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In the course of working on the extension [2] of ref. [1] to Higgsino dark matter annihilation,

we became aware of two mistakes and a number of typos in this article. The first correction

implies that all absolute annihilation cross sections reported or shown in ref. [1] must be

multiplied by two. The second correction concerns a missing term in some soft function

components. This correction affects many equations, but has a negligible effect on the

numerical results. In the following we provide a complete list of corrections.

Overall normalization of the annihilation cross section. Eqs. (2.38) and (4.1) miss

a factor of two on the right-hand side and the correct equations read

d(σvrel)

dEγ
= 2

∑
I,J

SIJ ΓIJ(Eγ) = 2
∑
I,J

SIJ
∑
i,j=1,2

Ci(µ)C∗j (µ) γijIJ(Eγ , µ) , (2.38)

〈σv〉 = 2×
{
S(00)(00)[σv](00)(00) + 2Re[S(00)(+−)[σv](00)(+−)]

+ S(+−)(+−)[σv](+−)(+−)
}
. (4.1)

The factor of 2 is necessary in the method-2 computation of the Sommerfeld effect [3] for

the annihilation of two identical particles to compensate for the method-2 factor 1/(
√

2)nid ,

which appears in γijIJ(Eγ , µ). In consequence the absolute cross sections shown in the upper

panel of figure 3 and in both panels of figures 4 and 5 should also be multiplied by two.

Since figures 3 and 4 display the most important results of the paper, we provide the

corrected versions on the following pages.
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Soft function coefficients. A contribution from the integral Irealvv (defined in ap-

pendix C.2) was missed. We list the corrected versions of the equations, which change

due to this omission.

W 22
(+−)(+−)(ω, µ, ν) = δ(ω) +

α̂2

4π

[
δ(ω)

(
−8 ln

mW

µ
− 16 ln

mW

µ
ln
mW

ν

)

+

[
1

ω

][mW ]

∗

(
−6 ln

(
m2
W + ω2

m2
W

)
− 2

ω2

m2
W + ω2

+ 8 ln
µ2

m2
W

)]
,

(3.39)

Ŵ 22
(+−)(+−)(ω, µs, ν) =

[
1 +

α̂2

4π

((
−16 ln

mW

µs
∂η

)
− 8 ln

mW

µs

)]
e−γEη

Γ(η)

1

ω

(ω
ν

)η
+
α̂2

4π
[−6F (ω)− 2P (ω)] . (3.58)

We further specify the Laplace transform and inverse Laplace transform of the new

structure:

L
{

ω

m2
W + ω2

}
= cos(mW s) ci(mW s)− sin(mW s) si(mW s) ≡ Q̃(s) ,

P (ω) ≡ L−1
[(κ
ν

)η
Q̃
(
e−γE/κ

)]
=

(
e−γE

ν

)η
ω1+η

m2
WΓ(2 + η)

3F2

(
1, 1,

3

2
; 1 +

η

2
,

3

2
+
η

2
;− ω2

m2
W

)
.

The consequences of this correction for the numerical results in section 4 are very

minor. The sentences specifying the relative effect of resummation on p. 37 should read:

“It is also apparent that the different levels of resummation successively reduce

the theoretical uncertainty considerably, from 17% at LL, to 8% at NLL and

1% at NLL′ at mχ = 2 TeV. Numerically, for the two mass values mχ =

2 TeV (10 TeV) the ratio to the Sommerfeld-only rate is 0.641+0.115
−0.097 (0.402+0.096

−0.077)

at LL, 0.707+0.054
−0.054 (0.463+0.032

−0.033) at NLL and 0.667+0.007
−0.006 (0.435+0.005

−0.004) at NLL′”.

Furthermore the corrected eqs. (4.3), (4.4) are

〈σv〉 = 2×
[

34.246× (1.2799)︸ ︷︷ ︸
∼3%

+ 2Re [42.100× (−0.9173 + 5.7918i)]︸ ︷︷ ︸
∼−5%

+ 51.755× (29.907)︸ ︷︷ ︸
∼102%

]
× 10−28 cm3/s = 3.0289× 10−25 cm3/s , (4.3)

〈σv〉 = 2×
[

1.1345× (1.2440)︸ ︷︷ ︸
∼19%

+ 2Re [0.35103× (−0.9553 + 7.7861i)]︸ ︷︷ ︸
∼−9%

+ 0.10861× (62.788)︸ ︷︷ ︸
∼90%

]
× 10−27 cm3/s = 1.5120× 10−26 cm3/s . (4.4)
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In addition to the modifications in individual terms, this includes the overall factor of 2

correction discussed above. Figures 3 and 4 provided in this erratum have been generated

with the corrected soft function but except at the low end of the mχ range, only the factor

of two change is visible.

Due to the new term, the list of abbreviations defined after (5.7) should be extended

to include

κR = κR(xγ) =
1

2
ln
(
1 + x2γ

)
.

κR exhibits the same scaling with Eγres as λR in table 1. The following equations in section 5

and appendix C change and the corrected versions are as follows:

c
int(1,0)
(+−)(+−) =

1

4

(
19

6
−11

3
s2W

)
lµ2−

73

18
+

5π2

12
+

1

4
zγ+l2R−

19

24
lR−

3

2
λR−

1

2
κR ,

(5.13)

[σv]nrw 1-loop
(+−)(+−) = [σv]int 1-loop

(+−)(+−)+[σv]tree(+−)(+−)
α̂2

π

[
3

2
λR

(
2Eγres
mW

)
+

1

2
κR

(
2Eγres
mW

)]
, (5.16)

c
int(2,2)
(+−)(+−) =

1

4

(
−3

4

)[
19

3
−11

3
s2W

]
lµ2+

+
4489

2304
−37π2

48
− 3

16
zγ+

9

8
λR+

3

8
κR+lR−

1

4
l2R , (5.23)

[σv]nrw(+−)(+−)−[σv]int(+−)(+−)

[σv]tree(+−)(+−)
=
α̂2

π

[
3

2
λR+

1

2
κR

]
+
α̂2
2

π2

[
−L

4

32
+

(
19

144
−lR

)
L3+O(L2)

]
,

(5.24)

W 22
(00)(00)(ω, µ, ν) =

α̂2

4π

[
1

ω

][mW ]

∗

(
8 ln

(
m2
W+ω2

m2
W

)
−8

ω2

m2
W+ω2

)
,

W 22
(00)(+−)(ω, µ, ν) = W 22∗

(+−),(00)(ω, µ, ν)

=
α̂2

4π

[
δ(ω) (8−8πi) ln

mW

µ
+

[
1

ω

][mW ]

∗

×
(

4 ln

(
m2
W+ω2

m2
W

)
+4

ω2

m2
W+ω2

)]
,

W 22
(+−)(+−)(ω, µ, ν) = δ(ω)+

α̂2

4π

[
δ(ω)

(
−8 ln

mW

µ
−16 ln

mW

µ
ln
mW

ν

)

+

[
1

ω

][mW ]

∗

(
−6 ln

(
m2
W+ω2

m2
W

)
−2

ω2

m2
W+ω2

+8 ln
µ2

m2
W

)]
,

(C.38)

Ŵ 22
(00)(00)(ω, µs, ν) =

α̂2

4π
[8F (ω)−8P (ω)] ,
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Figure 3. Integrated photon energy spectrum within Eγres from the endpoint mχ in the tree

(Sommerfeld only) and LL, NLL, NLL′ resummed approximation. The energy resolution is set to

Eγres = mW . The shaded/hatched bands show the scale variation of the respective approximation

as described in the text. For the NLL′ result the theoretical uncertainty is given by the thickness

of the red line.

Ŵ 22
(00)(+−)(ω, µs, ν) = Ŵ 22∗

(+−)(00)(ω, µs, ν)

=

[
α̂2

4π
(8−8πi) ln

mW

µs

]
e−γEη

Γ(η)

1

ω

(ω
ν

)η
+
α̂2

4π
[4F (ω)+4P (ω)] ,

Ŵ 22
(+−)(+−)(ω, µs, ν) =

[
1+

α̂2

4π

((
−16 ln

mW

µs
∂η

)
−8 ln

mW

µs

)]
e−γEη

Γ(η)

1

ω

(ω
ν

)η
+
α̂2

4π
[−6F (ω)−2P (ω)] . (C.42)
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Figure 4. Annihilation cross sections plotted as function of Eγres. The blue-dotted line shows the

cross section for the narrow resolution computed in [4]. The red-dashed line shows the intermediate

resolution cross section. The light-grey (blue) area represents the region of validity for the narrow

resolution case and the dark-grey (red) area represents the region of validity for the intermedi-

ate resolution case. The ratio of the intermediate to narrow resolution annihilation cross section

〈σv〉int/〈σv〉nrw is added below each plot. The results are shown for DM masses of mχ = 2 TeV

(upper plot) and mχ = 10 TeV (lower plot).

In appendix E, eqs. (E.10), (E.11) and (E.12) require correction. To allow for the

contribution from the new term κR(xγ) it is convenient to generalize the definitions of the

integrals in (E.5) and (E.6) to

ϕfR = ϕfR(xγ) ≡
∫ xγ

0

dy

y
[fR(xγ − y)− fR(xγ)] , (E.5)

ϑfR = ϑfR(xγ) ≡
∫ xγ

0
dy

ln(y)

y
[fR(xγ − y)− fR(xγ)] . (E.6)
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For reasons of brevity, we will not explicitly repeat the expansion coefficients in (E.10),

(E.11) and (E.12) already given in [1]. Instead, we denote them by c
int(n,m)
IJ, old and simply add

the new terms that originate from the previously omitted ω/(m2
W + ω2)-terms in the soft

functions. Coefficients that do not change are not repeated. The corrected expressions are:

c
int(1,0)
(00)(00) = c

int(1,0)
(00)(00), old − 2κR

c
int(2,2)
(00)(00) = c

int(2,2)
(00)(00), old +

3κR
2

c
int(2,1)
(00)(00) = c

int(2,1)
(00)(00), old − 2κRlR −

125

24
κR − 2ϕκR

c
int(2,0)
(00)(00) = c

int(2,0)
(00)(00), old + lµs

(
−2κRlνs + 4κRlR +

91κR
12

+ 4ϕκR

)
+ lµκR

(
−19

6
+

11

6
ŝ2W

)
− 2κRl

2
R + lR

(
19κR

12
− 4ϕκR

)
− κRzγ

2
+

(
1

9
+
π2

6

)
κR +

19ϕκR
12

− 4ϑκR (E.10)

c
int(1,0)
(+−)(00) = c

int(1,0)
(+−)(00), old + κR

c
int(2,2)
(+−)(00) = c

int(2,2)
(+−)(00), old −

3

4
κR

c
int(2,1)
(+−)(00) = c

int(2,1)
(+−)(00), old + κRlR +

125

48
κR + ϕκR

c
int(2,0)
(+−)(00) = c

int(2,0)
(+−)(00), old +

[
lνsκR − 2lRκR −

91

24
κR − 2ϕκR

]
lµs

+

(
19

12
− 11

12
ŝ2W

)
κRlµ + κRl

2
R +

(
−19

24
κR + 2ϕκR

)
lR

+

(
− 1

18
− π2

12
+
zγ
4

)
κR −

19

24
ϕκR + 2ϑκR (E.11)

c
int(1,0)
(+−)(+−) = c

int(1,0)
(+−)(+−), old −

1

2
κR

c
int(2,2)
(+−)(+−) = c

int(2,2)
(+−)(+−), old +

3

8
κR

c
int(2,1)
(+−)(+−) = c

int(2,1)
(+−)(+−), old −

1

2
κRlR −

125

96
κR −

1

2
ϕκR

c
int(2,0)
(+−)(+−) = c

int(2,0)
(+−)(+−), old + lµs

[
− 1

2
κRlνs + κRlR +

91

48
κR + ϕκR

]
+

(
−19

24
+

11

24
ŝ2W

)
κRlµ −

1

2
κRl

2
R + lR

(
19

48
κR − ϕκR

)
+

(
1

36
+
π2

24
− zγ

8

)
κR +

19

48
ϕκR − ϑκR (E.12)
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Further corrections.

• In eq. (2.10) the χ field on the left in the χχ bilinears should be transposed.

• In section 2.1.3 we derive the annihilation operators. In the paragraph below (2.35)

we state that there are three spin-0 and four spin-1 operators left. This statement

should instead say that there are four spin-0 and three spin-1 operators left.

• In (2.53), a factor of 1/(2π) should be added to the last line such that (2.53)

changes to

−g⊥µµ′ JXV (p2,mW ) =
1

π
Im
[
− g⊥µµ′ iJXV (p2,mW )

]
≡ 1

π
Im

[
i

∫
d4x eip·x〈0|T

{
AX⊥c,µ′(x)AV⊥c,µ(0)

}
|0〉
]

=
1

2π

∫
d4x eip·x 〈0| AX⊥c,µ′(x)AV⊥c,µ(0) |0〉 . (2.53)

The same factor of 1/(2π) should be added to (B.28). In (2.59), 2π needs to be

multiplied to lines 2, 3 and 4 of the equation. Furthermore, (2.61) should read

γijIJ(Eγ) =
1

4

1

2πmχ
〈ξc†0 Γµνj ξ0〉∗ 〈ξc†0 Γi,µνξ0〉

× Z33
γ

∫
dωJXV (4mχ(mχ − Eγ − ω/2),mW )W ij

IJ,V 3X3(ω) , (2.61)

and the result of (2.62) is 4 instead of 8. The numerical results are not affected by

these corrections.

• The comparison between the resummation schemes in section 5.3 was incorrect and

should instead read

[σv]Res.Sc.I
(00)(00) − [σv]Res.Sc.II

(00)(00)

[σv]tree(00)(00)

=
α̂2
2

π2
4lR (ϕλR − ϕκR) ,

[σv]Res.Sc.I
(00)(+−) − [σv]Res.Sc.II

(00)(+−)

[σv]tree(00)(+−)
=
α̂2
2

π2
2lR (ϕλR + ϕκR) ,

[σv]Res.Sc.I
(+−)(+−) − [σv]Res.Sc.II

(+−)(+−)

[σv]tree(+−)(+−)
= − α̂

2
2

π2
lR (3ϕλR + ϕκR) . (5.25)
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