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Abstract
We present a novel approach named Physics-based Residual Kriging for the statistical prediction of spatially dependent

functional data. It incorporates a physical model—expressed by a partial differential equation—within a Universal Kriging

setting through a geostatistical modelization of the residuals with respect to the physical model. The approach is extended

to deal with sequential problems, where samples of functional data become available along consecutive time intervals, in a

context where the physical and stochastic processes generating them evolve, as time intervals succeed one another. An

incremental modeling is used to account for both these dynamics and the misfit between previous predictions and actual

observations. We apply Physics-based Residual Kriging to forecast production rates of wells operating in a mature

reservoir according to a given drilling schedule. We evaluate the predictive errors of the method in two different case

studies. The first deals with a single-phase reservoir where production is supported by fluid injection, while the second

considers again a single-phase reservoir but the production is driven by rock compaction.

Keywords Physics-based modeling � Sequential design � Geostatistics � O2S2 � Hydrocarbon reservoir � Production forecast

1 Introduction

Functional Data Analysis (FDA, Ramsay 2005) is an area

of statistics developed in the recent years to deal with

infinite-dimensional data, such as functions and curves. In

many applications, functional data are also geo-referenced,

i.e. observed at specific locations within the spatial domain

of interest. In these cases, the spatial association among

functional data has to be modeled. To deal with functional

data with a spatial dependence, a number of geostatistical

methods for modeling and prediction of scalar data

(Cressie 2015) have been extended to functional data,

leading to functional Ordinary Kriging and functional

Universal Kriging predictors (Caballero et al. 2013;

Menafoglio et al. 2013, 2016). These techniques belong to

the more general framework of Object Oriented Spatial

Statistics (O2S2, Menafoglio and Secchi 2017, 2019),

which allows for the analysis of general types of object

data (e.g., functional, distributional, or Riemannian data)

by considering them as points of an appropriate mathe-

matical space (e.g., Hilbert space or Riemannian manifold),

through a geometrical and topological approach, see, for

instance, Menafoglio et al. (2014).

In many processes over spatial domains, not only data

are observed, but also prior information about the phe-

nomenon under study is available in terms of a physical

model, often formulated through Partial Differential

Equations (PDEs). These physical models can be used to

predict a functional response at any location of the domain,

the spatio-temporal evolution of the phenomenon being

precisely modeled through the governing physical laws,

such as mass or energy conservation. Of course, one may

expect a discrepancy between these predictions and the

observations, due to many factors such as over-simplified

& Riccardo Peli

riccardo.peli@polimi.it

Alessandra Menafoglio

alessandra.menafoglio@polimi.it

Marianna Cervino

marianna.cervino@gmail.com

Laura Dovera

laura.dovera@eni.com

Piercesare Secchi

piercesare.secchi@polimi.it

1 MOX, Department of Mathematics, Politecnico di Milano,

Piazza L. Da Vinci 32, Milano 20133, Italy

2 Eni - S.p.A, Via Emilia 1, San Donato Milanese 20097, Italy

123

Stochastic Environmental Research and Risk Assessment (2022) 36:3063–3080
https://doi.org/10.1007/s00477-022-02180-8(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-8952-8404
http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-022-02180-8&amp;domain=pdf
https://doi.org/10.1007/s00477-022-02180-8


model assumptions, uncertain model parameters, numerical

discretization errors and aleatory variability (Quarteroni

and Valli 1994; Smith 2013). Still, the physical model can

provide meaningful information and, when taken into

account, can potentially lead to better predictions than a

pure data-driven model.

In the recent years, a number of authors presented

approaches which exploit physical models to improve the

modeling of spatial dependent data. A notable example is

the so-called regression with differential regularization

(Arnone et al. 2019; Azzimonti et al. 2015; Bernardi et al.

2017), which models spatially dependent data by means of

a spatial regression penalized with a differential operator,

which in turn expresses the physical information on the

problem under study. In this case, the differential operator

is used to support predictions in regions sparsely observed;

the obtained predictions are typically biased towards the

physical model solution. Another approach is illustrated in

Chen and Baker (2019); Rodat et al. (2018); Yang et al.

(2018, 2019), where the physical model is used to improve

estimations of the spatial dependence among the (scalar)

data, especially when few observations are available. In

this case, the spatial covariance is estimated from multiple

physical model realizations, thus avoiding the fit of a

parametric model to empirical variograms or covariograms.

Constantinescu and Anitescu (2013) propose a way to

derive valid covariance models which incorporates physi-

cal relations between the variables in a multivariate setting.

In this broad framework, none of the works presented in the

literature specifically deals with problems where the

response variables are functional objects, sequentially

observed over time.

As a first element of innovation, we here propose an

original approach, that we term Physics-based Residual

Kriging (Phy-RK) for functional data, which incorporates

the physical model for the phenomenon in a functional

geostatistical setting. Having collected the observation of

the process at a set of locations, we decouple the observed

functional process in a physically-driven term and in a

stochastic residual, and accordingly model the latter by

means of functional Universal Kriging. We show that this

method, beside being unbiased, can lead to substantial

improvements, in terms of prediction error, when com-

pared to the sole physical model or to the purely data-

driven Kriging approach. Furthermore, we show that the

information from the physical model can be effectively

used also in the residuals modeling, through the inclusion

of covariates derived from the physical model solution.

As a key additional element of novelty, we formulate the

Phy-RK approach for sequential problems, namely for

problems where sets of functional observations are

sequentially observed along a number of time intervals.

Here, the experimental design proceeds incrementally,

including at each time interval a new set of observed

locations, which are added to the locations observed at

previous intervals. In this case, our methodology aims to

address problems where (i) the sequential design itself

implies a dynamic change in the process generating the

data, and, consequently, (ii) repeated observations at the

same locations are generated by differing random fields

when collected at different time intervals. Due to the

intrinsic dynamical nature of the problem, we develop an

incremental formulation of the Phy-RK predictor which not

only accounts for the residuals between the physics-based

drift and the latest observations (first-order residuals), but

also for the residuals between the previous predictors and

the actual observations (higher-order residuals), allowing

for a dynamic correction of Kriging predictions.

Starting from the work of Kennedy and O’Hagan

(2001), a similar approach has been developed under the

name of model calibration. In this framework, the param-

eters of a computational simulation (physical model) are

estimated (calibrated), by jointly modeling its residual with

a Gaussian random field. Both Bayesian (Kennedy and

O’Hagan 2001) and frequentist (Tuo and Wu 2015) para-

digms have been developed. In our Phy-RK approach, we

adopt a different point of view, assuming that a physical

model is already available, with parameters calibrated

independently of the residual modelization. Furthermore,

we here adopt the trace-Universal Kriging (Menafoglio

et al. 2013) predictor for the residual modeling, avoiding a

basis expansion approach for functional data, as in Bayarri

et al. (2007); Higdon et al. (2008), which may result in

very high-dimensional analyses when the basis dimension

increases. Another element of novelty with respect to this

literature stream relies on the sequential analysis of the

prediction residuals, which is key to provide an effective

modeling framework for evolving random fields. Indeed,

our framework allows one to deal with problems where

observations become available in a sequential manner, as

in Wang et al. (2019), but, more importantly, it can also be

used when it is precisely the random field generating the

data that evolves along the sequential sampling of the data.

The latter is the core problem which we illustrate in this

work.

The Phy-RK predictor has a broad applicability when-

ever the phenomenon under study exhibits spatial depen-

dence and prior information is available through a physical

model, for instance in environmental sciences, and more

specifically in meteorology and pollution modeling (Web-

ster and Oliver 2007), and in public health problems

(Diggle and Giorgi 2019). In this work, we embed the

formulation of Phy-RK within the problem of predicting

production rates, measured in STB/day, of producer wells

operating in a mature conventional reservoir. Here, we aim

at forecasting production rates of wells yet to be drilled at a
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set of locations in the reservoir, based on the observed past

production of the wells which were active in previous time

intervals. Production forecast is necessary to quantify

investments, e.g. number and type of new wells, and to

optimize field operations.

Unlike unconventional shale gas reservoirs, in which a

pure geostatistical method has been successfully applied

(Menafoglio et al. 2015; Xi and Morgan 2019), the appli-

cation of such techniques for production forecast of wells

yet to be drilled in a conventional reservoir has not been

investigated so far. The main reason is that drilling a new

well perturbs the pressure of the whole reservoir, changing

the random field realization observed through the produc-

tion rates of previously operating wells. Applying a pure

geostatistical method, based on functional Kriging, would

not appropriately model this dynamical nature of the pro-

cess. For instance, if more than one wells were open in the

successive time interval, a purely geostatistical approach

would not take into account their interaction (e.g., if two

wells were drilled close to each other, one would expect

lower productions, due to their interaction, than placing a

single well). This phenomenon is somehow negligible in an

unconventional reservoir, as in this type of systems the

perturbation happens at a local scale due to their peculiar

rock properties. For these reasons, the standard approach to

production forecast in conventional systems is the reservoir

numerical simulation (Aziz and Settari 1979), where the

reservoir domain is discretized and the governing equations

of fluid flow in porous media are solved. Surrogate models

can be developed allowing one to avoid setting many

parameters, such as porosity and permeability of each cell

of a fine reservoir discretization, and long execution times

even on modern computational infrastructures. Some

examples are the Capacitance Resistance Models (CRM,

Wanderley de Holanda et al. 2018), the Interwell Numer-

ical SImulation Model (INSIM, Zhao et al. 2015) and the

recently developed FlowNet (Kiærr et al. 2020). In this

context, Phy-RK could exploit, in a data-driven framework,

a surrogate model, i.e. a physical model which is charac-

terized by fewer parameters and is less computationally

demanding than a full-physics 3D reservoir simulation.

Furthermore, our Phy-RK methodology overcomes the

above-mentioned limitations due to the static nature of a

pure geostatistical approach, as the wells drilling schedule

is taken into full account by the physical model.

We present two applications of Phy-RK to the problem

of forecasting production rates. Both concern single phase

reservoirs; for the first one, production is supported by fluid

injection, whereas, for the second one, by rock compaction.

In both cases, wells are incrementally drilled in the reser-

voir according to a schedule which consists of eight time

steps. At each step, the aim is to predict the production

rates of the new wells drilled in that step as well as the

future production rates of those already operating, based on

the production data observed up to the previous step at the

wells already operating. We shall show that the Phy-RK

approach leads to substantially lower prediction errors than

a pure geostatistical method, which will thus be shown to

be inappropriate for the prediction of production rates in a

conventional reservoir.

The work is organized as follows. Section 2 introduces

the mathematical formulation of Phy-RK predictor, with a

focus on its sequential formulation. In Sect. 3, we adapt the

general approach of Phy-RK to the prediction of produc-

tion rates in a mature reservoir. Section 4 presents a first

application of Phy-RK for the prediction of liquid pro-

duction rates in a single-phase reservoir supported by liq-

uid injection. Section 5 presents a second application of

Phy-RK for the prediction of liquid production rates sup-

ported by rock compaction. Finally, Sect. 5.3 outlines

conclusions and considerations for future development and

applications.

2 Physics-based Residual Kriging predictor
for functional data

2.1 Formulation of physics-based Residual
Kriging

Consider a probability space ðX;F ;PÞ and a (functional)

random object Y : X ! H, where H is a separable Hilbert

space, endowed with the norm k � k induced by the scalar

product h�; �i. We define the random field

fYs; s 2 D � Rdg;

where s indicates the spatial location, included in the

spatial domain D, associated with the corresponding ran-

dom function Ys. We assume that, for each s,

Ys 2 L2ðX;HÞ, that is
R
X kYsk2

PðdxÞ ¼ E kYsk2
h i

\1.

Our goal is the prediction of the functional variable at

location s0, having observed the random field at locations

fs1; . . .; sng.

We suppose that the phenomenon under investigation

can be described by means of a deterministic model, able to

approximately predict Ys. We call these predictions F sðhÞ,
where h 2 H � Rm are the model parameters, and we

decompose the functional variables Ys as

Ys ¼ F sðhÞ þ X s;

being X s the stochastic residual from the deterministic

model prediction.

In this work, we focus our attention on physics-based

models, mathematically formulated by means of Partial

Differential Equations (PDEs), which express physical
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principles, such as mass or energy conservation, into the

mathematical relationship between partial derivatives of

functions (for an introduction see, e.g., Evans 2010; Salsa

2015). In particular, we formulate the physical model as the

differential problem

LðhÞuðhÞ ¼ gðhÞ in D; ð1Þ

where uðhÞ is the solution, LðhÞ is a differential operator

and gðhÞ is the forcing term, which all depend on the vector

of parameters h. The determination of these parameters is

out of the scope of this work, although our method can

partially correct their misspecification (as discussed in

Ssect. 4.4). We assume that problem (1), coupled with

appropriate boundary conditions on the boundary of the

domain D, oD, and, if time-dependent, with an initial

condition, is well-posed. In particular, we require that

problem (1) admits a unique weak solution uðhÞ 2 V for

each h 2 H, where V is an appropriate Hilbert space. The

physical model prediction is thus given by

F sðhÞ ¼ FsuðhÞ; ð2Þ

where Fs : V ! H is a continuous bounded operator which

maps the PDE solution into the physical model prediction

at location s 2 D. Although we restrict ourselves to PDE

models, this is not a limitation of our approach and more

general models can be considered.

We combine the deterministic model (2) with a geo-

statistical model for the residual random field fX s; s 2
D � Rdg: Indeed, the residual random field might exhibit

spatial dependence, which results from the spatial structure

that was already present in the random field Ys but not

completely captured by the physical model. This can be

due, for instance, to simplified assumptions of the physical

model, to numerical discretization errors in the PDE

solution or to the presence of additional influent variables

not included in the physical model. We point out that, in

the residual part, physics can still play a role, which

however is modeled following a geostatistical approach.

In this work, we rely on O2S2, with particular reference

to Universal Kriging (UK) for functional observations

(Menafoglio et al. 2013). This geostatistical framework

allows one to predict the (functional) residual at unsampled

locations within the domain, by modeling the spatial

dependence of the residual field, then building, on this

basis, the Universal Kriging predictor. We thus define the

expected value ms of the residual random field as

ms ¼
Z

X
X sðxÞPðdxÞ; s 2 D;

the integral being defined in the Bochner sense, and the

global covariance function (also called trace-covariogram)

C : D� D ! R, as

Cðsi; sjÞ ¼ CovðX si ;X sjÞ ¼ E hX si � msi ;X sj � msji
� �

:

Note that the covariance function C allows one to quantify

the spatial dependence between two elements of the field

corresponding to two locations in the spatial domain.

Recall that, in a functional setting (Menafoglio et al. 2013),

a random field fX s; s 2 D � Rdg is said to be globally

second-order stationary if E½X s� ¼ m for all s 2 D and

CovðX si ;X sjÞ ¼ E½hX si � m;X sj � mi� ¼ Cðhi;jÞ for all

si; sj 2 D, with hi;j ¼ si � sj (i.e. the separating vector

between two locations). Furthermore, a second-order sta-

tionary random field is isotropic if CovðX si ;X sjÞ ¼ Cðhi;jÞ,
where hi;j ¼ khi;jk is the distance between si and sj in

D. Although the isotropy assumption can be easily weak-

ened, we stick to it for ease of notation.

We assume that the random field fX s; s 2 D � Rdg can

be decomposed as the sum of a non-stationary mean and a

stationary residual, i.e.

X s ¼ ms þ ds; ð3Þ

where ms is the mean term (a.k.a. drift) and ds is a zero-

mean, second-order stationary and isotropic residual ran-

dom field. For the mean term, we assume a linear model

ms ¼
XL

i¼0

blflðsÞ; ð4Þ

where f0 is the intercept (i.e, f0ðsÞ ¼ 1 for all s 2 D),

f1ðsÞ; . . .; fLðsÞ 2 R are known spatially dependent covari-

ates and b0ð�Þ; . . .; bLð�Þ are functional parameters in H,

which do not depend on the spatial location. The model (3)

could be generalized by considering a non-stationary

residual random field ds. However, the estimation of the

covariance function in this case would be impractical in

presence of few observations. A possible solution is rep-

resented by the Physics-informed Kriging (Yang et al.

2018), where the covariance function is estimated from

stochastic simulations of a physical model.

In practice, having collected n observations

fX s1
; . . .;X sng of the residual random field at locations

fs1; . . .; sng—obtained as differences between the observed

fYs1
; . . .;Ysng and the purely physics-based predictions

fF s1
; . . .;F sng – our goal is the prediction of the variable

Ys0
at the unsampled location s0 in D. It is computed as the

sum of the physical model prediction F s0
and the residual

X̂ s0
predicted by Universal Kriging, which is the best linear

unbiased predictor, of the form:

X̂ s0
¼
Xn

i¼1

k̂iX si ; ð5Þ

where the optimal weights ðk̂1; . . .; k̂nÞ solve the opti-

mization problem:
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k̂1; . . .; k̂n
� �

¼ arg min
k1;���;kn2R

Var
Xn

i¼1

ki X si � X s0

 !

s.t. E
Xn

i¼1

ki X si

" #

¼ ms0
:

ð6Þ

Thus, the weights are chosen by minimizing the variance of

the prediction error, subject to the (uniform) unbiasedness

constraint. Under the assumption that the covariance

function C is known, the optimization problem (6) can be

equivalently formulated in terms of the following linear

system

Cð0Þ � � � Cðh1;nÞ f0ðs1Þ � � � fLðs1Þ
..
. . .

. ..
. ..

. ..
. ..

.

Cðhn;1Þ � � � Cð0Þ f0ðsnÞ � � � fLðsnÞ
f0ðs1Þ � � � f0ðsnÞ 0 � � � 0

..

. . .
. ..

. ..
. ..

. ..
.

fLðs1Þ � � � fLðsnÞ 0 � � � 0

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

k1

..

.

kn
l0

..

.

lL

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

¼

Cðh0;1Þ
..
.

Cðh0;nÞ
f0ðs0Þ
..
.

fLðs0Þ

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

;

ð7Þ

where ðl0; � � � ; lLÞ are the Lagrange multipliers associated

with the L linear constraints derived from the unbiasedness

constraint in (6), see Menafoglio et al. (2013) for further

details. Solving the linear system, we obtain the optimal

weights and, thus, the corresponding prediction X̂ s0
.

Eventually, we compute the Physics-based Residual Krig-

ing (Phy-RK) prediction for the functional variable Ys0
as

Ŷs0
¼ F s0

ðhÞ þ X̂ s0
: ð8Þ

In applications, one usually does not know the trace-co-

variogram C and thus needs to estimate it from the

observations. This is done by estimating the trace-semi-

variogram cðhi;jÞ ¼ Cð0Þ � Cðhi;jÞ, in two steps. Firstly, a

method-of-moments estimator is used (i.e., a binned trace-

variogram, see, e.g., Menafoglio et al. 2013), then a valid

parametric variogram model (e.g., spherical, Matérn, see

Cressie 2015) is fitted by optimizing its parameters in, e.g.,

a least-squares sense. This procedure is iterated until con-

vergence, as one needs to compute the residuals ds having

estimated the coefficients b0; . . .; bL through Generalized

Least Squares, as explained in Menafoglio et al. (2013).

Finally, the trace-covariogram is easily obtained from the

trace-semivariogram similarly as in classical geostatistics.

Note that, in the setting of our work, the spatial dependence

is estimated from the observations and not from multiple

realizations of the physical model, as in Chen and Baker

(2019); Rodat et al. (2018); Yang et al. (2018), because it

is referred to the residuals from the physics model pre-

dictions (2). This is compatible with the simplified nature

of our physical model (1), and allows us to reduce the

overall computational burden of the procedure, as one

avoids to repeatedly solve the PDE used to model the

phenomenon under study.

2.2 Residual Kriging for sequential predictions

In this subsection, we extend the general Physics-based

Residual Kriging method presented in Sect. 2.1 for tack-

ling the problem of sequential prediction. In this context,

let us consider the whole time domain ½t0; tNa
¼ T � and

subdivide it into Na activation time intervals, indicating the

subintervals with ai ¼ ½ti�1; tiÞ, for i ¼ 1; . . .;Na,

[Na

i¼1ai ¼ ½t0; T �. We assume that, in each interval ai, a

realization of the functional-valued random field

fYs;ai ; s 2 D � Rdg, which depends on the interval, has

been sampled at a set of locations Wi ¼ sij

n oni

j¼1
in the

spatial domain D. From now on, we omit the apex i of the

locations, implicitly assuming that they belong to the set Wi

specified by the activation interval ai. Furthermore, each

random field is characterized by a covariogram Cai , which

can vary among different intervals. This mathematical

setting describes, for instance, the prediction of production

rates in a conventional reservoir. Indeed, we observe the

production rates of currently operating wells in the time

interval ai, but when additional wells are drilled, the whole

reservoir is perturbed, leading to a possibly different ran-

dom field in the next interval aiþ1.

Given a location s0 sampled during the interval ai with

i� 2, our goal is to predict the corresponding functional

observation, given the functional data sampled in the

interval ai�1. We embed the general Phy-RK predictor (8)

in this setting, by defining the predictor

Ŷs0;ai ¼ F s0;aiðhÞ þ X̂ s0;ai ; ð9Þ

which is obtained as the sum of the physics-based predic-

tion F s0;aiðhÞ in the interval ai with wells configuration Wi,

and the residual predicted by functional Universal Kriging

(5). In particular, the residual predictor has the following

form

X̂ s0;ai ¼
X

j:sj2Wi�1

k̂j;aiX sj;ai�1
; ð10Þ

where the optimal weights k̂j;ai are found by solving
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problem (6) based on the information available at the latest

step (i.e., X sj;aj�1
; sj 2 Wi�1). Note that, in general, the

intervals ai and ai�1 may have different lengths. This

implies that, if interval ai�1 is longer than interval ai, the

prediction X̂ s0;ai will be defined on the whole interval ai. If

this is not the case, the prediction X̂ s0;ai will be defined

only on the the initial part of the interval ai (i.e., on an

interval domain whose length coincides with that of ai�1).

Moreover, we point out that the residuals at the locations

that were observed in ai�1 are predicted precisely as the

observed residuals in the previous time interval, i.e.,

X̂ sj;ai ¼ X sj;ai�1
sj 2 Wi�1;

due to the interpolating property of Kriging. However, note

that, in general, the Phy-RK prediction Ŷsj;ai will not

coincide with the response Ysj;ai�1
observed in the previous

interval, as the physics-driven prediction F s0;aiðhÞ evolves

along the intervals. In practice, to build predictor (10), we

would need to estimate the covariogram Cai from the

residuals of interval ai, which however are not available at

the beginning of interval ai. Therefore, we employ the

estimate obtained with residuals observed in interval ai�1,

implicitly assuming that the covariogram does not abruptly

vary between consecutive intervals. In fact, the viability of

using the predictive model (9) in a sequential framework

itself depends on the stability of the process over time—

both in terms of the physics-based model and residuals

field.

2.3 Physics-based Residual Kriging
with sequential update

If the residuals among consecutive activation intervals

exhibit a strong variation, due for instance to the strong

evolutionary nature of the considered problem (as the one

illustrated in Sect. 5), predictor (9) might be unable to

adapt to the dynamic of the process itself. In this case, we

may introduce additional terms, dynamically updated, to

further correct the predictive model based on the misfit

between observations and predictions in the previous

activation interval. We illustrate the construction of such

corrective terms in the first activation time intervals, the

following intervals representing just a straightforward

generalization.

Predictor (9) can be used to produce predictions starting

from the second interval a2, as one needs to observe the

residuals in a1 to be able to predict them in a2. If we now

move to the interval a3, we can predict two residuals: (i)

the residuals from the physical model X ð1Þ
sj;a2

, and (ii) the

residuals from the predictive model used to carry out the

forecast at the previous step, i.e, the one formulated in (9).

These latter residuals, denoted as X ð2Þ
sj;a2

, are informative on

the possible misfit of the latest available predictive model

which may represent repeatable effects potentially

observable in successive time instants. In fact, the second-

order residuals X ð2Þ
sj;a2

can be used to update the predictions

in the third activation interval, correcting them by the

observed misfits in the second interval.

Thus, for third activation interval, we can build a cor-

rected predictor

Ŷs0;a3
¼ F s0;a3

þ X̂ ð1Þ
s0;a3

þ X̂ ð2Þ
s0;a3

;

where the two predicted residuals X̂ ð1Þ
s0;a3

and X̂ ð2Þ
s0;a3

are

obtained through functional Kriging of the latest available

observations of first- and second-order residuals, i.e.,

X̂ ð1Þ
s0;a3

¼
X

j:sj2W2

k̂
ð1Þ
j;a3

X ð1Þ
sj;a2

;

X̂ ð2Þ
s0;a3

¼
X

j:sj2W2

k̂
ð2Þ
j;a3

X ð2Þ
sj;a2

;

with X ð1Þ
sj;a2

¼ Ysj;a2
� F sj;a2

and

X ð2Þ
sj;a2

¼ Ysj;a2
� F sj;a2

� X̂ ð1Þ
sj;a2

. In practice, one can decide

how complex the predictive model should be (i.e., how

many residuals to include): (i) no residuals (Phy-RK-0), i.e.

the prediction is determined by the physical model only

(the only possible predictive model at step a1), (ii) one

residual (Phy-RK-1), correcting the prediction of the

physical model with first-order residuals (the complete

predictive model at step a2) or (iii) two residuals (Phy-RK-

2), further correcting the predictive model in a2 with sec-

ond-order residuals. This set of choices is depicted in

Fig. 1, where these possibilities at a generic location s0 are

shown. In the first interval, the only possible prediction is

F s0;a1
, i.e., the physical model prediction; no residuals can

be used (Phy-RK-0, green line). At the end of the first

interval, having measured the functional observation in s0,

Ys0;a1
, one can note, for instance, that the physical model

actually overestimates the response in a1, producing a

(positive) residual (represented as green arrows). On this

basis, one can choose whether to correct the predictive

model based on the physics by including the first order

residuals. This would yield a corrected prediction (Phy-

RK-1, blue line). In the third interval, one can choose

between the physical model (Phy-RK-0, green line), one

residual (Phy-RK-1, blue line) and two residuals (Phy-RK-

2, dark yellow line) predictions, based on the observed

misfit between the observations and the two possible pre-

dictive models at the previous step (Phy-RK-0, or Phy-RK-

1). These residuals are represented as colored arrows

(green for Phy-RK-0, blue for Phy-RK-1).
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It is then clear that, at each interval, an additional

residual is observed. Indeed, at the end of the i-th interval,

one observes residuals up to order i, although up to (i� 1)

residuals could be used for the prediction in the same

interval, because the residuals prediction at interval ai was

based only on the residuals available at the end of ai�1.

Note also that the residuals used for prediction at the i-th

interval are those available at the latest interval (i� 1), and

not those at previous intervals. Indeed, fX s1
; . . .;X sng are

here interpreted as the residuals of the predictive models

which can be used to perform prediction, rather than the

residuals of the actual previous predictions. This is con-

sistent with the dynamic modeling of the system, according

to which previous observations of the residuals become

soon obsolete as the schedule proceeds, and thus, poorly

informative due to the phenomenon dynamics.

Iterating the same argument in the following intervals by

adding higher-order residual terms as soon as they become

available, the predictor at the i-th step can be defined as

Ŷs0;ai ¼ F s0;ai þ
XKi

k¼1

X̂ ðkÞ
s0;ai

; ð11Þ

where Ki 	 i� 1 is the number of residual terms modeled

in the i-th activation interval. Note that, if no residual terms

(hereafter denoted by Ki ¼ 0) are taken into account, the

prediction coincides with that generated by the sole phys-

ical model. Each residual is predicted as

X̂ ðkÞ
s0;ai

¼
X

j:sj2Wi�1

k̂
ðkÞ
j;ai
X ðkÞ

sj;ai�1
;

where the observed residuals are given by

X ðkÞ
sj;ai�1

¼ Ysj;ai�1
� F sj;ai�1

�
Xk�1

l¼1

X̂ ðlÞ
sj;ai�1

:

The optimal weights k̂
ðkÞ
j;ai

are found by solving the Kriging

system (7), in which the covariogram Cai is estimated from

the residuals observed in the previous interval. Thus, it can

differ among different time intervals and different residual

terms.

The parameter Ki is chosen by selecting the number of

residuals which produces the lowest average error in the

previous interval. This procedure allows us to avoid over-

fitting, as, in a sequential framework, the choice of Ki in ai
is based on a test set disjoint from the available observa-

tions (i.e., the observations in the interval ai�1). Thus, Ki

might vary among the intervals, as we further discuss in

Sects. 4 and 5.

3 Prediction of production rates in a mature
reservoir

In this work, we apply the Physics-based Residual Kriging

methodology illustrated in Sect. 2 for the prediction of

liquid production rates of wells operating in a mature

reservoir. In particular, having observed the production

rates, which are time-dependent functional data, of some

operating wells during a certain time interval, our goal is to

forecast the production rates of existing and newly drilled

wells in the subsequent time interval.

Referring to the mathematical formulation presented in

Sect. 2.3, we thus indicate with Ys;ai the production rate

Observation Physics prediction One residual prediction Two residuals prediction

First interval Second interval Third interval

Fig. 1 Graphical illustration of

model (11) in the first three

activation time intervals.

Arrows represent the observed

residuals in each time interval,

computed with respect to the

model of the corresponding

color
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over time of a well placed at location s 2 D operating in

interval ai, and with F s;aiðhÞ the production rate predicted

by a physical model suitable for the specific application, as

those described in Sects. 4.2 and 5.2. Besides the physical

parameters, the vector h includes the wells drilling sched-

ule. We assume that wells are open or closed in Na time

instants, ðt0; . . .; tNa�1Þ, and, within any time interval

ai ¼ ½ti�1; tiÞ, for i ¼ 1; . . .;Na, the well configuration does

not change. Wi is the set of locations of the active pro-

ducers in the interval ai.

In the context of a mature field, historical data are

abundant, making possible to exploit spatial dependence

among production rates in the prediction step. We present

two applications in Sects. 4 and 5. In both cases, we aim to

predict the production rates of a single-phase reservoir.

However, in the first case the production is driven by

injection, whereas in the second case the production is

driven by rock compaction.

3.1 Governing equations of single-phase flow
in a reservoir

We present the general equation for single-phase in a

porous medium, which provides the basis for the physical

models used in the two test cases described in Sects. 4

and 5. A petroleum reservoir is a sub-surface region con-

taining hydrocarbons trapped in porous rocks. Although a

reservoir usually contains water, oil and, depending on the

temperature and pressure conditions, gas, in this work we

restrict our analysis to single-phase isothermal flow con-

ditions where production occurs because fluid is injected in

the reservoir or because a combination of fluid expansion

and rock compaction provides the necessary energy, see

Dake (1978) for a review of these mechanisms. Neglecting

poromechanics coupling, a single phase fluids flow in the

reservoir is modeled according to the mass conservation

PDE

�r � ðquÞ � ~m ¼ o

ot
ð/qÞ;

where q ¼ qðpÞ is the mass density of the fluid, / ¼ /ðpÞ
is the porosity, p is the pressure, u is the Darcy’s velocity

which can be related to fluid pressure, according to Bear

(2013), by the Darcy’s equation

u ¼ � 1

l
k � rp; ð12Þ

where l ¼ lðpÞ is the fluid viscosity and k is the perme-

ability tensor, which is a local rock property that measures

the ability of the fluid to flow through it. Combining the

two equations we get the pressure equation

r � q
l
k � rp

� �

� ~m ¼ o

ot
ð/qÞ: ð13Þ

Solving Equation (13) for pressure requires the definition

of a thermodynamic model, q ¼ qðpÞ, and a compaction

model, / ¼ /ðpÞ. These closure models depend on rock

and fluid characteristics and are, thus, case-specific. Then,

the time evolution of the fluid can be simulated provided

that initial and boundary conditions are defined. In this

work, we assume, as initial conditions, the equilibrium

state of the reservoir before production and, as boundary

conditions, that our reservoir is completely sealed from the

rest of the subsurface. Furthermore, the mass source rate ~m

can be written as the sum of the contributions of the Nw

wells, i.e. ~m ¼
PNw

j¼1 ~mjðtÞdðs� swj Þ, where dðsÞ is the

Dirac’s function, and swj 2 D, ~mjðtÞ are the positions and

the mass rate produced/injected at time t at the j-th well.

We assume that, in the development of the field, new wells

can be drilled or existing wells can be closed in the

reservoir.

The solution of equation (13) can be numerically com-

puted under specific initial and boundary conditions and

proper closure relation using a general purpose numerical

simulator, such as OPM (Flemisch et al. 2011) or

ECLIPSE (Schlumberger 2019), which essentially follows

the techniques described in Aziz and Settari (1979); Lie

(2019); Peaceman (1977): finite volume discretization of

mass conservation equations on hexaedrons, fully implicit

time-marching scheme for average fluid properties (cell

pressure values) and well models based on the Peaceman’s

formulation (Peaceman et al. 1983) which links inflow/

outflow rates, cell pressure and bottom-hole fluid pressure

pwf .

4 Single phase flow driven by injection

In this first test case, we consider a single-phase flow in a

reservoir, in which the production is driven by fluid

injection. Albeit being not realistic in the context of

hydrocarbon recovery, as the liquid production is usually

not driven by the injection of the same fluid, this situation

can appear in the context of groundwater aquifer man-

agement (Jakeman et al. 2016) and it allows us to show the

effectiveness of our approach in a relatively simple test

case.

4.1 Dataset description

In order to ensure full disclosability, we analyze the pro-

duction data produced by a synthetic reservoir simulated

using OPM. The reservoir simulator OPM is employed
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only for the data generation and it does not play any role in

the predictive model. Hereafter, we describe the charac-

teristics of the synthetic reservoir in terms of geometry,

fluid properties and well schedule. We consider a reservoir

of dimensions 25600ft, 25600ft and 50ft along x-axis, y-

axis and z-axis respectively, discretized with 128 � 128 �
1 cells, whose dimensions are 200ft, 200ft and 50ft,

respectively. We generate the reservoir porosity /0 as the

logistic transformation of a realization of a random field

with isotropic spherical variogram with range R ¼ 4000 ft,

sill r2 ¼ 0:1 and zero nugget, which was linearly scaled in

the range [0.1, 0.3]. We build the permeability tensor k as

diagonal with components kx ¼ ky ¼ k, where k, expressed

in milliDarcy, is obtained as log k ¼ log 40 þ 5ð/0 � 0:1Þ.
The resulting porosity and permeability fields are

reported in the supplementary material in Figure S1. In this

case the compaction model is simply / ¼ /0½1 þ crockðp�
prockÞ� while the water density is q ¼ q0½1 þ cwðp� pwÞ�.
More specifically, crock ¼ 9:8141 � 10�7 psi�1, cw ¼ 2:74 �
10�6 psi�1, prock ¼ 5801:51 psi and pw ¼ 3118:3 psi. Fluid

viscosity l is set to l ¼ 0:39851 cP. A total number of 256

injectors and 225 producers are drilled in the reservoir in

Na ¼ 8 activation time intervals of equal length. During

each activation instant ti ¼ 0; . . .; 7, a group of injectors

and producers is drilled, adding them to the already oper-

ating wells. The wells are placed according to a five-spot

pattern, and their activation schedule is shown in Fig. 2.

We impose a bottom hole pressure of 3000 psi for pro-

ducers and of 5000 psi for injectors. The reservoir was

implemented in OPM, obtaining the liquid production rates

shown in Fig. 2.

4.2 Physical model

We now describe the physical model which shall be

employed for this test case, analogously to Aziz and Settari

(1979); Peaceman (1977). Even though fluid and rock in

the reference model simulated using OPM are compress-

ible, in the logic of our method we implement an approx-

imate solution where fluid and rock are incompressible, so

that q is constant and / does not play any role. Thus,

equation (13) reduces to

r � 1

l
k � rp

� �

¼ ~m=q ¼ q in D

onp ¼ 0 on oD

8
<

:
; ð14Þ

which can be seen as a conservation equation for the fluid

volume at reservoir conditions. The boundary condition

ensures zero net flow through the reservoir boundaries.

Equation (14) is solved by means of a finite volume

discretization technique (Aziz and Settari 1979). We

employ a two-dimensional uniform grid, which consists of

rectangular blocks of dimensions ðDx;DyÞ and we indicate

with H the reservoir thickness. We use the same spatial

discretization as the reservoir simulator described in

Sect. 4.1, thus ðDx;DyÞ ¼ ð200ft; 200ftÞ and H ¼ 50ft. The

numerical method results in solving a linear system of the

form

Ap ¼ b; ð15Þ

where A is a pentadiagonal matrix, p contains the unknown

pressure numerical approximation in each block and b is

the right-hand side which is zero everywhere except for the

elements corresponding to blocks containing a well. Details

are given in the supplementary material, Section S1. The

linear system (15) gives, in each activation interval, an

approximation p of the reservoir pressure p. Then, the

prediction F s0;aiðhÞ is given by (14), where, with reference

to equation (2), uðhÞ is approximated by the vector p and Fs

is the Peaceman’s well model (Peaceman et al. 1983)

applied to the approximated pressure p in the well location.

The model parameters h are the permeability tensor k, the

fluid viscosity l, the active wells locations swj , the wells

connection factors Tw and the bottom hole pressures pbhp
w .

In this test case, physical model predictions F s0;ai are

constant in the whole activation interval, being equation

(14) time-independent.

4.3 Results and discussion

We now apply Phy-RK for the prediction of the liquid

production rates simulated as described in Sect. 4.1,

employing the physical model described in Sect. 4.2. For

each activation phase, we compute the physical model

predictions solving equation (14). The residuals are then

predicted based only on the residuals of the previous

activation interval according to model (11). We point out

that, for each interval, we ignore the initial part of the data,

i.e. the part which connects zero to the first observed value

in the interval, as it is due only to the linear interpolation

we perform on the simulated data to obtain a uniform time

sampling.

We measure the relative error E between the observed

data Ys0;ai and the prediction Ŷs0;ai in the activation interval

ai as

Ei ¼
R
ai
jYs0;ai � Ŷs0;ai jR

ai
jYs0;ai j

:

The relative error Ei is dimensionless and expresses the

cumulative absolute difference between the observed and

the predicted rates, normalized by the total cumulative

observed production.

We compare four approaches derived from the general

predictor (11). The first one is the pure Ordinary Kriging
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(OK), in which functional Kriging, with only the intercept

in the drift linear model (4), is employed, setting to zero the

physical model predictions. The second one is the pure

physical model (Phy), in which the predictions are F s0;ai ,

setting to zero the predicted residuals. Moreover, two

versions of the Physics-based Residual Kriging are tested,

in which the method described in Sect. 2.2 is applied with

two different drift terms respectively: for the Physics-based

Residual Ordinary Kriging (Phy-ROK) we use only the

intercept as regressor, thus ms ¼ b0, whereas for the Phy-

sics-based Residual Universal Kriging (Phy-RUK) the drift

ms ¼ b0 þ b1ps, ps being the numerical solution of the

physical model (14) in the current interval ai evaluated at

location s. Note that the approaches can be compared

starting from the second activation interval. As we observe

the production rates in following intervals, we could use

Phy-RK with increasing number of residual terms. Selec-

tion of the number Ki of residuals involved in predictor

(11) for interval ai is done by looking at the best predictor

for the previous interval ai�1. This leads to Ki ¼ 1 in all the

intervals, for both Phy-ROK and Phy-RUK (see Fig. 3).

Rates predicted by Phy-RUK are shown in Figure S3 in

the supplementary material, exhibiting a great agreement

with the observations. Figure 4a displays the boxplots of

the relative errors for each activation phase, comparing the

different approaches. We note that, in this example, Phy

has a lower prediction error than OK. However, combining

the two approaches in the Phy-RK leads to remarkably

lower errors. In particular, we observe that Phy-RUK,

which uses the pressure as regressor, leads to consistently

lower errors, showing that it can effectively exploit some

information from the physical model in the geostatistical
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Fig. 2 Simulated production

rates and schedule for the

reservoir described in Sect. 4.1.

Top panel: blue lines represent

the production rates

corresponding to newly drilled

wells in each activation interval,

gray lines correspond to wells

already operating. Bottom

panel: blue circles represent the

newly drilled producers, red

crosses the newly drilled

injectors and grey symbols the

already operating wells
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part of the model. Furthermore, we point out that the errors

tend to be lower in the last activation intervals, when

functional Kriging can take advantage from a higher

number of observations. Note that, thanks to the sequential

nature of our problem, we do not need cross-validation to

select, among the four options, the model to employ in each

interval. Indeed, we can choose the one that gives the

lowest average relative error in the previous interval,

assuming that there are no strong variations in the process

that generates the data (both the physics and the stochastic

process of the residuals) between consecutive time inter-

vals. According to this criterion, Phy-RUK results to be the

best model in all the intervals.

4.4 Robustness to the compressibility coefficient

We now want to investigate the robustness of our approach

to changes in the fluid compressibility cw, generating a new

set of production data with OPM—as described in

Sect. 4.1—with a higher fluid compressibility. This
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Fig. 3 Relative prediction error

boxplots produced by Phy-ROK

(top panel) and Phy-RUK

(bottom panel) with different

orders of residual terms, for the

case described in Sect. 4. The

boxplots with red outlines are

the ones of the models selected

for their corresponding interval

on the base of the lowest mean

relative error in the previous

time interval
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analysis can be used to evaluate the ability of the method to

correct a more and more approximated physics in the

simplified modeling. We here discuss three scenarios, in

which the data are simulated multiplying the fluid

compressibility by a factor of 10, 100 and 1000, with a

baseline compressibility of 2:74 � 10�6 psi�1.

Figure 4 shows the relative errors boxplots varying the

water compressibility (the other cases are reported in the
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(a) cw = 2.74 · 10−6 psi−1
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(b) cw = 2.74 · 10−3 psi−1

Fig. 4 Relative errors boxplots

of the predictions for the case

described in Sect. 4 produced

by OK, Phy, Phy-ROK and Phy-

RUK varying the fluid

compressibility cw. Note that the

y-axis is represented on a log

scale
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supplementary material, Figure S4). We observe that the

physical models predictions F s0;ai are unreliable when the

water compressibility is misspecified. However when the

predictions F s0;ai are employed in the framework of the

Phy-ROK and Phy-RUK, they still significantly contribute

to decrease the errors. Furthermore, we note that the errors

increase when the compressibility increases. In corre-

spondence of cw ¼ 2:74 � 10�3 psi�1, the OK approach

produces errors which are comparable to Physics-based

Residual Kriging. This suggests that, when the physical

model becomes too inaccurate, there is no value-added in

considering the term F s0;ai in model (9), but the residual

modelization can partially correct the predictions. Con-

cerning this aspect, using a spatial regression model with

differential penalization (SR-PDE, Arnone et al. 2019),

with an inaccurate physics would lead to worse predictions

than a regression model without physics penalization.

Indeed, in such a framework the functional data would be

modeled as

Ysj ¼ f 0
sj
þ ej; ð16Þ

where f 0 is a spatial field and e a zero-mean residual,

independent of the other residuals. The field f 0 is then

estimated minimizing the following functional

Jaiðf Þ ¼
Xni

j¼1

Z

ai

fsj � Ysj

� 	2þk
Z

ai

Z

D

of=ot þ Lf � uð Þ2;

ð17Þ

where k is a smoothing parameter, and of =ot þ Lf ¼ u is

the time-dependent PDE that expresses the prior knowl-

edge on the phenomenon under study. When the physics is

misspecified in (16)-(17), the field estimated via SR-PDE is

biased towards it, leading to worse predictions than a pure

regression model. Instead, we showed that Phy-RK may

benefit also from such an imprecise physical model, thanks

to the geostatistical modeling of the residual field X s.

4.5 Permeability field degradation

Another important aspect to investigate is the partial

knowledge of the parameters that play a role in the reser-

voir dynamics. We now assume that the permeability field

is only partially known and we analyze two different sce-

narios. In the first one, we assume that the permeability

field is corrupted by a spatially dependent noise, whereas in

the second one, the permeability field is known only at the

active well locations and the whole permeability field is

obtained using scalar Kriging. In both the cases, Phy-ROK

and Phy-RUK prove to be the best predictors, as discussed

in details in the supplementary Section S2.

5 Single-phase flow driven by rock
compaction

In the second test case, we deal with a single-phase flow in

a reservoir which can be developed under primary deple-

tion because production is supported firstly by rock com-

paction and then by fluid expansion, see Dake (1978). This

problem idealizes typical production behavior in many real

fields, where, for very long periods of time, production is

solely due to the capability of the rock to compact and then

provide energy to the fluid, see for instance the Ekofisk

field (Sulak et al. 1991), the Valhall Field (Sulak et al.

1991) and a large part of the turbidite reservoirs in the Gulf

of Mexico, (Morgenthaler et al. 2012).

5.1 Dataset description

Also for this test case, we consider data generated from the

simulation of a synthetic reservoir, hereafter described. We

rely on the ECLIPSE simulator, which fully implements

rock compaction models, on the contrary to OPM simula-

tor. As before, the ECLIPSE simulator is used only to

produce the observed rates and not to generate the pre-

dictions. We consider the same reservoir illustrated in

Sect. 4.1 in terms of geometry and petrophysical proper-

ties. The rock is considered to be compressible, with a

porosity that depends on the pressure as /ðpÞ ¼ /0gðpÞ,
where /0 is the porosity at the reference pressure 7386 psi

and gðpÞ is a pressure-dependent porosity multiplier,

reported in Table 1. The fluid compressibility is set to

3:13 � 10�4 psi�1 and an initial reservoir pressure of 7000

psi is prescribed. During Na ¼ 8 activation intervals, 100

producers are incrementally drilled in the reservoir,

according to Fig. 5, and they operate at a constant bottom

hole pressure of 3000 psi. We implemented the reservoir

setting in ECLIPSE, getting the observations of the pro-

duction rates depicted in Fig. 5.

5.2 Physical model

We use a physical model which takes into account the rock

compression, but in a simplified manner, whereas the fluid

compression is not modeled. Starting from equation (13),

we assume a constant fluid density q and a linear relation

between porosity and pressure, with crock constant in the

considered time interval, / ¼ /0½1 þ crockðp� prockÞ�,
where prock is the reference pressure, obtaining the fol-

lowing conservation equation
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r � 1

l
k � rp

� �

¼ /0crock
op

ot
þ q: ð18Þ

Then, discretizing equation (18), on a Cartesian grid,

analogously to Sect. 4.2, and adding the implicit dis-

cretization of the temporal derivative of time step Dt, we

end up with the following linear system, where the

unknown is the discretized pressure at time t þ Dt

ðAþ DÞptþDt ¼ Dpt þ b:

A and the vector b are defined according to (15), whereas D

is a diagonal matrix, whose elements are

Dii ¼ Vi;j/0crock=Dt. Thus, we need to solve a linear sys-

tem at each time step, starting from the initial pressure pai0 .

The spatial discretization ðDx;DyÞ is set to (200ft, 200ft),

with a reservoir thickness H ¼ 50ft. The time step Dt is set

to 28.95 days (which means we need 25 steps to cover each

activation interval ai) and we prescribe an initial condition

pa1

0 ¼ 7000 psi for the first time interval. In order to obtain

Table 1 Porosity multiplier for

different values of reservoir

pressure

Pressure 386 886 1386 1886 2386 2886 3386 3886

g 0.776 0.778 0.779 0.78 0.79 0.803 0.835 0.897

Pressure 4386 4886 5386 5886 6386 6886 7386 7886

g 0.937 0.954 0.963 0.974 0.984 0.992 1 1.002
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Interval 5 Interval 6 Interval 7 Interval 8

Fig. 5 Simulated production

rates and schedule for the

reservoir described in Sect. 5.1.

Top panel: blue lines represent

the rates corresponding to newly

drilled wells in each activation

interval, gray lines correspond

to wells already operating.

Bottom panel: blue circles

represent the newly drilled

producers and grey circles the

already operating ones
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a physical model which produces meaningful predictions,

we consider a constant rock compressibility in each time

interval ai equal to the sum of the fluid compressibility and

the derivative of the function gðpÞ evaluated at the initial

pressure pai0 of each interval.

5.3 Results and discussion

For this problem, we apply Physics-based Residual Kriging

analogously as in the first application, described in

Sect. 4.3. We compare the same four approaches, namely,

OK, Phy, Phy-ROK and Phy-RUK. In the case of Phy-

RUK, the pressure computed solving equation (18), aver-

aged over the i-th time interval, is used as covariate for the

drift term. As in the first test case, we select the optimal

number of residuals Ki in each interval as the one that

produced the lowest average relative error in the previous

interval, according to Figure S5 in the supplementary

material. A major difference is in the resulting choice of

the number of residual terms Ki. Indeed, in this case, it is

often convenient to select more than one residual term (see

Table 2). Note that selected Ki is often coherent between

the Phy-ROK and Phy-RUK approaches, except for slight

discrepancies in the fourth and the sixth intervals. In the

following, we assume that, in each time interval, the

number of employed residual terms is chosen according to

Table 2.

In many intervals, the Phy-RK method leads to much

lower errors than a pure data-driven or pure-physical

approach (see Fig. 6a and Table 2). In fact, the Phy-RUK

proves to be the best predictor in the first intervals, whereas

in the last ones the best is Phy-ROK. This is due to the

degradation of the physical model predictions starting from

the fourth interval, that implies also a worse reservoir

pressure approximation, impacting the Phy-RUK perfor-

mances. Note also that the chosen method for prediction

(marked as ‘‘Selected model’’ in Fig. 6a) is always optimal,

except for the fourth interval, where the best model would

be Phy-ROK but Phy-RUK is selected instead. In corre-

spondence of this interval, we observe a change in the

goodness of the physical model predictions, that conse-

quently impacts the Phy-RK predictions, leading to similar

errors between Phy, Phy-ROK and Phy-RUK in intervals 4

and 5. However, starting from the sixth interval, the gain of

the Phy-ROK method over Phy becomes more and more

substantial.

To conclude, the Phy-RK method leads to a large

improvement over the OK method in all the intervals. The

Phy predictor is comparable to Phy-RK only in intervals 4

and 5, with much higher errors in the others. In Fig. 6b we

show the predictions computed by the selected best models

in each interval for this test case, noting a great agreement

between predictions and observations.

6 Conclusions

In this work, we presented the Physics-based Residual

Kriging method, a novel approach for geostatistical prob-

lems in presence of prior information expressed by a

physical model. As further extension, we formulated it for

sequential problems, where the Physics-based Residual

Kriging predictor can be incrementally enriched by adding

residual terms at each activation time interval. We applied

this approach for the prediction of production rates in a

mature reservoir. With two examples, we showed that this

approach leads to remarkably lower prediction errors when

Table 2 Optimal residual terms

number Ki and mean and

standard deviation of the

relative error Ei in each interval

for OK, Phy, Phy-ROK and

Phy-RUK

Interval OK Phy Phy-ROK Phy-RUK

2nd K2 – 0 1 1

E: mean(s.d.) 0.524 (0.288) 0.271 (0.035) 0.128 (0.036) 0.036 (0.015)

3rd K3 – 0 1 1

E: mean(s.d.) 0.900 (0.426) 0.157 (0.031) 0.161 (0.040) 0.033 (0.011)

4th K4 – 0 2 1

E: mean(s.d.) 1.068 (0.359) 0.062 (0.017) 0.049 (0.032) 0.033 (0.019)

5th K5 – 0 2 2

E: mean(s.d.) 1.268 (0.335) 0.078 (0.018) 0.051 (0.023) 0.120 (0.021)

6th K6 – 0 2 0

E: mean(s.d.) 1.859 (0.549) 0.392 (0.085) 0.132 (0.061) 0.392 (0.085)

7th K7 – 0 3 3

E: mean(s.d.) 2.639 (0.454) 0.862 (0.141) 0.104 (0.049) 0.249 (0.036)

8th K8 – 0 2 2

E: mean(s.d.) 3.984 (0.725) 1.502 (0.172) 0.030 (0.025) 0.097 (0.028)
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compared to a pure geostatistical approach or to a pure

physical model. Furthermore, we tested the robustness of

our approach to changes or partial knowledge of the

physical model parameters. Our study shows that a Phy-

sics-based Residual Kriging approach is indeed beneficial

also when an inaccurate physical model is employed in its

formulation. For all these reasons, Phy-RK represents a

valuable approach to geostatistical problems, whenever a

(possibly approximated) physical model is available.

As future research, we plan to apply the Phy-RK

methodology with sequential update to more realistic

reservoirs, where two or three phases flows make the

underlying physics more complex. In these contexts, one

might avoid the burden of a 3D full-physics simulation, by
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(b)

Fig. 6 a Relative errors

boxplots of the predictions

produced by OK, Phy, Phy-

ROK and Phy-RUK.

b Observed rates and rates

predicted by the selected models

for the case described in Sect. 5

3078 Stochastic Environmental Research and Risk Assessment (2022) 36:3063–3080

123



employing a surrogate model, e.g. INSIM (Zhao et al.

2015) or FlowNet (Kiærr et al. 2020), as the physics model

term within Phy-RK approach.
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