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Abstract A nonlinear elastic model for nets made up of two families of curved fibers is proposed. The net
is planar prior to the deformation, but the equilibrium configuration that minimizes the total potential energy
can be a surface in the three-dimensional space. This elastic surface accounts for the stretching, bending, and
torsion of the constituent fibers regarded as a continuous distribution of Kirchhoff rods. A specific example of
fiber arrangement, namely a cycloidal orthogonal pattern, is examined to illustrate the predictive abilities of
the model and assess the limit of applicability of it. A numerical micro–macro-identification is performed with
a model adopting a standard continuum deformable body at the level of scale of the fibers. A few finite element
simulations are carried out for comparison purposes in statics and dynamics, performing modal analysis.
Finally, a topology optimization problem has been carried out to change the macroscopic shear stiffness to
enlarge the elastic regime and reduce the risk of damage without excessively losing bearing capacity.

Keywords Nonlinear elasticity · Second gradient models · Homogenized nets · Metamaterials

1 Introduction

The advent of new manufactory technologies [22,45,56], like 3D printing, and the increasing demand for
materials with high-performance render desirable design techniques for advanced forms of micro-structured
materials have been but little considered heretofore. Accordingly, many research lines have been initiated
with the aim of setting up general methods of synthesis of micro-structures for obtaining materials with a
macroscopic behavior designed for satisfying given requirements [9,12,14,57,73,79,80,82]. These materials
conceived for fulfilling one or more given functions belong to the set of the generalized continuum materials
for which is their microstructure that confers the desired properties. This point of view is what characterizes
the so-called metamaterials. Although their first appearance was in the field of electromagnetic and optical
applications, soon enough there have been developments also in the mechanical field (see, e.g., [5,15,20,48,
69]). The rationale for the synthesis of such materials is quite ancient. Indeed, the same approach can be found
in the synthesis of mechanisms [55,62,64,66] or electric networks [11]. In both cases, there are elemental
components with specific properties that, if properly connected to each other, are capable of producing a whole
system providing the desired functioning. However, since the introduction of metamaterials is rather recent, a
systematic way to design micro-structures is not yet fully developed, as in the case of mechanisms and electric
networks. Therefore, the metamaterials proposed up to now in the literature are the results of some researchers’
clever intuition.
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Another key aspect concerning the development of metamaterials is the possible multi-disciplinarity of
them. Often to obtain the desired results, it is possible to use components with different physical characteristics.
Since the design of such materials starts from the functions for which they are conceived, and therefore from
the governing equations, because of the analogy between systems of different nature based on these equations
[23,50,72], it is possible to obtain very particular systems such as piezoelectro-mechanical structures that can
be used to shield or reduce vibrations as well as to harvest energy [4,33,53].

Typical examples of micro-structured materials that can be used as an archetype for metamaterials are:
micropolarmaterials [8,10], functionally gradedmaterials [6,7,21,24,37] cellularmaterials and foams [47,61],
granular materials [58,59,78], lattice materials [2,3,35,36,38,49,71,74], multi-scale materials [25,26,30,44,
83], materials with non-local properties [31,46]. Indeed, the changing in a specific way of their microstructure
provides a significant alteration in the macroscopic behavior that can be used to obtain high-performances.

A relevant kind of metamaterial is the pantographic structure conceived as an example of material whose
behavior can be described with an expression of energy that incorporates terms with the second gradient
of the placement function [13,27,29,32,51,52,54,60,68,77]. This is a light material with a huge range of
deformation in the elastic regime. Some alternatives of this type of material have been proposed recently for
the 1D [18,42,76] and 2D case [16,17].

The pantographic material is made of two straight families of fibers connected to each other with small
deformable cylinders (also known as pivots) or hinges to provide amicro-structure that reproduces a pantograph
mechanism periodically. In this paper, the micro-structure of a pantographic material is employed locally but
using fibers that are not anymore straight. The idea is to generalize the pantographic sheet to obtain a more
general theoretical foundation that can be exploited to improve the basic performance of that structure. A
numerical identification has been performed to obtain the stiffnesses needed for describing the system in the
framework of the bi-dimensional continuous elastic theory following the ideas proposed in [1,43,63,65,81].
At the end of the paper, an example of topological optimization is presented to illustrate the potentialities of
the proposed modeling.

2 Modeling lattice shells

A net constructed by two families of flexible elastic fibers can be described within the purview of the two-
dimensional strain-gradient elasticity theory [39,41,70,75]. Herein, the kinematical assumptions made for the
network are: i) the fibers are treated as shear undeformable beams, namely their cross sections preserve the
orthogonality to the tangent vector at each point of the axis in any configuration; ii) the points where the fiber
axes belonging to the two families of curves intersect (joints) share the same position in any configuration; iii)
at the joints the only degree of freedom admitted is a relative rotation of the cross sections with respect to the
normal vector to the current tangent plane that is the span of the two tangent vectors of the fibers themselves.
In this context, the kinematical description of the system is given by the surface, S, whose points in the current
configuration, x = (x1, x2, x3) ∈ R3, are expressed in terms of the correspondent points in the reference
configuration, X = (X1, X2) ∈ Ω ⊂ R2.

By introducing the components of displacement ui between the two configurations, the explicit expression
of the placement map is expressed by

x = χ(X) = Xαeα + ui (X) ei (1)

where Greek indexes range from 1 to 2 and Latin ones from 1 to 3, the summation convention is adopted
for both of them, and the unit vectors {ei } constitute the basis employed to represent the surface S. Since
the elastic surface considered is assumed to be an infinite distribution of two families of curved fibers, a
parametric representation of the central line of these fibers is introduced through the two abscissae Sβ in the
reference configuration as X = X(Sβ). Naturally, this representation is inherited by the surface in the current
configuration bymeans of themap (1). Having chosen Sβ as a unit-speed parametrization, the reference tangent
vectors to the fibers are of unitary length and explicitly

Dβ(X) = dXα

dSβ

eα (2)

Besides, the tangent vectors to the fibers in the current configuration, with the same parametrization, are

λβ(X) dβ(X) = dχ

dSβ

(X) = F(X) Dβ(X) (3)
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where λβ = ‖F Dβ‖ and F = ∇Xχ , namely a tensor whose matrix representation has dimension 3 × 2, and
dβ are the unit tangent vectors to the fibers in the current configuration. The unit normal field to the surface S
is then

n(X) = d1 × d2
‖d1 × d2‖ (4)

In the particular case of orthogonal fibers (D1 · D2 = 0), the unit normal vector simplifies in

n(X) = εi jk Fj2 Fk1 ei
∥
∥εi jk Fj2 Fk1 ei

∥
∥

(5)

where εi jk is the Levi–Civita symbol.
With the intention to model the fibers as Kirchhoff’s rods, for each family of them, a rotation tensor

Rβ : {ei } �→ {dβ, n × dβ, n} (6)

is introduced to express the cross section orientation of fibers, i.e., beam-like bodies, based on the oriented
director triads previously defined. Therefore, the curvature tensor

Wβ = R�
β

dRβ

dSβ

(7)

is considered for evaluating, respectively, the twisting and the out-of-plane and geodesic curvatures as follows:

κTβ = (

n × dβ

) · dn
dSβ

; κnβ = n · ddβ

dSβ

; κgβ = − (

n × dβ

) · ddβ

dSβ

(8)

The differentiation with respect to the curvilinear abscissa Sβ is directly evaluated through Eq. (3) as

ddβ

dSβ

= 1

λβ

[∇X F|Dβ ⊗ Dβ + F
(∇X Dβ Dβ

)] − dλβ

dSβ

dβ

λβ

(9)

denoting the above quantities in components as

(∇X F|Dβ ⊗ Dβ)i = ∂Fiα
∂Xη

(Dβ)η(Dβ)α

(∇X Dβ Dβ)α = d2Xα

dSβ
2

Similarly, the derivative of n with respect to Sβ can be easily computed.
In the considered framework, a possible choice for the measures of deformation inherited by the presence

of the fibers incorporated in the surface S is

1. the fiber stretching

εβ = λβ − 1 (10)

2. the shear distortion angle

γ = asin (d1 · d2) (11)

3. the curvature change

ΔκTβ = κTβ − κ0
Tβ, Δκnβ = κnβ − κ0

nβ, Δκgβ = κgβ − κ0
gβ (12)
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If the reference configuration is planar κ0
Tβ = 0, κ0

nβ = 0, the only curvature different from zero is the geodesic
one that can be calculated as

κ0
gβ = − (

e3 × Dβ

) · dDβ

dSβ

(13)

The elastic energy of the lattice shell, which is plane for the reference configuration, can be postulated as

2U [χ(·)] =
∫

Ω

2
∑

β=1

Keβ
(

λβ − 1
)2 dΩ +

∫

Ω

Ksγ
2 dΩ

+
∫

Ω

2
∑

β=1

Kgβ(κgβ − κ0
gβ)2 dΩ +

∫

Ω

2
∑

β=1

Knβ(κnβ)2 dΩ +
∫

Ω

2
∑

β=1

KTβ(κTβ)2 dΩ (14)

where Keβ , Ks , Kgβ , Knβ , and KTβ are positivematerial parameters representing stretching, shearing, geodesic
and normal bending, and twisting stiffness, respectively, for the two families of fibers.

By introducing the skew tensor field

Vβ = R�
β Ṙβ (15)

where the dot denotes differentiation with respect to the time, the angular velocity pertained to the cross section
of the fibers can be evaluated as the components of the axial vector of Vβ , namely

ωβ1 = (

n × dβ

) · ṅ; ωβ2 = n · ḋβ; ωβ3 = − (

n × dβ

) · ḋβ (16)

Considering the particular arrangement of fibers, the kinetic energy can be expressed as follows:

2T [χ(·), χ̇(·)] =
∫

Ω

s(u̇
2
1 + u̇22 + u̇23) dΩ +

∫

Ω

2
∑

β=1

[

Jβ1(ωβ1)
2 + Jβ2(ωβ2)

2 + Jβ3(ωβ3)
2] dΩ (17)

where s is the apparent mass density per unit area, Jβi are inertial parameters that can be evaluated, as a first
approximation, as the moments of inertia of the cross section of fibers per unit line, i.e., Iβi/pβ , where  is
the apparent mass density (per unit volume), Iβi are the second moments of area with respect to the directions
D1, D2, e3, and pβ is the pitch between fibers belonging to the β family. All these parameters can be possibly
function of X . The equation that rules the motion, therefore, can be deduced by the principle of the least action,
defining the Lagrangian function L = U − T .

3 The case of a cycloidal metamaterial

To analyze the distinctive aspects of the proposed model (say macro-model), both the benefits and the draw-
backs, as well as the limit of the range of its applicability, a comparison with a more refined model (referred
to as micro-model) is performed for a particular arrangement of fibers. Specifically, the micro-model employs
the standard theory of 3D elasticity, making use of a very detailed geometry of the sample at the scale level
of the fibers. This kind of modeling is of no use in the real-world applications for the computational burden
required. Still, it is beneficial for comparison purposes and to obtain the material parameters needed by the
macro-model via a micro–macro-identification procedure, in this case, numerical. Since the considered sys-
tem might experience large deformation, both the models are nonlinear. The kind of nonlinearities taken into
account are geometrical: In the macro-model, they appear in the nonlinear expressions of the deformation
measures, being the energy density a quadratic form of them; analogously in the micro-model, the strain tensor
is the Green–Saint-Venant one, and the Kirchhoff–Saint-Venant constitutive relationship is resorted to.

In what follows, a sample with a cycloidal orthogonal net is chosen for its promising mechanical features
[67] (see Fig. 1). The fibers have a square cross section of length a = 1 mm; the connections between the two
families of fibers are cylinders of radius rp = 0.45 mm and height h p = 1 mm. The curves representing the
axis of the fibers are given by

{

X1 = R (ϕ − sin ϕ) + α

X2 = R (1 − cosϕ)
(18)
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Fig. 1 Sample with cycloidal fibers: perspective view (top); scheme of the fiber arrangement (bottom)

and
{

X1 = R (ψ − sinψ) + β

X2 = R (1 + cosψ)
(19)

where the parameter R is set to be 35 mm, ϕ, and ψ , are specific abscissae along the curves, and α and β
are constants that identify the particular curve belonging to the family1. Indeed, in this fiber arrangement, the
two arrays of curves are obtained simply by translating the first curve (passing through X1 = 0) along the X1
axis of α or β. In the examined case, this translation is equal to R/4, namely 8.75 mm. The whole specimen
has a rectangular plan, identifiable with Ω , of size (2R − s) × 2πR, being s = 4.2 mm and the bottom left
corner has coordinate in the plane X1-X2: (0, s/2). The reason for the choice of such a domain is twofold: i)
The fibers nearby X2 = 0 and X2 = 2R become too dense, and therefore, the sample cannot be produced, for
example, with a 3D printing process, for the fibers would merge in these zones; ii) on these same lines, the
expressions of the curvatures κ0

gβ are not defined.
The material parameters used for the numerical simulations with the micro-model are typical for the

polyamide that can be used in 3D printing, namely: the elastic modulus Y = 1600 MPa, the shear modulus G
evaluated with the assumption of isotropic material, Poisson’s ratio ν = 0.4, and the mass density ρ = 930
kg/m3.

The material parameters for the macro-model are assumed to be:

Keβ = ηe
Y A

pβ

, KTβ = ηT
G Jt
pβ

, Knβ = ηn
Y J f n
pβ

, Kgβ = ηg
Y J f g
pβ

, Ks = ηs
G Jp

h p p1 p2
(21)

where A is the cross section area of the fibers, Jt = 0.196 a4 and J f n = J f g = a4/12 are the torsional
and flexural second moment of area of the beam cross sections, and Jp = π r4p/2 is the torsional second
moment of area of the pivot. The parameters pβ are the cell size in the orthogonal direction to Dβ (see Fig. 2).
Specifically, they are evaluated using the three-dimensional specimen in correspondence of each pivot as the

1 Although notmandatory,with simple calculations the families of cycloids can be expressed in terms of unit-speed parametriza-
tion resorting to

ϕ(S1) = 2

(

2 atan

√
S1√

8 R − S1

)

, ψ(S2) = 2

(

2 atan

√
S2√

8 R − S2

)

(20)



I. Giorgio

Table 1 The tuned coefficients η

ηe ηs ηg ηn ηT

0.847 0.459 6.126 1.014 0.823

sum of the two half distances between the considered pivot and the adjacent ones on the orthogonal fiber
to direction Dβ . In Fig. 2, they are plotted as a discrete sequence of circles as a function of X2-coordinate.
Clearly, since the cycloids are translated along the X1 axis, the values of pβ are not dependent on X1. All
the curves of the same family have the same pβ , keeping fixed the value of X2. It is worth noting that the
extreme values of pβ are sensibly lower than the others because, on the boundaries, only one-half cell must
be considered. For this reason, the stiffnesses on those boundaries are larger, entailing a different behavior
in these zones, although concentrated on the verges. Besides, in Fig. 2 are also shown trend lines of these
quantities obtained as functions proportional to the modulus of the tangent vector to the cycloids (18) and (19)
in Cartesian coordinates, namely

h1 = 1

8

√

2R(2R − X2), h2 = 1

8

√

2RX2 (22)

The coefficients η are correcting factors to be determined with a micro–macro-identification procedure as
done in [28]. The values are listed in Table 1.

The distribution of the mass density for the macro-model has been evaluated using the three-dimensional
sample. This last has been divided into a finite number of strips along the longitudinal direction, keeping in
mind that there is no dependence on X1, cut in correspondence of the pivots. For each strip, the volume has been
computed and then, using the mass density ρ, the mass of the same part. Finally, the mass has been smeared
on the corresponding section of the domain Ω to obtain s (see Fig. 3). The parameters Jβi are evaluated with
formulae analogous to KTβ , Knβ , and Kgβ in Eq. (21) to retrieve the inertia of the cross section fibers per unit
area.

For the sake of completeness, the unit tangent vectors to the cycloidal fibers are given in components as
follows:

D1 ≡
(√

X2

2R
,

√

1 − X2

2R
, 0

)

, D2 = D1 × e3 (23)

their derivatives with respect to Sβ become

dD1

dS1
≡

(√

2R − X2

16R2 X2
, − 1

4R
, 0

)

,
dD2

dS2
≡

(√

X2

16R2 (2R − X2)
,
1

4R
, 0

)

(24)

therefore, the curvatures in the reference configuration are given by

κ0
g1 = − 1√

8RX2
, κ2

g2 = 1√
8R(2R − X2)

(25)

3.1 Micro–macro-identification

To determine thematerial parameters appearing in Eq. (14), two numerical tests are thought devoted to compar-
ing the results of the micro- and macro-models and establishing an equivalence between them. In particular,
an inverse analysis is performed to find the correcting factors η defined in Eq. (21), which may make the
two models equivalent by an energetic viewpoint and to provide equilibrium shapes as near as possible. The
employed approach is explained in detail in [28]. The key idea is to use two or more tests for which some of the
energetic contributions of Eq. (14) are complementarily null. In this way, it is possible to find a restricted set of
them without affecting the values of the others. The general concept is quite ancient: divide the problem into
simpler subproblems and solve them separately. The energetic orthogonality, namely the absence of coupling
terms, makes this approach suitable.
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Fig. 2 Cell lengths in the orthogonal direction to Dβ : pβ evaluated on the 3D specimen (circle markers) and analytical trend
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
X2, (m)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

m
as

s 
de

ns
ity

, (
kg

/m
2 )

Fig. 3 Distribution of the mass density per unit area

The chosen tests are tensile and out-of-plane shear ones. The energies and the equilibrium shapes are
obtained by using the finite element method directly exploiting Eq. (14) for the macro-model, while for the
micro model, a standard structural mechanics tool supplies the results. The rationale of this selection lies in
the fact that in a tensile test are activated primarily only the mechanisms of deformation related to stretching,
geodesic bending, and shearing at the macroscopic level. Therefore, the stiffnesses Keβ , Kgβ , and Ks are
mainly involved, being negligible the effects of the others. On the other hand, the sliding motion resulting
from the out-of-plane shear test is characterized by deformations pertained to the out-of-plane bending and
the twisting of the fibers; thereby, Knβ and KTβ can be identified.

The tensile test has been conducted fixing one short edge and imposing a displacement in the X1 direction
on the opposite one from 0 to u1 = R: For the micro model, the displacements have been prescribed at the
handles (see Figs. 4, 5 and 6); in the case of the macro-model since it is a second gradient material, also
the normal derivative of u3, namely ∂u3/∂X1, for the constrained edges has been set to zero to mimic the
restraint device employed in themicromodel. Since the only parameter involved in the shear deformation at the
macro-level is Ks , the shear contribution of the energy is settled as an objective function to determine it in the
identification procedure. Besides, the energy associated with the beams is taken to identify the rigidity Keβ and
Kgβ in a multi-objective procedure of tuning for the two models. In this test, the contributions attributable to
the beam deformation primarily are the stretching and the bending on the tangent plane, i.e., geodetic. During
the macro-model calibration, the coefficients η related to the remaining stiffnesses are set to one.
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Fig. 4 Equilibrium shape for the tensile test under an imposed displacement u1 = R: a micro-model; b macro-model. Colors
indicate the out-of-plane displacement u3

Fig. 5 Equilibrium shape for the tensile test under an imposed displacement u1 = R: comparison through the overlapping of the
material lines (black) obtained by the macro-model and the result of the micro-model in colors
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Fig. 6 Energy vs. displacement plot for the tensile test. In the graph, the total energy obtained by the two models are reported.
The contributions due to the fibers (with the label beam) and the pivots are also shown

Figure 4 displays the equilibrium shape at the end of the test for the two models, while Fig. 5 shows a
comparison between the results obtained by overlapping the two final current configurations. The macro-shape
is presented by means of material lines that lie in correspondence with the cycloids characterizing the sample.
The correspondence between the results is remarkable, at least in the plane X1-X2. During the test, the sample
experiences a buckling, as evidenced by the out-of-plane displacement. Although both models are able to
predict this kind of behavior, in a more accurate inspection, some little differences can be detected in this
component of the displacement. In the micro model, it is evident a small lack of symmetry in the out-of-plane
deformation despite the symmetry of the test. This little discrepancy is easily explained by the presence of the
non-symmetry in the geometry of the specimen. Indeed, the fibers are not arranged in the same plane and are
offset by a certain amount [40]. In Fig. 6, energy contributions of the pivots and the fibers/beams are shown,
as well as their total amount for both the models. The match between the graphs is in good agreement until
about 25 mm (∼ 11.4% of the whole length of the sample) where the buckling starts, and then, there is a



Lattice shells composed of two families of curved Kirchhoff rods

Fig. 7 Equilibrium shape for the out-of-plane shear test under an imposed displacement of 2R: a micro-model; b macro-model.
Colors indicate the out-of-plane displacement
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Fig. 8 Comparison of the displacement u3 in the out-of-plane shear test under an imposed displacement of 2R: at the middle
longitudinal line (a); on one long edge (b)

little difference, due to the complex geometry at the level of fibers, which is not taken into account in the
macro-model and it is amplified when the deformations become very large.

The out-of-plane shear test has been conducted by fixing one short edge and imposing the component of
the displacement u3 on the opposite one from 0 to 2R (see Fig. 7). On the same moving edge, the displacement
along X1 is kept free to avoid the activation of stretching deformation, while u2 has been constrained to
zero. For this test also in the case of the macro-model, the normal derivative of u3, namely ∂u3/∂X1, for the
constrained edges has been set to zero. In this case, the identification procedure has been performed with a
cost function related to the total energy error and the displacement u3 at the middle longitudinal line. The
coefficients η previously determined are currently fixed.

Figure 7 displays the equilibrium shape at the end of the test for the twomodels. The quantitative comparison
is shown in Fig. 8 for the middle longitudinal line and for a long edge of the specimen (the other one is almost
equal for symmetry reasons). In Fig. 9, the different energy contributions are exhibited, as well as their total
amount for both the models.

The final configuration for the middle longitudinal line in both models is almost coincident (see Fig. 8a).
Small deviations are instead perceptible near the long borders and for the energy contributions. The macro-
model predicts zero energy in the pivot energy, while a small amount of it is involved in the micro model.
This difference is due to the more general deformation of the pivots that at the micro-level also implies
not-completely vanishing shear and bending deformations in these connections. These kinds of deformations
produce some coupling between the deformations of the two layers of fibers. Therefore, a small discrepancy is
also detected in the beam energy contribution. Finally, this complex behavior at the micro-scale produces also
a small deviation in the deformation of the long edges, as displayed in Fig. 8b, since the macro-deformation
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Fig. 9 Energy vs. displacement plot for the out-of-plane shear test. In the graph, the total energy obtained by the two models are
reported. The contributions due to the fibers (with the label beam) and the pivots are also shown

Fig. 10 Equilibrium shape for the in-plane shear test under an imposed displacement of 2R obtained by the micro-model

is not dependent on X2. However, it is possible to conclude that the differences remain small and, therefore,
not compromise the predictive abilities of the macro-model.

3.2 Supplementary tests

In this section, some more severe tests are examined to understand the limit of the applicability of the macro-
model. The new tests are carried out using the rigidities identified in the previous section.

Firstly, a second shear test has been performed, fixing one short edge, imposing a displacement in the
X2 direction on the opposite one from 0 to u2 = 2R, and keeping zero the remaining components of the
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Fig. 11 Equilibrium shape for the in-plane shear test under an imposed displacement of 2R obtained by the macro-model
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Fig. 12 Graphs of comparison for the displacement u3 in the in-plane shear test at the probe points P1 ≡ (0.158, 0.0021) m and
P2 ≡ (0.0614, 0.0679) m

displacement (see Figs. 10, 11). Here, the ratio of stiffnesses is such that after a few millimeters from the
starting of the test, an out-of-plane buckling occurs similar to that measured in [19] (see Fig. 12 for the plots of
the displacement u3 associated with two probe points nearby the peaks of the values of the same displacement).
It is worth noting that in order to follow the bifurcated equilibrium path, a defect has been introduced as a small
distribution of forces at the beginning, which gradually fades as the test progresses. From Figs. 10, 11, and 12,
a comparison between the equilibrium shapes provided by the micro and the macro-models can be made. The
whole deformation obtained with the macro-model is sufficiently close to that of the micro model to catch the
characteristic features. In Fig. 13, the distinct energy contributions are exhibited, as well as their total amount
for both the models. The energy related to pivots is remarkably in good agreement for the two models, while
the beam energy shows a certain bias (about 10% of the energy at the end of the test). As a matter of fact,
by examining the deformation of the pivots, there are no sensible distortions in their shape, and therefore, the
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Fig. 13 Energy vs. displacement plot for the in-plane shear test. In the graph, the total energy obtained by the two models are
reported. The contributions due to the fibers (with the label beam) and the pivots are also shown

Fig. 14 Equilibrium shape for the torsion test: a micro model; b macro-model

predominant torsional deformation hypothesis is confirmed. Most likely, since the kind of material considered
is heterogeneous (very stiff at the borders and compliant in the middle), the bias in the energy of the beams can
be due to the shear deformation in the beams themselves. Herein the Euler–Bernoulli hypothesis has beenmade
to model the fibers cross sections, namely an internal constraint keeping the fiber cross sections orthogonal to
the tangent of their center-line has been assumed. This constraint makes the macro-model fiber energy greater
because of an excess of stiffness, as is seen in Fig. 13, thereby relaxing this assumption and considering the
shear deformation in the fibers, their energy should decrease. Besides, the offset between the two layers of
beams and the lack of symmetry in the equilibrium configuration may play a role in this behavior.

Thereafter a torsional test is conducted by fixing one short edge and rotating the other side until 3.5 rad
with respect to the axis coinciding with the middle longitudinal line of the specimen (see Fig. 14). In this
case, also, the equilibrium configurations resulting from the two models are in good agreement. As far as
energies are concerned, Fig. 15 displays a good match for the pivot energy until about 3 rad, then a certain
amount of discrepancy occurs yet maintaining the quality trend of a softening. Instead, the beam energy has an
agreement until about 1.2 rad, then shows a noticeable difference. Probably here, the same effects discussed
for the previous test plays a significant role and even amplified after 1.2 rad for the considerable deformations
involved.

3.3 Modal analysis

In this section, a modal analysis around the reference configuration has been performed for the micro and the
macro-models. Specifically, the first eight vibration modes have been determined. Figures 16, 17, 18, 19, 20,
21, 22 and 23 show a comparison of the modal shapes associated with the natural frequencies for both models.
Table 2 lists their natural frequencies with relative errors.
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Fig. 15 Energy vs. angle plot for the torsion test. In the graph, the total energy obtained by the two models are reported. The
contributions due to the fibers (with the label beam) and the pivots are also shown

Table 2 The first eight natural frequencies (Hz)

Mode no. 1 2 3 4 5 6 7 8

Micro 20.18 45.28 55.30 98.06 107.80 162.99 175.40 179.50
Macro 20.11 44.87 55.27 96.57 108.07 160.16 177.81 183.60
Error % − 0.35 − 0.90 − 0.05 − 1.51 0.25 − 1.74 1.37 2.28

Fig. 16 First modal shape: a micro-model; b macro-model

Fig. 17 Second modal shape: a micro-model; b macro-model

From these results, it is possible to conclude that also from a dynamical point of view, the macro-model is
able to capture the salient features, at least in the range of frequency examined.
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Fig. 18 Third modal shape: a micro-model; b macro-model

Fig. 19 Fourth modal shape: a micro-model; b macro-model

Fig. 20 Fifth modal shape: a micro-model; b macro-model

Fig. 21 Sixth modal shape: a micro-model; b macro-model

4 An example of stiffness optimization in lattice structures

The specific choice of the cycloidal arrangement of fibers allows us to obtain an attractive material for many
applications since it is characterized by a stiff strip in the proximity of the large border and a core, which is
very soft, in the middle of the sample. This behavior is a straightforward consequence of the fiber positioning
and of their density per unit area. Until now, the connections between fibers have been conceived as identical
cylinders. However, one can imagine improving the behavior of that material simply changing the geometry
of these cylinders. Indeed, since the values of the shear stiffness Ks depend on the diameter of the cylindrical
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Fig. 22 Seventh modal shape: a micro-model; b macro-model

Fig. 23 Eighth modal shape: a micro-model; b macro-model

connections, it is possible to assume this diameter as a control variable to beoptimized in viewof the applications
for which the material is meant to be used. The limit cases where the fibers belonging to different families i)
can freely rotate relative to one another keeping parallel to the tangent plane and ii) are clamped, respectively,
associated with Ks = 0 and a sufficiently large value of Ks , can be easily obtained substituting the deformable
cylinders with hinges and with cylinders having a large diameter whose deformation is negligible. All the
intermediate values for Ks are related to deformable cylinders, possibly with different diameters.

In this section, an example of topology optimization is performed using the control parameter Ks according
to the idea proposed in [34]. In particular, the optimization problem can be formulated in the following way:
find the distribution of shear stiffness Ks for the cycloidal metamaterial, which increases the safety factor
relative to failure in elongation.

In this regard, a tensile test is employed to analyze the deformations of the considered system and to
minimize the total elongation energy, Ue, by varying the shear stiffness. However, this problem needs some
constraints because otherwise the trivial solution Ks = 0 (all perfect hinges) is obtained with a significant
decrease in the bearing capacity. In this paper, the constraint is imposed on the total bending energy,Ub in order
to preserve its value for the initial distribution of shear stiffness, which is characterized by all the connections
geometrically equal, namely they are assumed to be cylinders with the same diameter and height. The reason
behind this choice is because the trivial solution implies greater bending energy than that of the initial design
(see Fig. 24). Indeed, in the examined case, being the fibers curved, there is a not negligible coupling between
the elongation and the bending energy of the fibers and thus decreasing the elongation energy leads to an
increase of the bending one. If the bending energy is constrained, it is possible to avoid unnecessary and
abnormal storage of energy. Furthermore, the longitudinal reaction, albeit decreases, does not become too low
(see Fig. 24). The design problem to solve, hence, can be expressed as

min
Ks

Ue[ui (Ks)] subject to Ub = Ub(K
0
s ) (26)

where K 0
s is the shear stiffness distribution of the initial design. Figure 24 exhibits the results of the optimization

through the energy components and the reaction in X1-direction. In these plots, it is possible to see a decrease
in the maximal elongation energy of about 10%. Figure 25 shows the initial and the optimal distribution of
Ks determined by solving the (26) with the method of moving asymptotes. Using this ‘optimal’ distribution
of the stiffness Ks , it is possible to design which connections must be perfect hinges and which ones remain
deformable cylinders and possibly change the diameter. Finally, Fig. 26 displays the total energy density for
the relevant cases: the initial one, the optimal one, and the trivial one.
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(a) (b)

(c) (d)

Fig. 24 Initial, optimal, limit design comparison for the tensile test: a stretching, b bending, c shear energy, and d reaction along
X1 direction

Fig. 25 Distribution of Ks : a initial and b optimized stiffness

5 Conclusions

In this paper, a new model to describe a system made with narrow and long deformable bodies (referred to as
fibers) that in the reference configuration, at rest, are arranged along plane curves forming an orthogonal grid
is proposed. The model is an elastic bidimensional continuum body characterized by displacement derivatives
up to the second order that qualify it as a strain gradient model. Large deformations are allowed; therefore, the
model is nonlinear. Some kinematical assumptions are made up to simplify treatment. Essentially, the fibers
are modeled as two infinite distributions of Kirchhoff rods lying on the same surface and are jointed in such a
way they exhibit only a relative rotation with respect to the axis normal to the surface in the intersecting points.
As a toll for using these simplified hypotheses, the proposed model loses in some circumstances accuracy even
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Fig. 26 Energy density distribution for the tensile test with an imposed displacement of 1 cm: a initial, b optimal, c limit (Ks = 0)
case

though, from a general point of view, remains able to predict the essential aspects involved in the deformation
process. On the other hand, only a limited number of rigidities must be identified.

A scrupulous analysis has been carried out for a specific pattern of fibers arranged according to cycloids.
Firstly, two tests are performed to implement amicro–macro-numerical identification; secondly, additional two
tests are examined to showmore explicitly the limit of applicability of the model. To complete the study, modal
analysis is executed to investigate the vibrational behavior of the model around the reference configuration.

Finally, a shear stiffness optimization is performed to illustrate how the design of the considered meta-
material could be further improved. The solution of the structural optimization can be adopted to design the
connections between fibers to fulfill a prescribed requirement.
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