
Soft Computing
https://doi.org/10.1007/s00500-020-05221-y

FOCUS

Representation of grossone-based arithmetic in simulink for scientific
computing

Alberto Falcone1 · Alfredo Garro1 ·Marat S. Mukhametzhanov1,2 · Yaroslav D. Sergeyev1,2

© The Author(s) 2020

Abstract
Numerical computing is a key part of the traditional computer architecture. Almost all traditional computers implement
the IEEE 754-1985 binary floating point standard to represent and work with numbers. The architectural limitations of
traditional computers make impossible to work with infinite and infinitesimal quantities numerically. This paper is dedicated
to the Infinity Computer, a new kind of a supercomputer that allows one to perform numerical computations with finite,
infinite, and infinitesimal numbers. The already available software simulator of the Infinity Computer is used in different
research domains for solving important real-world problems, where precision represents a key aspect. However, the software
simulator is not suitable for solving problems in control theory and dynamics, where visual programming tools like Simulink
are used frequently. In this context, the paper presents an innovative solution that allows one to use the Infinity Computer
arithmetic within the Simulink environment. It is shown that the proposed solution is user-friendly, general purpose, and
domain independent.

Keywords Infinity computer · Scientific computing · Numerical differentiation

1 Introduction

Traditional computers implement the IEEE 754-1985 binary
floating point standard to represent and work with numbers
[see IEEE (1985)]. Although computers are able toworkwith
finite numbers, numerical computations that involve infinite
and infinitesimal quantities are impossible due to both the
presence of indeterminate forms and the impossibility to put

Communicated by Yaroslav D. Sergeyev.

B Alberto Falcone
alberto.falcone@dimes.unical.it

Alfredo Garro
alfredo.garro@dimes.unical.it

Marat S. Mukhametzhanov
m.mukhametzhanov@dimes.unical.it

Yaroslav D. Sergeyev
yaro@dimes.unical.it

1 Department of Informatics, Modeling, Electronics and
Systems Engineering (DIMES), University of Calabria,
87036 Rende, CS, Italy

2 Institute of Information Technology, Mathematics and
Mechanics, Lobachevsky State University of Nizhni
Novgorod, 603950 Nizhni Novgorod, Russia

the infinite representation of a number in the finite computer
memory [see Sergeyev (2017)].

The Infinity Computer is a new kind of a supercomputer
that allows one to work numerically with finite, infinite, and
infinitesimal numbers. The software simulator of the Infinity
Computerwaswritten in theC++ language and is used in sev-
eral research domains, especially inmathematics and physics
to solve difficult real-life problems [see Sergeyev (2017) and
references given therein]. Nevertheless, the software simu-
lator is not yet sufficiently mature to address problems in
control theory and dynamic systems due to implementative
issues related to extending and integrating the C++ source
code of the arithmetical and elementary operations in well-
known environments like Simulink.

To overcome these issues, the paper presents an innova-
tive solution that allows one to use the Infinity Computer
arithmetic within the Simulink environment, which is a well-
known graphical programming environment, developed by
MathWorks, for studying and analyzing dynamic systems
[see Falcone and Garro (2019)]. Simulink provides a graph-
ical block diagramming notation tightly integrated with the
Matlab environment. Simulink is widely used in the model-
ing and simulation domain, including distributed simulation,
Co-Simulation ofCyber-Physical Systems (CPS) andModel-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-020-05221-y&domain=pdf
http://orcid.org/0000-0002-2660-1432
http://orcid.org/0000-0003-0351-0869
http://orcid.org/0000-0001-9305-964X
http://orcid.org/0000-0002-1429-069X


A. Falcone et al.

Based design [seeBocciarelli et al. (2018);D’Ambrogio et al.
(2019); Möller et al. (2016b, 2017)].

The rest of the paper is organized as follows. Section
2 provides an introduction to the Infinity Computer and
MATLAB/Simulink concepts and background knowledge on
the research domain. Section 3 presents the Simulink-based
solution for operating with the Infinity Computing concepts
within the Simulink environment. In Sect. 4, three series of
numerical experiments are presented to show the feasibility
and validity of the solution. Finally, conclusions and future
works are delineated in Sect. 5.

2 Background

Thepaper uses notions and concepts from InfinityComputing
and its representation of numbers alongwith related algebraic
operations, and MATLAB/Simulink, as described in the fol-
lowing subsections.

2.1 Infinity computing and representation of
numbers

In the Infinity Computing framework [see Sergeyev (2017)],
all numbers are represented using the positional numeral sys-
tem with the infinite radix 1© introduced as the number of
elements of the set of natural numbers [see, e.g., Sergeyev
(2017)]:

C = d0 1©p0 + d1 1©p1 + . . . + dn 1©pn , (1)

where quantities di , i = 0, . . . , n, are finite (positive or
negative) floating-point numbers called grossdigi ts, and
pi , i = 0, . . . , n, are called grosspowers and can be finite,
infinite and infinitesimal (positive or negative), n is the num-
ber of grosspowers used in computations (can be fixed or
variable for all computations)1. Due to limitations of the
Simulink (e.g., difficulties in working with variable-sized
matrices in algebraic loops) and for simplicity, only finite
floating-point grosspowers are considered in this paper. It
should be noted that this methodology is not related to non-
standard analysis [see Sergeyev (2019) for details].

One can see that a finite floating-point number A can
be easily expressed in this framework using only one
grosspower p0 = 0 : A = A 1©0. Moreover, different infi-
nite and infinitesimal numbers can be also expressed: e.g., the
numbers 1©, 1©2,−1.5 1©2.5,−1.2 1©3.2−1.2 1©0+2.3 1©−1.2

are infinite, since they contain at least one finite positive

1 It should be noted that in the literature dedicated to the Infinity Com-
puter, a different notation with p0 = 0 is usually used, but here we used
this matrix notation, since it better reflects the details of our implemen-
tation.

grosspower, while the numbers 1©−1 = 1
1© , 2.5 1©−1.5,

1.3 1©−2.2 − 1.7 1©−3.1 are infinitesimal, since they contain
only finite negative grosspowers. Let us call the numbers
expressed in the form (1) as grossnumbers hereinafter.

The Infinity Computer has been already successfully used
for solving problems in applied mathematics, e.g., in opti-
mization [see Cococcioni et al. (2020b, 2018); De Cosmis
and De Leone (2012); De Leone (2018); De Leone et al.
(2018); Gaudioso et al. (2018); Sergeyev et al. (2018)],
infinite series [see Zhigljavsky (2012)], game theory and
probability [see Calude and Dumitrescu (2020a); Fiaschi
and Cococcioni (2018); Rizza (2019)], fractals and cellular
automata [see Caldarola (2018); D’Alotto (2015); Sergeyev
(2011b, 2016)], numerical differentiation and ordinary dif-
ferential equations [see Amodio et al. (2016); Falcone et al.
(2020b); Iavernaro et al. (2019); Sergeyev (2011a, 2013);
Sergeyev et al. (2016)], etc.

2.2 MATLAB/Simulink

Simulink is a software developed byMathWorks as extension
of MATLAB [see MathWorks (2019a)]. It allows engineers
to rapidly build, simulate and analyze dynamic systems using
block diagram notation before moving to hardware. More-
over, Simulink offers a graphical support that shows the
progress of a simulation, significantly increasing understand-
ing of the system’s behavior.

The potential productivity improvement achieved with
Simulink to programming is impressive [see Falcone and
Garro (2019); MathWorks (2019a)]. In the past, the common
approach to develop a system was to start from its compo-
nents by describing their logic through blocks. Then, blocks
were translated into the corresponding source code accord-
ing to a given programming language (e.g., C/C++). This
approach involved duplication of effort, since the system had
to be described twice; the first time using block notation and
then in a programming language. This practice exposed to
accuracy risks in the translation process fromblocks to source
code,making debugging phases difficult because errors could
be in the design (block diagram level), in the programming
(programming level), and/or in the translation process. With
Simulink, this approach is no longer necessary since blocks
are the “program”.

Simulink iswidely used in research and industry to explore
and analyze different design alternatives of complex system
in order to find the best configuration that meets the require-
ments. Research teams can exploit the multi-domain nature
of Simulink to collaboratively simulate the behavior of the
system’s components, each of which developed by a team,
also to understand how components influence the behavior of
the entire system Falcone and Garro (2016a); Falcone et al.
(2017a, b, 2018a).

123



Representation of grossone-based arithmetic in simulink for scientific computing

Simulink allows one: to reduce expensive prototypes by
testing the system in otherwise risky and/or time-consuming
conditions; to validate the system design with hardware-
in-the-loop testing and rapid prototyping; and to maintain
traceability of requirements from design down to the corre-
sponding source code.

3 A simulink-based solution for operating
with the infinity computer

This section presents a Simulink-based solution for oper-
ating with the Infinity Computing concepts presented in
Subsection 2.1. The subsequent subsections are devoted to
the presentation of the architecture of the solution and the
three functional modules Arithmetic Blocks Module (ABM),
Elementary Blocks Module (EBM), Utility Blocks Module
(UBM). For each module sets of blocks are described along
with examples showing their validity.

3.1 Architecture

The proposed solution brings the power of the Infinity
Computer into the Simulink Graphical Programming Envi-
ronment (GPE). The solution has been designed to facilitate
themodeling and simulation of dynamic systems by allowing
engineers to focus on the specific aspects of their system’s
components, without dealing with the low level functionali-
ties exposed by the InfinityComputerArithmetic C++ library
(ICA-lib).

The presented Simulink-based solution is general-purpose
and domain-independent; as a consequence, it can be
exploited in all industrial and scientific domainswhere a high
level of accuracy in the calculations represents a mainstay
(e.g., Cyber-Physical Systems, Robotics and Automation,
Aerospace [see Falcone and Garro (2018); Falcone et al.
(2017b); Garro et al. (2015, 2018b)]).

The design and implementation of the solution have been
focused on standard software engineering methods and tech-
niques, in particular, on the Agile software development
process [see Martin (2002); Venkatesh et al. (2020)]. The
solution has been developed through the use of standard
Simulink Blocks and S-Functions, which allows engineers
to jointly exploit the advantages coming from the Infinity
Computer and the already available Simulink functionali-
ties. Figure 1 presents an overview of the Simulink-based
InfinityComputing solution and its integrationwith theMAT-
LAB/Simulink environments.

In the following Fig. 1, the Simulink-based solution is
placed in the middle of three layers.

The Simulink UI represents the Simulink environment
used for modeling, analyzing and simulating dynamic sys-
tems through the graphical block diagramming tool accord-

ing to the Model-Based Design (MBD) paradigm [see Fal-
cone and Garro (2017b)]. MBD offers an efficient approach
to address problems associated with the design and imple-
mentation of complex systems, signal processing equipment
and communication components. This approach provides a
common framework where engineers can definemodels with
advanced functionalities using continuous-time and discrete-
time blocks. The so-obtained models can be simulated in
Simulink by using different operational conditions leading
to rapid prototyping, testing and verification of the system’s
requirements and performances.

The Simulink Environment layer provides all the standard
Simulink blocks alongwith the ones offered by the Simulink-
based Infinity Computer solution (details will be given in
Subsection 3.3).

The Matlab Environment represents the Matlab infras-
tructure where the Infinity Computer arithmetic C++ library
(ICA-lib) has been integrated in order to handle infinite,
finite, and infinitesimal computations. The integration of the
ICA-lib in Simulink has been done by creating a MATLAB
executable file (MEX), which provides an interface between
the involved parts. When compiled, the MEX file is dynam-
ically loaded by Simulink and permits to invoke the Infinity
Computer arithmetic functions as if they were natively built-
in.

The ICA-lib offers a set of services, each of which offers
some C++ classes and interfaces that implement specific
functionalities to handle infinite, finite, and infinitesimal
quantities along with related computations.

3.2 Representation of grossnumbers in Simulink

In the Simulink-based solution of the Infinity Computer, a
grossnumber x is represented through a standard Simulink
Constant block as a variable-sized vector (1-D array) or
matrix (2-D array) depending on the dimensionality of
the “Constant value” parameter [see MathWorks (2019a)].
Specifically, the output has the same dimensions and ele-
ments as the “Constant value” parameter. If “Constant value”
is a vector and “Interpret vector parameters as 1-D” is
enabled, Simulink treats the output as a 1-D array; other-
wise, the output is managed as a matrix (i.e., a 2-D array).
Regardless of the output size, the first column represents the
grossdigits, whereas the second one defines the grosspow-
ers of a number written in the form (1): the number (1) is
represented by the following matrix:

C =

⎡
⎢⎢⎣
d0 p0
d1 p1
· · ·
dn pn

⎤
⎥⎥⎦ . (2)

123



A. Falcone et al.

Fig. 1 Overview of the
Simulink-based Infinity
Computer solution and its
integration in the
MATLAB/Simulink
environment

For instance, the number 2 is represented in this solution
through a vector

[
2 0

]
, while the number 5 1©0 + 1 1©−1 is

represented by the matrix

[
5 0
1 −1

]
.

3.3 Functional blocks

A set of functional blocks have been created to manage
computations on infinite, finite, and infinitesimal quanti-
ties written in the form (2) that each functional block takes
as input infinite, finite, and infinitesimal quantities that are
forwarded to the associated S-Function to perform the com-
putation by interacting with ICA-lib. Figure 2 shows the
functional block modules that constitute the Simulink-based
Infinity Computer solution.

3.3.1 Arithmetic blocks module

This section is devoted to the Arithmetic Blocks Module
(ABM). It provides a set of blocks devoted to perform
arithmetic computations on infinite, finite, and infinitesimal
quantities, such asSum,Subtraction,Multiplication andDivi-
sion.

All the blocks take as input two arguments x, y, which are
defined as follow:

x =

⎡
⎢⎢⎣
x0 p0
x1 p1
· · ·
xN pN

⎤
⎥⎥⎦ , y =

⎡
⎢⎢⎣
y0 q0
y1 q1
· · ·
yN qN

⎤
⎥⎥⎦ , (3)

where N is a configuration parameter that represents themax-
imum precision used to perform operations. This number
fixes the number of rows in the matrix representation (2) of
each grossnumber (1). It is defined within each block and by
default its value is set to 20.

The real precision of the Infinity Computer is defined
through the parameter n, n ≤ N , which can be config-
ured in the “n_configuration.m” file.

The x, y arguments represent the grossnumbers

x = x0 1©p0 + x1 1©p1 + ... + xN 1©pN ,

y = y0 1©q0 + y1 1©q1 + ... + yN 1©qN .
(4)

The result of the applied operation is a matrix z ∈ R
N×2:

z = z0 1©γ0 + z1 1©γ1 + ... + zN 1©γN , (5)

123



Representation of grossone-based arithmetic in simulink for scientific computing

Fig. 2 The Simulink-based infinity computer solution with provided functional block modules

where z has dimension and number of elements according to
the Infinity Computer algebra [see Sergeyev (2003)], where
the first n rows are significant, whereas the other N − n ones
are null.

For each block included inABM, the specific function and
an example that shows its application are presented, here-
inafter.

Sum. This block performs addition on its inputs. The
Simulink model shown in Fig. 3a performs the addition
of A = 3 1©0 + 1 1©−1 and B = 1 1©1 + 2 1©0 + 5 1©−1.
After the Start simulation command is executed, the result
C = 1 1©1 + 5 1©0 + 6 1©−1 is shown through the standard
Display block.

The grossnumbers A, B, and C are defined as:

A =
K∑
i=1

aki 1©ki , B =
M∑
j=1

bm j 1©m j ,C =
L∑

i=1

cli 1©li . (6)

The result C is defined by including both the items of A,
aki 1©ki : ki �= m j with 1 ≤ j ≤ M and the ones of B,
bm j 1©m j : m j �= ki with 1 ≤ i ≤ K , and the terms having
the same grosspower (ali +bli ) 1©li , according to the Infinity
Computer arithmetic described in Sergeyev (2017).

Subtraction. This block performs subtraction on its gross-
numbers in inputs. This operation is a direct consequence
of the Sum block above described. Figure 3b shows a
Simulink model that performs the subtraction between A =
3 1©0 + 1 1©−1 and B = 1 1©1 + 2 1©0 + 5 1©−1. The result
C = −1 1©1 + 1 1©0 − 4 1©−1 is shown by using the Display
block.

Multiplication. This block performs multiplication on
its inputs. Figure 3c shows a Simulink model that carry
out the multiplication operation between the grossnumbers

A = 3 1©0 + 1 1©−1 and B = 1 1©1 + 2 1©0 + 5 1©−1.
The Display block shows the result of the operation C =
3 1©1 + 7 1©0 + 17 1©−1 + 5 1©−2 defined as follow:

C =
M∑
j=1

C j , 1 ≤ j ≤ M, (7)

where C j = bm j 1©m j · A = ∑K
i=1 aki bm j 1©ki+m j .

Division. This block performs division on its inputs. The
Simulink model shown in Fig. 3d performs the division
operation between the grossnumbers A = 3 1©0 + 1 1©−1

and B = 1 1©1 + 2 1©0 + 5 1©−1. The grossnumber C =
3 1©−1 − 5 1©−2 − 5 1©−3 + 35 1©−4... that is the result of the
computation is shown by the Display block.

The division operation C = A/B leads to a result C plus
a reminer R, where the first grossdigits are ckK = alL /bmM

and the maximal exponent is kK = lL − mM .
The first partial reminder R∗ is derived as: R∗ = A −

ckK 1©kK · B. The calculation ends when either R∗ = 0 or
the default accuracy is reached; otherwise, the number A
is substituted by R∗ and the computation starts again [see
Sergeyev (2017)].

3.3.2 Elementary blocks module

The Elementary Blocks Module (EBM) offers common ele-
mentary functions, such as cosine, sine, exponential, and
logarithm.

Each elementary function f (x) has been implemented
using the truncated Taylor series:

f (x) = f (x0) +
N∑
i=1

di f (x0)

dxi
(x − x0)i

i ! , (8)

123



A. Falcone et al.

Fig. 3 Simulink models that perform addition (a), subtraction (b), multiplication (c), and division (d) of the grossnumbers 3 1©0 + 1 1©−1 and
1 1©1 + 2 1©0 + 5 1©−1

where x0 is a finite floating-point number. For each elemen-
tary function f (x), where f (x) ∈ {sin(x), cos(x), exp(x),
log(x), x p (p is finite),

√
x}, its Taylor expansion (8) is

known and the analytical formulae for the respective deriva-

tives di f (x0)
dxi

are also known and simple to implement. For
each elementary function, except x p and log(x), the value x0
is chosen as the finite part of the input x even if this finite part
is equal to 0. For the functions x p and log(x), since they are
not differentiable at the point x0 = 0, then the value x0 was
chosen as the finite part of x , if it is different from 0, and 0.1,
otherwise (the number 0.1 has been chosen in order to be
not too small nor too large and just to keep the computations
also in the case, when x0 = 0). Since the number x and the
numbers (x − x0) are grossnumbers, then the computations
in this Taylor expansion are performed using the arithmetic
operations implemented in the Infinity Computer library. The
value N is the same as in (1), since the resulting value f (x)
at a grossnumber x is also a grossnumber of the form (1).

All the blocks take as input one argument x (except the
block Pow implementing the function x p, which takes also
the second input p defined as the standard floating-point
number), which is defined as follows:

x =

⎡
⎢⎢⎣
x0 p0
x1 p1
· · ·
xN pN

⎤
⎥⎥⎦ , (9)

where N is the configuration parameter with the same sig-
nificance as previously. The real precision of the Infinity
Computer is also defined as previously through the parame-
ter n (i.e., the rows in (9) starting from the (n + 1)th contain
only zeros).

In this solution, the expansions (8) have significance only
if the input x is not infinite; otherwise, the Taylor series
become divergent. If these elementary functions should be
evaluated also at the infinite points x , then another imple-
mentations should be used (e.g., the Newton method).

Sin. This block performs the trigonometric sine of an argu-
ment x expressed as a grossnumber. The values ± sin(x0)
and ± cos(x0) being the respective derivatives used in the
Taylor formula (8) are calculated using the standard C + +
library math.h. Figure 4a shows a Simulink model that
performs the computation sin(2 1©0 + 1 1©−1). The result
0.9093 1©0 − 0.4161 1©−1 − 0.4546 1©−2... is shown by the
Display block.

Cos. This block performs the trigonometric cosine of
an argument x expressed as a grossnumber. The values
± sin(x0) and± cos(x0) being the respective derivatives used
in the Taylor formula (8) are calculated using the standard
C + + library math.h. The Simulink model shown in Fig.
4b performs the computation cos(2 1©0 + 1 1©−1). The result
−0.4161 1©0 −0.9093 1©−1 −0.2081 1©−2... is shown by the
Display block.

Exp. This block computes the base-e exponential func-
tion of a grossnumber x , which is e raised to the power
x : ex . The value exp(x0) being the respective derivative
used in the Taylor formula (8) is calculated using the stan-
dard C + + library math.h. Figure 4c depicts a Simulink
model that performs the computation e(2 1©0+1 1©−1). The
result 7.389 1©0 + 7.389 1©−1 + 3.695 1©−2... is shown by
the Display block.

Log. This block allows to calculate the natural logarithm
of a grossnumber x . The values log(x0) and x p

0 , where p is
finite, used for the computation of the respective derivatives
in the Taylor formula (8) are calculated using the standard
C++ librarymath.h. Figure 4d shows aSimulinkmodel that

123



Representation of grossone-based arithmetic in simulink for scientific computing

performs the computation log(2 1©0 + 1 1©−1). The Display
block shows the result 0.6931 1©00.5 1©−1 − 0.125 1©−2 +
0.04167 1©−3... of the computation.

Pow. This block applies the function that returns the base
x to the power p, defined as x p. The values xq0 , where q are
finite, used for the computation of the respective derivatives
in the Taylor formula (8) are calculated using the standard
C + + library math.h. The value p is defined as a stan-
dard floating-point number. Figure 4e shows a Simulink
model that performs the computation (2 1©0 + 1 1©−1)−2.5.
TheDisplay block shows the result 0.1768 1©0−0.221 1©−1+
0.1933 1©−2 − 0.415 1©−3 of the computation.

Sqrt. This block, which has been added for convenience,
uses the function defined in the Pow block to return the
square root of a grossnumber x : √

x = x1/2. Figure 4f
shows a Simulink model that performs the computation√

(2 1©0 + 1 1©−1). The Display block shows the result
1.414 1©0 + 0.3536 1©−1 − 0.04419 1©−2... of the computa-
tion.

3.3.3 Utility blocks module

The Utility Blocks Module (UBM) provides common util-
ity function blocks, which are required for supporting the
implementation ofmodels according to the InfinityComputer
solution and making them compatible with the Simulink
environment.

Continuous2Discrete. This utility block allows one to set
the Sample Time to Discrete for all variable size blocks and
Signals. It allows to sample time directly as a discrete numer-
ical value. The produced value is used to update, during the
simulation execution, the blocks internal states.

fillGrossnumber. This block adds zero rows to the matrix
representation of its input in order to fix the size of all
variables (by default the size of all variables representing
grossnumbers is equal to 20 by 2, i.e., the number N from
(2) is set to 20). Specifically, given a matrix M ∈ R

n×m with
m = 2 and i < n significant rows, the function adds an
k-by-m rows of zeros, where k = n − i to fill M .

This block is required, for instance, to workwith Simulink
models containing algebraic loops where variable size vari-
ables are not allowed.

toGross. This block transforms a floating point number x
in the corresponding matrix representation

[
x 0

]
from (2).

The so-obtained result is compatible with the Infinity Com-
puter Simulink solution and therefore can be used as input
for the other provided blocks.

getFinitePart. This block returns the finite part of a gross-
number x as a standard floating point number. For instance,

given x =
⎡
⎣

2 1
5 0
3.1 −5

⎤
⎦, this block returns the value 5, while

for y =
[
3 2
3.1 −1

]
the result is 0.

4 Assessment and evaluation

In this section, three series of numerical experiments are
presented in order to evaluate the proposed solution. First,
several benchmark test functions are implemented using the
proposed solution and using the standard Simulink blocks.
Then, these functions are evaluated using different inputs
given as grossnumbers. Finally, a simple approach for the
exact higher-order differentiation is implemented for these
benchmarks.

4.1 Benchmark functions

In this subsection, the following three test functions from
Sergeyev et al. (2016) are considered:

f1(x) = x2 − 5x + 6

x2 + 1
, (10)

f2(x) = sin(x) + sin(
10x

3
), (11)

f3(x) = −(16x2 − 24x + 5)e−x . (12)

These functions have been chosen among the 24 test func-
tions from Sergeyev et al. (2016) for the following reasons.
First, they contain different elementary functions: f1(x) is
rational, f2(x) is trigonometric, f3(x) contains the exponen-
tial function. Second, these functions are simple to implement
for a fast visualization, do not contain a lot of blocks of the
same type or algebraic loops. Finally, all these functions are
infinitely differentiable.

In Figs. 5, 6, and 7, the implementations of the functions
fi , i = 1, 2, 3, are presented using the proposed solution
(a) and using standard Simulink blocks (b). One can see
that these implementations are straightforward and simular.
A unique difference consists of the block toGross, which
transforms the input x from the traditional computational
framework to the form (2) and the block get Fini tePart ,
which returns the finite part of the result f (x). The util-
ity blocks have been added in these implementations only
to keep the computations in the traditional computational
framework outside the functions, which can be useful in
practice (so, there is nonecessity to re-write all the implemen-
tations of the systems to the presented solution; this solution
is used only where it is necessary). One can see from this fig-
ure, that the implementation of the functions in the proposed
solution does not require a lot of additional knowledge about

123



A. Falcone et al.

Fig. 4 Simulink models that perform the trigonometric function sin x (a), the trigonometric function cos x (b), the base-e exponential function ex

(c), the natural logarithm log x (d), the base x to the exponent power p, x p , where p = −2.5 e, and the square root
√
x (f) of the grossnumber

x = 2 1©0 + 1 1©−1

Fig. 5 Implementations of the function f1(x) from (10) using the proposed solution (a) and using standard Simulink blocks (b)

123



Representation of grossone-based arithmetic in simulink for scientific computing

Fig. 6 The implementations of the function f2(x) from (11) using the proposed solution (a) and using standard Simulink blocks (b)

Fig. 7 The implementations of the function f3(x) from (12) using the proposed solution (a) and using standard Simulink blocks (b)

123



A. Falcone et al.

Fig. 8 The evaluation of the functions fi (x), i = 1, 2, 3, from (10) to (12) at the points x1 = 3 1©0 + 1.5 1©−1 (left) and x2 = 2.5 1©−1.5 −
3.6 1©−2 + 5 1©−3.2 (right)

Fig. 9 Computation of the first 2 derivatives of a function f (x) at the points x = t given by the Simulink “clock” block

the InfinityComputer or about the low-level implementations
of the Infinity Computer arithmetic. The number of the used
blocks is the same, so there is no additional costs in imple-
mentation of the functions (except the addition of the utility
blocks at the initial and final parts of the Simulink system,
which has a constant complexity). One can see also that the
results of the computation of these two implementations of
the test functions at the points x∗

i , i = 1, 2, 3, fromSergeyev
et al. (2016) also coincide (the points x∗

i , which are the global

minimizers of the functions fi (x), respectively, have been
chosen just for simplicity: the results of the computations at
any finite point x0 coincide for these two implementations).

4.2 Evaluation

Let us now evaluate these functions at the inputs given as
the grossnumbers, i.e., without the utility blocks toGross
and get Fini tePart . In Fig. 8, the results of the computa-

123



Representation of grossone-based arithmetic in simulink for scientific computing

0 1 2 3 4 5 6 7 8 9 10
-7

-6

-5

-4

-3

-2

-1

0

1

Time (t)

va
lu

e

Analytical derivative

(a)

0 1 2 3 4 5 6 7 8 9 10
-12

-10

-8

-6

-4

-2

0

2

4

6

8

Time (t)

va
lu

e

Graphs of the second derivative of f_1(t)

Analytical derivative

(b)

0 1 2 3 4 5 6 7 8 9 10
-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Time (t)

va
lu

e

Analytical derivative

(c)

0 1 2 3 4 5 6 7 8 9 10

-15

-10

-5

0

5

10

15

Time (t)

va
lu

e

Graphs of the second derivative of f_2(t)

Analytical derivative

(d)

0 1 2 3 4 5 6 7 8 9 10

-5

0

5

10

15

20

25

30

Time (t)

va
lu

e

Analytical derivative

(e)

0 1 2 3 4 5 6 7 8 9 10
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

Time (t)

va
lu

e

Graphs of the second derivative of f_3(t)

Analytical derivative

(f)

Fig. 10 Graphs of the derivatives f ′
i (x) (left) and f ′′

i (x) (right) of the functions fi (x), i = 1, 2, 3, from (10) to (12) at the interval [0, 10] obtained
by the Infinity Computer and analytically. It can be seen that the graphs obtained by the Infinity Computer and by the analytical formulae coincide

123



A. Falcone et al.

tion at two different points x1 = 3 1©0 + 1.5 1©−1 (on the
left side) and x2 = 2.5 1©−1.5 − 3.6 1©−2 + 5 1©−3.2 (on the
right side) are presented. The computations are kept with the
precision n = 5, i.e., using 5 grosspowers in (1). One can see
that computations with different grossnumbers are allowed
in this solution. Moreover, the grosspowers are not neces-
sarily integer, but can be different floating-point numbers, as
well. It is very important that the user could not know how
the arithmetic operations are implemented inside the func-
tions f (x). Namely, it is sufficient to give an input x and
the output f (x) will be automatically generated in the form
(1) without the necessity to deal with the C + + class of the
Infinity Computer simulator.

4.3 Exact higher-order differentiation

Let us consider now an important application of the proposed
solution in the numerical analysis field. Suppose thatwewant
to calculate thefirst k, k ≥ 1,derivatives of the function f (x)
implemented using the Simulink arithmetic blocks. Tradi-
tionally [see Karris (2006b)], the internal Simulink block
“Derivative” allows one to calculate the derivatives only
using the finite forward differences, which are usually not
accurate. Moreover, since using the forward differences for
computation of the first k, k ≥ 1, derivatives, at least k + 1
observations of the function f (x) are needed, then the values
of the derivatives at the first x0, x1, …, xk−1 points cannot
be calculated using the Simulink’s “derivative” blocks. The
obtained error is of order 1, i.e., proportional to theSimulink’s
system sample time �t , and often cannot be small enough
due numerical cancellation errors.

Another possibility to calculate the exact higher-order
derivatives in Simulink is using external packages, e.g., for
automatic differentiation. However, this solution has several
disadvantages. First, using external packages requires addi-
tional knowledge on how they work and how to use them.
Second, if the function f (x) is difficult and uses a lot of
subsystems and external dependencies, then the resulting for-
mulae or systems obtained by the automatic differentiation
can be too difficult and can require a lot of computational
resources to generate them. Moreover, in this case, the eval-
uation of the higher-order derivatives can be too slow or even
impossible [see, e.g., Iavernaro et al. (2020a)].

Let us see, how the higher-order derivatives can be calcu-
lated on the Infinity Computer. Suppose that the function
f (x) has only finite values at the finite points x (i.e., it
does not depend on 1©). Suppose also that there exists the
(unknown) Taylor expansion of the function f (x) around the
finite point x0. Then, the result of the computation of f (x) at
the point x0 + 1©−1 truncated after k + 1 grosspowers gives

us the exact2 higher-order derivatives of the function f (x) at
the point x0:

f (x0 + 1©−1) = f0 + f1 · 1©−1 + ... + fk · 1©−k, (13)

from where one can obtain that f (x0) = f0, f ′(x0) = f1,
f ′′(x0) = f2 ·2!,…, f (k)(x) = fk · k! [see Sergeyev (2011a,
2017) for details].

In Fig. 9, the Simulink subsystem for computation of the
first 2 derivatives of a function f (x) implemented in the sub-
system “f(x)” at the time steps t using the proposed solution
of the Infinity Computer is presented. Since the derivative is
calculated with respect to the time t , then let us call the func-
tions f (x) as the functions depending on time t , i.e., f (t),
hereinafter. First, the input t given by the standard Simulink
block “clock” is transformed to the grossnumber tgross by the
block “toGross”. Then, the infinitesimal 1©−1 expressed by
the constant block is added to the transformed input tgross .
The obtained grossnumber is moved to the input of the block
“f(x)”. The output of the block “f(x)” is multiplied by 1© and
the result arrives to the block “getFinitePart” (fromwhere the
value f ′(t) is obtained), at the same time the output of the
block “f(x)” is multiplied by 2 1©2 and the result arrives to the
block “getFinitePart” as well (from where the value f ′′(t) is
obtained). The obtained values of the derivatives arrive to the
scope blocks in order to construct their graphs.

The graphs of the first two derivatives for each test func-
tion fi (t), i = 1, 2, 3, from (10) to (12) are presented in
Fig. 10, from where one can see that the derivatives obtained
by the Infinity Computer coincide with the exact derivatives
obtained analytically.

One can see that the differentiation using the presented
solution is simple and almost does not require any additional
knowledge and/or tools. Higher-order derivatives can be eas-
ily calculated using only the proposed blocks without the
necessity of an additional specific tool or block. More appli-
cations are provided in the accompanying paper [see Falcone
et al. (2020a)].

5 Conclusion

AnewSimulink-based software solution to the Infinity Com-
puter has been proposed in this paper. This solution uses the
software simulator of the Infinity Computer written inC++
according to the patents [see Sergeyev (2010a)] and loaded
in Matlab using MEX-files for the implementation of the
low-level arithmetic. The proposed solution is user-friendly,
simple, general purpose and domain independent, i.e., it can

2 The word “exact” means up to machine precision, since the compu-
tations on the Infinity Computer are numeric not symbolic.

123



Representation of grossone-based arithmetic in simulink for scientific computing

be used in any domain where a high precision of the compu-
tations is required.

Four arithmetic blocks representing four operations+,−,
×, and /, have been proposed as well as the blocks for the
elementary functions sin(x), cos(x), exp(x), log(x), x p, and√
x . Moreover, four utility blocks for supporting the imple-

mentation of models have been also proposed. The usage
of the proposed blocks is similar to their internal Simulink
analogues, so it does not require any additional tools or
sophisticated techniques.

The solution has been evaluated on three benchmark test
problems. It has been shown that the complexity of imple-
mentation of the functions using the proposed solution and
using traditional Simulink blocks is the same, while the pro-
posed solution allows one to use all the potentiality of the
Infinity Computer in Simulink without the necessity of refer-
ring to the low-level implementation of the procedures on
the Infinity Computer. As an example of the potential usage
of the solution, an exact higher-order differentiation of the
univariate functions has been considered. It has been shown
that the proposed solution allows one to calculate the exact
higher-order derivatives in a simple and efficient waywithout
using any additional tool.

Future research efforts will be devoted to: (1) improve and
extend the proposed solution to support a wider set of con-
cepts and operations delineated by the Infinity Computer; (2)
perform further experimentations of the solution in different
application domains.

Funding Open access funding provided by Università della Calabria
within the CRUI-CARE Agreement.

Compliance with ethical standards

Conflict of interest All authors declare that they have no conflict of
interest.

Human and animal rights This article does not contain any studies with
human participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Amodio P, Iavernaro F, Mazzia F, Mukhametzhanov MS, Sergeyev YD
(2016) A generalized Taylor method of order three for the solution
of initial value problems in standard and infinity floating-point
arithmetic. Math Comput Simul 141:24–39

Bocciarelli P, D’Ambrogio A, Falcone A, Garro A, Giglio A (2018)
A model-driven approach to enable the simulation of complex
systems on distributed architectures. SIMULAT Trans Soc Model
Simul Int. https://doi.org/10.1177/0037549719829828

Caldarola F (2018) The exact measures of the Sierpinski d-dimensional
tetrahedron in connection with a diophantine nonlinear system.
Commun Nonlinear Sci Numer Simul 63:228–238

Calude CS, Dumitrescu M (2020) Infinitesimal probabilities based on
grossone. SN Comput Sci 1:1. https://doi.org/10.1007/s42979-
019-0042-8

Cococcioni M, Pappalardo M, Sergeyev YD (2018) Lexicographic
multi-objective linear programming using grossone methodology:
theory and algorithm. Appl Math Comput 318:298–311. https://
doi.org/10.1016/j.amc.2017.05.058

CococcioniM,CudazzoA, PappalardoM, SergeyevYD (2020) Solving
the lexicographic multi-objective mixed-integer linear program-
ming problem using branch-and-bound and grossone methodol-
ogy. Commun Nonlinear Sci Numer Simulat. https://doi.org/10.
1016/j.cnsns.2020.105177

D’Alotto L (2015) A classification of one-dimensional cellular
automata using infinite computations. ApplMath Comput 255:15–
24

D’AmbrogioA, FalconeA,GarroA,GiglioA (2019)EnablingReactive
Streams in HLA-based Simulations through aModel-Driven Solu-
tion. In: 23rd IEEE/ACM international symposium on distributed
simulation and real time applications, DS-RT 2019, Cosenza,
Italy, October 7-9, 2019, pp. 1–8. Institute of Electrical and Elec-
tronicsEngineers Inc. https://doi.org/10.1109/DS-RT47707.2019.
8958697

De Cosmis S, De Leone R (2012) The use of grossone in mathemat-
ical programming and operations research. Appl Math Comput
218(16):8029–8038

De Leone R (2018) Nonlinear programming and grossone: quadratic
programming and the role of constraint qualifications. Appl Math
Comput 318:290–297

De Leone R, Fasano G, Sergeyev YD (2018) Planar methods and
grossone for the conjugate gradient breakdown in nonlinear pro-
gramming. Comput Optim Appl 71:73–93

Falcone A, Garro A (2019) Distributed co-simulation of complex
engineered systems by combining the high level architecture
and functional mock-up interface. Simulat Modell Pract The-
ory 97(August):101967. https://doi.org/10.1016/j.simpat.2019.
101967

Falcone A, Garro A (2016) Using the HLA standard in the con-
text of an international simulation project: The experience of the
“SmashTeam”. In: 15th international conference on modeling and
applied simulation, MAS 2016, Held at the international multi-
disciplinary modeling and simulation multiconference, I3M 2016,
Larnaca, Cyprus, September 26-28, 2016, pp. 121–129. DimeUni-
versity of Genoa

Falcone A, Garro A (2017) A Java library for easing the distributed
simulation of space systems. In: 16th international conference on
modeling and applied simulation, MAS 2017, Held at the Interna-
tionalmultidisciplinarymodeling and simulationmulticonference,
I3M 2017, Barcelona, Spain, September 18-20, 2017, pp. 6–13.
CAL-TEK S.r.l

FalconeA,GarroA (2018)ReactiveHLA-basedDistributed Simulation
Systems with RxHLA. In: 22nd IEEE/ACM international sympo-
sium on distributed simulation and real time applications, DS-RT

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1177/0037549719829828
https://doi.org/10.1007/s42979-019-0042-8
https://doi.org/10.1007/s42979-019-0042-8
https://doi.org/10.1016/j.amc.2017.05.058
https://doi.org/10.1016/j.amc.2017.05.058
https://doi.org/10.1016/j.cnsns.2020.105177
https://doi.org/10.1016/j.cnsns.2020.105177
https://doi.org/10.1109/DS-RT47707.2019.8958697
https://doi.org/10.1109/DS-RT47707.2019.8958697
https://doi.org/10.1016/j.simpat.2019.101967
https://doi.org/10.1016/j.simpat.2019.101967


A. Falcone et al.

2018, Madrid, Spain, October 15–17, 2018, pp 1–8. Institute of
Electrical and Electronics Engineers Inc. https://doi.org/10.1109/
DISTRA.2018.8600936

Falcone A, Garro A, Anagnostou A, Taylor SJE (2017) An introduc-
tion to developing federations with the High Level Architecture
(HLA). In: 2017 Winter Simulation Conference, WSC 2017, Las
Vegas, NV, USA, December 3–6, 2017, pp 617–631. Institute of
Electrical and Electronics Engineers Inc. https://doi.org/10.1109/
WSC.2017.8247820

Falcone A, Garro A, D’Ambrogio A, Giglio A (2017) Engineering sys-
tems by combining bpmn and hla-based distributed simulation.
In: 2017 IEEE international conference on systems engineering
symposium, ISSE 2017, Vienna, Austria, October 11-13, 2017, pp
1–6. Institute of Electrical and Electronics Engineers Inc. https://
doi.org/10.1109/SysEng.2017.8088302

FalconeA, Garro A, D’Ambrogio A, Giglio A (2018) Using BPMN and
HLA for engineering SoS : lessons learned and future directions.
In: 2018 IEEE international conference on systems engineering
symposium, ISSE 2018, Rome, Italy, October 1-3, 2018, pp 1–8.
Institute of Electrical and Electronics Engineers Inc. https://doi.
org/10.1109/SysEng.2018.8544399

Falcone A, Garro A, Mukhametzhanov MS, Sergeyev YD (2020) A
Simulink-Based Infinity Computer Simulator and Some Applica-
tions. In: 3rd international conference and summer school ’numer-
ical computations: theory and algorithms’, NUMTA 2019, Le
Castella, Crotone, Italy, June 15-21, 2019, pp 362–369. Springer,
Switzerland https://doi.org/10.1007/978-3-030-40616-5_31

Falcone A, Garro A, Mukhametzhanov MS, Sergeyev YD (2020) A
Simulink-based software solution using the Infinity Computer
methodology for higher order differentiation. submitted

Falcone A, Garro A, Taylor SJE, Anagnostou A (2017) Simplifying the
development of hla-based distributed simulations with the HLA
development kit software framework (DKF). In: 21st IEEE/ACM
international symposium on distributed simulation and real time
applications, DS-RT 2017, Rome, Italy, October 18–20, 2017, pp.
216–217. https://doi.org/10.1109/DISTRA.2017.8167691

Fiaschi L, Cococcioni M (2018) Numerical asymptotic results in game
theory using Sergeyev’s Infinity Computing. Int J Unconventl
Comput 14(1):1–25

Garro A, Falcone A, Chaudhry NR, Salah O, Anagnostou A, Tay-
lor SJE (2015) A prototype HLA development kit: results from
the 2015 simulation exploration experience. In: 3rd ACM con-
ference on SIGSIM-principles of advanced discrete simulation,
ACM SIGSIM PADS 2015, London, United Kingdom, June 10–
12, 2015, pp 45–46. Association for Computing Machinery Inc.
https://doi.org/10.1145/2769458.2769489

Garro A, Falcone A, D’Ambrogio A, Giglio A (2018) A model-driven
method to enable the distributed simulation of BPMN models.
In: 27th IEEE international conference on enabling technologies:
infrastructure for collaborative enterprises, WETICE 2018, Paris,
France, June 27–29, 2018, pp 121–126. Institute of Electrical
and Electronics Engineers Inc. https://doi.org/10.1109/WETICE.
2018.00030

GaudiosoM,GiallombardoG,MukhametzhanovMS (2018)Numerical
infinitesimals in a variable metric method for convex nonsmooth
optimization. Appl Math Comput 318:312–320

Iavernaro F, Mazzia F, Mukhametzhanov M, Sergeyev YD (2019)
Conjugate-symplecticity properties of Euler–Maclaurin methods
and their implementation on the Infinity Computer. Appl Numer
Math. https://doi.org/10.1016/j.apnum.2019.06.011

Iavernaro F, Mazzia F, Mukhametzhanov MS, Sergeyev YD (2020)
Computation of higher order Lie derivatives on the Infinity Com-
puter. submitted

IEEE Standard for Binary Floating-Point Arithmetic (1985)
ANSI/IEEE Std. 754–1985:1–20. https://doi.org/10.1109/
IEEESTD.1985.82928

Karris ST (2006) Introduction to Simulink with engineering applica-
tions. Orchard Publications, Newyork

MartinRC (2002)Agile software development: principles, patterns, and
practices. Prentice Hall, Upper Saddle River

MathWorks: Simulink home page (2019). https://www.mathworks.
com/products/simulink.html. Accessed 03 Dec 2019

Möller B, Garro A, Falcone A, Crues EZ, Dexter DE (2016) Promoting
a-priori Interoperability of HLA-Based Simulations in the Space
Domain: The SISO Space Reference FOM Initiative. In: 20th
IEEE/ACM international symposium on distributed simulation
and real time applications, DS-RT 2016, London, UK, September
21–23, 2016, pp. 100–107. Institute of Electrical and Electronics
Engineers Inc. https://doi.org/10.1109/DS-RT.2016.15

Möller B, Garro A, Falcone A, Crues EZ, Dexter DE (2017) On the
execution control of HLA federations using the SISO space ref-
erence FOM. In: 21st IEEE/ACM international symposium on
distributed simulation and real time applications, DS-RT 2017,
Rome, Italy,October 18–20, 2017, pp. 75–82. Institute ofElectrical
and Electronics Engineers Inc. https://doi.org/10.1109/DISTRA.
2017.8167669

Rizza D (2019) Numerical methods for infinite decision-making pro-
cesses. Int J Unconvention Comput 14(2):139–158

Sergeyev YD (2003) Arithmetic of Infinity. Edizioni Orizzonti Merid-
ionali, CS (2nd ed. 2013)

SergeyevYD (2010)Computer system for storing infinite, infinitesimal,
and finite quantities and executing arithmetical operations with
them. USA patent 7,860,914 (2010), EU patent 1728149 (2009),
RF patent 2395111

SergeyevYD (2011)Higher order numerical differentiation on the infin-
ity computer. Optimiz Lett 5(4):575–585

Sergeyev YD (2011) Using blinking fractals for mathematical mod-
elling of processes of growth in biological systems. Informatica
22(4):559–576

Sergeyev YD (2013) Solving ordinary differential equations by work-
ing with infinitesimals numerically on the infinity computer. Appl
Math Comput 219(22):10668–10681

Sergeyev YD (2016) The exact (up to infinitesimals) infinite perimeter
of the Koch snowflake and its finite area. Commun Nonlinear Sci
Numer Simul 31(1–3):21–29

Sergeyev YD (2017) Numerical infinities and infinitesimals: method-
ology, applications, and repercussions on two hilbert problems.
EMS Surveys Math Sci 4:219–320

Sergeyev YD (2019) Independence of the grossone-based infinity
methodology from non-standard analysis and comments upon log-
ical fallacies in some texts asserting the opposite. Foundations Sci
24(1):153–170

Sergeyev YD, Mukhametzhanov MS, Kvasov DE, Lera D (2016)
Derivative-free local tuning and local improvement techniques
embedded in the univariate global optimization. J Optim Theory
Appl 171(1):186–208

Sergeyev YD, Mukhametzhanov MS, Mazzia F, Iavernaro F, Amodio
P (2016) Numerical methods for solving initial value problems on
the infinity computer. Int J Unconvent Comput 12(1):3–23

123

https://doi.org/10.1109/DISTRA.2018.8600936
https://doi.org/10.1109/DISTRA.2018.8600936
https://doi.org/10.1109/WSC.2017.8247820
https://doi.org/10.1109/WSC.2017.8247820
https://doi.org/10.1109/SysEng.2017.8088302
https://doi.org/10.1109/SysEng.2017.8088302
https://doi.org/10.1109/SysEng.2018.8544399
https://doi.org/10.1109/SysEng.2018.8544399
https://doi.org/10.1007/978-3-030-40616-5_31
https://doi.org/10.1109/DISTRA.2017.8167691
https://doi.org/10.1145/2769458.2769489
https://doi.org/10.1109/WETICE.2018.00030
https://doi.org/10.1109/WETICE.2018.00030
https://doi.org/10.1016/j.apnum.2019.06.011
https://doi.org/10.1109/IEEESTD.1985.82928
https://doi.org/10.1109/IEEESTD.1985.82928
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://doi.org/10.1109/DS-RT.2016.15
https://doi.org/10.1109/DISTRA.2017.8167669
https://doi.org/10.1109/DISTRA.2017.8167669


Representation of grossone-based arithmetic in simulink for scientific computing

Sergeyev YD, Kvasov DE, Mukhametzhanov MS (2018) On strong
homogeneity of a class of global optimization algorithms work-
ing with infinite and infinitesimal scales. Commun Nonlinear Sci
Numer Simul 59:319–330

Venkatesh V, Thong JY, Chan FK, Hoehle H, Spohrer K (2020) How
agile software development methods reduce work exhaustion:
Insights on role perceptions and organizational skills. Inform Syst
J

Zhigljavsky A (2012) Computing sums of conditionally convergent and
divergent series using the concept of grossone. ApplMath Comput
218(16):8064–8076

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Representation of grossone-based arithmetic in simulink for scientific computing
	Abstract
	1 Introduction
	2 Background
	2.1 Infinity computing and representation of numbers
	2.2 MATLAB/Simulink

	3 A simulink-based solution for operating with the infinity computer
	3.1 Architecture
	3.2 Representation of grossnumbers in Simulink
	3.3 Functional blocks
	3.3.1 Arithmetic blocks module
	3.3.2 Elementary blocks module
	3.3.3 Utility blocks module


	4 Assessment and evaluation
	4.1 Benchmark functions
	4.2 Evaluation
	4.3 Exact higher-order differentiation

	5 Conclusion
	References




