalities. Other numerical approaches are possible and a
global comparison on performance can be made. Finally, it is necessary to study the
complementary case that id odd degree equations and suitable boundary conditions
can be analized.
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