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Hereditary Evolution Processes Under
Impulsive Effects
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Abstract. In this note, we deal with a model of population dynamics with
memory effects subject to instantaneous external actions. We interpret
the model as an impulsive Cauchy problem driven by a semilinear differ-
ential equation with functional delay. The existence of delayed impulsive
solutions to the Cauchy problem leads to the presence of hereditary im-
pulsive dynamics for the model. Furthermore, using the same procedure
we study a nonlinear reaction–diffusion model.
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1. Introduction

We investigate on the presence of hereditary dynamics for a model driven by
the parametric differential equation

∂u

∂t
(t, x) = −b(t, x)u(t, x) + g

(
t, u(t, x),

∫ 0

−τ

u(t + θ, x)dθ

)
,

t ∈ [0, T ] , x ∈ [0, 1] (1)

with memory effects. This equation is usually adopted for describing the
dynamics of a population: u(t, x) represents the density of the population at
time t and place x; −b(t, x) is the removal coefficient including the death rate
and the displacement of the population; the nonlinearity g is the population
development law involving a memory term expressed by its integral argu-
ment. Delayed and hereditary models are more appropriate than the classic
ones, such as in the study of some pest populations where the individual’s
maturation time is not negligible or his current life is influenced by his own
past.
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We will treat the above equation as a special case of the following semi-
linear differential equation with functional delay:

y′(t) = A(t)y(t) + f (t, y(t), yt) , t ∈ [0, T ], (2)

where {A(t)}0≤t≤T is a family of linear operators generating an evolution
system and f is a nonlinear function. For every t ∈ [0, T ], the functional
argument yt of f is defined as usual by

yt(θ) = y(t + θ), θ ∈ [−τ, 0], (3)

and belongs to the space C0 of all piecewise continuous functions defined on a
given interval [−τ, 0], τ > 0. The map yt represents the history of the process
starting from the present time t and going back up to t−τ ; the past from time
t = 0 is provided by a given function ϕ ∈ C0. In many fields of applied sciences
the past of the system influences its evolution, consequently it is necessary to
implement models in which the dependence of the studied system on the past
is formalized. In this direction, several articles on the subject have appeared
in recent years (see, e.g. [14,18], or the interesting book [5]).

In our model, possible external actions aimed at regulating the evolution
of the phenomena taking place at pre-established times are allowed. In the
general setting, these actions are represented by functions Ii : C0 → E,
i = 1, . . . , p, causing sudden abrupt changes on the state of the system driven
by (2). We consider impulse functions Ii depending on the whole dynamic
of the problem up to the time when the impulse has to act, so that the
delay structure of the system is preserved also in this aspect of the problem,
formally described by the equations

y(t+i ) = y(ti) + Ii(yti
), i = 1, . . . , p.

The models involving impulsive functions are an excellent tool whenever a
real world phenomenon exhibits instantaneous changes in state variables,
as for example in real-time software verification, chemical process plants,
mobile robotics, automotive control, nerve impulse transmission. In biology
they are called “regulation functions” and are used for instance in the study
of population dynamics to keep the population in a prescribed range.

To obtain the existence of solutions to our Cauchy impulsive problem,
we break it down into an ordered sequence of non-impulsive Cauchy problems.
This method works not only when the impulses are given at fixed times (see,
e.g. [6,8]), but also in the case with impulses at variable times (see, e.g. [2,12]).
It is worth emphasizing that the advantage of this approach in the study of
the existence of solutions to impulsive problems of the first type, compared
to others in the literature, is that it allows not to request hypotheses of any
kind on the impulse functions. In the setting of delay problems, this technique
leads to the construction of the solutions by means of an “extension-with-
memory” process (see, e.g. [10] for the case of distributed delay, or e.g. [3] for
the functional delay). We wish to underline that here we obtain the existence
of delayed impulsive mild solutions considering problems whose initial data
belong to the same space C0, unlike what is in [3] where the initial data are
fixed in turn in the different spaces C([−τ, ti−1], E), i = 1, . . . , p.
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Furthermore, with the same technique we also study a model driven by
the parabolic partial differential equation

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + g

(
t, u(t, x),

∫ 0

−τ

u(t + θ, x)dθ

)
,

t ∈ [0, T ] , x ∈ [0, 1], (4)

with memory effects. Reaction–diffusion equations with time delays like (4)
appear in problems with delayed connections in which the processing of cer-
tain information is required, in relation not only to the dynamics of popula-
tions but also to chemical reactions and other physical phenomena.

The paper is divided into two parts: Sect. 2 is devoted to the study the
existence of solutions to the impulsive Cauchy problem with functional delay
driven by Eq. (2); using the theory there developed, in Sect. 3, we provide
the existence of evolutionary dynamics to the models driven, respectively, by
(1) and (4).

At the end of the paper, we state an Appendix containing some back-
ground material, to make the article self-contained.

2. The Impulsive Cauchy Problem with Functional Delay

Let us consider the impulsive Cauchy problem with functional delay⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y′(t) = A(t)y(t) + f (t, y(t), yt) , t ∈ [0, T ] , t �= ti , i = 1, . . . , p

y(t+i ) = y(ti) + Ii(yti
) , i = 1, . . . , p

yt0 = ϕ

(5)

where {A(t)}0≤t≤T is a family of linear operators; f : [0, T ] × E × C0 → E
is a function; 0 = t0 < t1 < · · · < tp < tp+1 = T ; Ii : C0 → E is an impulse
function; ϕ ∈ C0. The set

C0 = {c : [−τ, 0] → E : c has at most a finite number of jump discontinuities} ,

endowed with the norm

‖c‖C0 :=
1
τ

∫ 0

−τ

‖c(θ)‖dθ,

is a normed (not Banach) space.

Remark 2.1. Our problem includes the possibility that an impulse I0 : C0 →
E can be given in t0 = 0. In this case, we shall rewrite problem (5) taking
the function

ϕ0(θ) =

{
ϕ(θ), θ ∈ [−τ, 0[
ϕ(0) + I0(ϕ), θ = 0

instead of ϕ. Notice that ϕ0 belongs to C0 as well.

On the linear part we assume that (see Sect. 3.2):
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(A) {A(t)}0≤t≤T is a family of linear operators, A(t) : D(A) ⊂ E → E,
t ∈ [0, T ], D(A) is a dense subset of the Banach space E not depending
on t, generating an evolution system {T (t, s)}0≤s≤t≤T .

We recall (see, e.g. [9]) that there exists a positive number D such that

‖T (t, s)‖L(E) ≤ D , for every (t, s) ∈ Δ, (6)

where L(E) is the space of all bounded linear operators from E to E furnished
with the strong operator topology.

Let us define the sets of piecewise continuous functions, for i = 1, . . . ,
p + 1,

S([−τ, ti], E)

=

⎧⎪⎨
⎪⎩

y| [−τ,0] = ϕ
y : [−τ, ti] → E : y| [0,t1], y| ]tj−1,tj ] continuous , j = 2, . . . , i

∃ y
(
t+j

)
= lim

h→0+
y(tj + h) ∈ E, j = 1, . . . , i − 1

⎫⎪⎬
⎪⎭ .

Definition 2.1. A function y : [−τ, T ] → E is said to be a delayed impulsive
mild solution of problem (5) if

(i) y(t) = T (t, 0)ϕ(0) +
∑

0<ti<t

T (t, ti)Ii(yti
) +

∫ t

0

T (t, s)f(s, y(s), ys) ds , t ∈

[0, T ];
(ii) y(t+i ) = y(ti) + Ii(yti

) , i = 1, · · · , p;
(iii) yt0 = ϕ.
We mean that

∑
0<ti<t T (t, ti)Ii(yti

) = 0 if t ∈ [0, t1] .

Notice that if y is a delayed impulsive mild solution, then y ∈ S([−τ, T ], E).
We assume that the nonlinearity f : [0, T ] × E × C0 → E satisfies the

properties:
(f1) f is such that f(t, ·, ·) is continuous, for every t ∈ [0, T ], and f

(·, y(·), y(·)
)

is measurable, for every y ∈ S([−τ, T ], E);
(f2) there exists α ∈ L1

+([0, T ]) such that

‖f(t, y, c)‖ ≤ α(t)(1 + ‖y‖ + ‖c‖C0) , for a.e. t ∈ [0, T ] and all y ∈ E, c ∈ C0 ;

(f3) there exists h ∈ L1
+([0, T ]) such that

χ(f(t,Ω1,Ω2)) ≤ h(t)
[
χ(Ω1) + sup

−τ≤θ≤0
χ(Ω2(θ))

]
, for a.e. t ∈ [0, T ]

for every bounded sets Ω1 ⊂ E, Ω2 ⊂ C0, where χ is the Hausdorff
measure of noncompactness in E.

Remark 2.2. If the Banach space E is separable, a sufficient condition for
hypothesis (f1) to be satisfied is that f is a Carathéodory function (see [11,
Corollary 2.5.24]).

On the impulse functions Ii : C0 → E, i = 1, . . . , p, no hypotheses are re-
quired, so that a wide class of problems with impulsive effects can be consid-
ered.
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We denote by 02 the zero-element of R
2 and by the symbol R2

0,+ the
standard positive cone R

+
0 ×R

+
0 endowed with the partial ordering �, where

x � y if and only if y − x ∈ R
2
0,+, for x, y ∈ R

2; clearly, x ≺ y means that
x � y and x �= y.

Let us fix i ∈ {0, · · · p} and L > 0. We consider the well-defined vecto-
rial measure of noncompactness νL

i (cf. [13, Example 2.1.4]), acting on the
bounded subsets of C([ti, ti+1], E) and taking values on R

2
0,+, defined by

νL
i (Ω) = max

{wn}n⊂Ω
(γi({wn}n), ηi({wn}n)) , for all bounded Ω ⊂ C([ti, ti+1], E), (7)

where

γi({wn}n) = sup
t∈[ti,ti+1]

e−Ltχ ({wn(t)}n) ;

ηi({wn}n) = modC i({wn}n)

being modC i the modulus of continuity in C([ti, ti+1], E). It is known that
νL

i is monotone and invariant with respect to the union with compact sets
(hence also nonsingular).

Finally, for every z ∈ C([ti−1, ti], E) and ξ ∈ S([−τ, ti−1], E), i =
1, . . . , p + 1, we consider the map z[ξ] ∈ S([−τ, ti], E) defined by

z[ξ](t) =

{
z(t), t ∈]ti−1, ti]
ξ(t), t ∈ [−τ, ti−1].

(8)

2.1. Existence of Solutions

In this Section we show the existence of delayed impulsive mild solutions to
(5). Preliminarily, we state the version for the Hausdorff measure of noncom-
pactness χ of Proposition 1.4 (b) in [16]

Proposition 2.1. If E is a real Banach space and M ⊂ L1([a, b], E) is a
countable and integrably bounded set, then the function χ(M(·)) belongs to
L1

+([a, b]) and satisfies the inequality

χ

(∫ b

a

M(s) ds

)
≤ 4

∫ b

a

χ(M(s)) ds.

Further, we provide the following technical result.

Lemma 2.1. For every k > 0, w ∈ L1
+([0, T ]), there exists H := n(k,w) > 0

such that

bH := max
t∈[0,T ]

∫ t

0

kw(s)e−H(t−s) ds < 1.

Proof. We first show that

inf
n∈N

bn = 0, (9)

where bn := maxt∈[0,T ]

∫ t

0
kw(s)e−n(t−s) ds , n ∈ N.

It is easy to see that, for every n ∈ N, there exists τn ∈ [0, T ] such that

bn − 1
n

<

∫ τn

0

kw(s)e−n(τn−s) ds =
∫ T

0

kw(s)κ[0,τn](s)e−n(τn−s) ds (10)
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being κ[0,τn] the characteristic function of the set [0, τn].
Now, we note that the sequence (ψn)n, where

ψn(s) = kw(s)κ[0,τn](s)e−n(τn−s) , for all s ∈ [0, T ], n ∈ N ,

eventually passing to a subsequence, is such that

ψn(s) → 0 , for every s ∈ ]0, T [

and

‖ψn(s)‖ ≤ kw(s) , for every s ∈ [0, T ] , n ∈ N.

So the Lebesgue convergence theorem implies that limn→∞
∫ T

0
ψn(s) ds =

0. Since bn ≥ 0, by (10) we obtain limn→∞ bn = 0. Hence, (9) is satisfied.
Therefore, there exists H ∈ N such that bH < 1. �

Now, we are in condition to provide our main result.

Theorem 2.1. Let E be a real Banach space. Assume that {A(t)}t∈[0,T ] and
f : [0, T ] × E × C0 → E, respectively, satisfy (A) and (f1)–(f3).
Then problem (5) has at least one delayed impulsive mild solution.

Proof. We proceed by steps.

Step 1. Let us consider the real interval [0, t1] and the related Cauchy problem
with functional delay arising from (5)⎧⎨

⎩
y′(t) = A(t)y(t) + f(t, y(t), yt) , t ∈ [0, t1],

yt0 = ϕ ∈ C0.
(11)

A mild solution to (11) will be a function y : [−τ, t1] → E such that

y(t) = T (t, 0)ϕ(0) +
∫ t

0

T (t, s)f(s, y(s), ys) ds , t ∈ [0, t1],

yt0 = ϕ. (12)

Step 1.1. Let us define the integral operator Γ1 : C([0, t1], E) → C([0, t1], E)
as

Γ1(y)(t) = T (t, 0)ϕ(0) +
∫ t

0

T (t, s)f(s, y(s), y[ϕ]s) ds,

t ∈ [0, t1] , y ∈ C([0, t1], E), (13)

where the map y[ϕ]s ∈ C0, s ∈ [0, t1], is expressed by

if s ≤ τ, y[ϕ]s(θ) =

{
y(s + θ), −s < θ ≤ 0
ϕ(s + θ), −τ ≤ θ ≤ −s;

(14)

if s > τ, y[ϕ]s(θ) = y(s + θ), −τ ≤ θ ≤ 0 (15)

recalling (3) and that y[ϕ] ∈ S([−τ, t1], E) is defined by (8). Clearly, if T < τ
the case (15) does not appear.

As a consequence of assumption (f1) (that can be applied also to func-
tions defined on [−τ, t1] just by constant prolongation on [−τ, T ]), the map
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s �→ T (t, s)f(s, y[ϕ](s), y[ϕ]s) is measurable; hence, by (f2), the operator Γ1

is well defined.
Clearly, if ȳ is a fixed point for Γ1, then the function ȳ[ϕ] is a mild

solution to problem (11).

Step 1.2. We show that there exists a set in C([0, t1], E) which is invariant
under the action of Γ1.

In correspondence of D (see (6)) and α (cf. (f2)), by applying Lemma 2.1
with k = 2D and w = α, there exists N > 0 such that

qN = max
t∈[0,T ]

∫ t

0

2Dα(s)e−N(t−s) ds < 1. (16)

We fix

R1 ≥ D(‖ϕ(0)‖ + ‖α‖L1 + ‖ϕ‖C0‖α‖L1)
1 − qN

. (17)

Let IBR1 be the closed ball centered in 0 with radius R1, given by (17), in the
space (C([0, t1], E), ‖ · ‖N1), where ‖ · ‖N1 : C([0, t1], E) → R

+
0 is the Bielecki

norm

‖y‖N1 = max
t∈[0,t1]

e−Nt‖y(t)‖ , for all y ∈ C([0, t1], E) (18)

which is equivalent to the usual norm in C([0, t1], E), that we denote ‖ · ‖C1 .
We show that

Γ1(IBR1) ⊂ IBR1 . (19)

Fixed y ∈ IBR1 , for every t ∈ [0, t1], by (13), (f2), (6), we get

e−Nt‖Γ1(y)(t)‖ ≤ e−Nt‖T (t, 0)ϕ(0)‖ + e−Nt

∫ t

0

‖T (t, s)f(s, y(s), y[ϕ]s)‖ds

≤ D‖ϕ(0)‖ + e−NtD

∫ t

0

α(s)(1 + ‖y(s)‖ + ‖y[ϕ]s‖C0) ds

≤ D(‖ϕ(0)‖ + ‖α‖L1) + e−NtD

∫ t

0

α(s)‖y(s)‖ds

+e−NtD

∫ t

0

α(s)
(

1
τ

∫ 0

−τ

‖y[ϕ]s(θ)‖dθ

)
ds. (20)

Now, we observe that, by (14) and (15), the following estimates hold:
if t ≤ τ then∫ t

0

α(s)
(

1
τ

∫ 0

−τ

‖y[ϕ]s(θ)‖dθ

)
ds

=
∫ t

0

α(s)
(

1
τ

∫ −s

−τ

‖ϕ(s + θ)‖dθ +
1
τ

∫ 0

−s

‖y(s + θ)‖dθ

)
ds

=
∫ t

0

α(s)
(

1
τ

∫ 0

s−τ

‖ϕ(w)‖dw +
1
τ

∫ s

0

‖y(w)‖dw

)
ds

≤
∫ t

0

α(s)‖ϕ‖C0ds +
∫ t

0

α(s)
(

1
τ

∫ s

0

eNw‖y‖N1dw

)
ds
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≤ ‖ϕ‖C0‖α‖L1 +
∫ t

0

α(s)
(

1
τ

‖y‖N1

∫ s

0

eNsdw

)
ds

≤ ‖ϕ‖C0‖α‖L1 +
1
τ

‖y‖N1

∫ t

0

α(s)eNsτ ds

= ‖ϕ‖C0‖α‖L1 + ‖y‖N1

∫ t

0

α(s)eNs ds; (21)

if t > τ (and this holds only if τ < t1), we first note that∫ t

τ

α(s)
(

1
τ

∫ 0

−τ

‖y[ϕ]s(θ)‖dθ

)
ds =

∫ t

τ

α(s)
(

1
τ

∫ 0

−τ

‖y(s + θ)‖dθ

)
ds

=
∫ t

τ

α(s)
(

1
τ

∫ s

s−τ

‖y(w)‖dw

)
ds

≤
∫ t

τ

α(s)
(

1
τ

∫ s

s−τ

eNw‖y‖N1dw

)
ds

≤
∫ t

τ

α(s)
(

1
τ

‖y‖N1

∫ s

s−τ

eNsdw

)
ds

≤ 1
τ

‖y‖N1

∫ t

τ

α(s)eNsτ ds

= ‖y‖N1

∫ t

τ

α(s)eNs ds; (22)

hence, by (21) and (22), we obtain∫ t

0

α(s)
(

1
τ

∫ 0

−τ

‖y[ϕ]s(θ)‖dθ

)
ds

=
∫ τ

0

α(s)
(

1
τ

∫ 0

−τ

‖y[ϕ]s(θ)‖dθ

)
ds +

∫ t

τ

α(s)
(

1
τ

∫ 0

−τ

‖y[ϕ]s(θ)‖dθ

)
ds

≤ ‖ϕ‖C0‖α‖L1 + ‖y‖N1

∫ τ

0

α(s)eNs ds + ‖y‖N1

∫ t

τ

α(s)eNs ds

= ‖ϕ‖C0‖α‖L1 + ‖y‖N1

∫ t

0

α(s)eNs ds.

Therefore, for every t ∈ [0, t1] we obtain the following estimate for the last
addendum of (20)

e−NtD

∫ t

0

α(s)
(

1
τ

∫ 0

−τ

‖y[ϕ]s(θ)‖dθ

)
ds

≤ D‖ϕ‖C0‖α‖L1 + D‖y‖N1

∫ t

0

α(s)e−N(t−s)ds. (23)

Hence, by (20) and (23), we deduce

e−Nt‖Γ1(y)(t)‖ ≤ D(‖ϕ(0)‖ + ‖α‖L1) + e−NtD

∫ t

0

α(s)‖y(s)‖ds

+D‖ϕ‖C0‖α‖L1 + D‖y‖N1

∫ t

0

α(s)e−N(t−s)ds
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≤ D(‖ϕ(0)‖ + ‖α‖L1) + D‖y‖N1

∫ t

0

α(s)e−N(t−s) ds

+D‖ϕ‖C0‖α‖L1 + D‖y‖N1

∫ t

0

α(s)e−N(t−s)ds

= D(‖ϕ(0)‖ + ‖α‖L1 + ‖ϕ‖C0‖α‖L1)

+2D‖y‖N1

∫ t

0

α(s)e−N(t−s) ds

≤ D(‖ϕ(0)‖ + ‖α‖L1 + ‖ϕ‖C0‖α‖L1)

+2DR1

∫ t

0

α(s)e−N(t−s) ds.

Recalling (16) and (17), we, therefore, obtain

e−Nt‖Γ1(y)(t)‖ ≤ D(‖ϕ(0)‖ + ‖α‖L1 + ‖ϕ‖C0‖α‖L1) + R1qN ≤ R1.

So, by (18) we have ‖Γ1(y)‖N1 ≤ R1 and Γ1(y) ∈ IBR1 as desired.

Step 1.3. Consider the restriction of Γ1 to IBR1 , i.e. the map

Γ1,R1 : IBR1 → IBR1 .

The ball IBR1 is closed and convex in the space (C([0, t1], E), ‖ · ‖N1), so it is
a closed and convex subset of (C([0, t1], E), ‖ · ‖C1).

Step 1.4. The integral multioperator Γ1,R1 has closed graph.

Let (yn)n be a sequence in IBR1 such that yn → ȳ in (C([0, t1], E), ‖ · ‖C1);
further, suppose that (Γ1,R1(yn))n converges to z̄ in (C([0, t1], E), ‖ · ‖C1).
Let us fix t ∈ [0, t1] and consider the estimate (cf. (6))

‖Γ1,R1(yn)(t) − Γ1,R1(ȳ)(t)‖ ≤ D

∫ t

0

‖f(s, yn(s), yn[ϕ]s)

−f(s, ȳ(s), ȳ[ϕ]s)‖ds, (24)

for every n ∈ N.
We firstly observe that the sequence

(
f(·, yn(·), yn[ϕ](·))

)
n

is integrably
bounded in [0, t]. Indeed, put Q1 > 0 such that

IBR1 ⊂ B(0, Q1), (25)

where B(0, Q1) is the ball centered in 0 with radius Q1 in the space (C([0, t1],
E), ‖ · ‖C1), by (f2), (8) and (25), we have

‖f(s, yn(s), yn[ϕ]s)‖ ≤ α(s) (1 + ‖yn(s)‖ + ‖yn[ϕ]s‖C0)

≤ α(s)

(
1 + ‖yn‖C1 +

1

τ

∫ 0

−τ

‖ϕ(w)‖dw +
1

τ

∫ s

0

‖yn(w)‖dw

)

≤ α(s)

(
1 + ‖ϕ‖C0 + ‖yn‖C1 +

t1
τ

‖yn‖C1

)

≤ α(s)

(
1 + ‖ϕ‖C0 + Q1 +

t1
τ

Q1

)
,

for a.e.s ∈ [0, t]and everyn ∈ N. (26)
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Put α1 : [0, t1] → R the map defined by

α1(t) = α(t)
(

1 + ‖ϕ‖C0 + Q1 +
t1
τ

Q1

)
, t ∈ [0, t1], (27)

obviously α1 ∈ L1
+([0, t1]) and so (26) implies the integrably boundedness.

Further, the sequence
(
f(·, yn(·), yn[ϕ](·))

)
n

pointwise converges in [0, t]. To
this aim, fixed s ∈ [0, t] we show that

f(s, yn(s), yn[ϕ]s) → f(s, ȳ(s), ȳ[ϕ]s) in E. (28)

From the convergence yn → ȳ in (C([0, t1], E), ‖ · ‖C1), we clearly have that
yn(s) → ȳ(s) in E. On the other hand, we also deduce that yn[ϕ]s → ȳ[ϕ]s
in C0, indeed using (14) and (15):
if s ≤ τ then

‖yn[ϕ]s − ȳ[ϕ]s‖C0 =
1
τ

∫ −s

−τ

‖yn[ϕ]s(θ) − ȳ[ϕ]s(θ)‖dθ

+
1
τ

∫ 0

−s

‖yn[ϕ]s(θ) − ȳ[ϕ]s(θ)‖dθ

=
1
τ

∫ 0

−s

‖yn(s + θ) − ȳ(s + θ)‖dθ

=
1
τ

∫ s

0

‖yn(w) − ȳ(w)‖dw

≤ 1
τ

∫ t1

0

‖yn − ȳ‖C1dw =
t1
τ

‖yn − ȳ‖C1 ;

if s > τ (and this holds only if τ < t1) then

‖yn[ϕ]s − ȳ[ϕ]s‖C0 =
1
τ

∫ 0

−τ

‖yn(s + θ) − ȳ(s + θ)‖dθ

=
1
τ

∫ s

s−τ

‖yn(w) − ȳ(w)‖dw

≤ 1
τ

∫ t1

0

‖yn − ȳ‖C1dw =
t1
τ

‖yn − ȳ‖C1 .

Recalling now that f(s, ·, ·) is continuous, in particular, in (ȳ(s), ȳ[ϕ]s), the
convergence (28) is achieved.

We can now apply the Lebesgue convergence theorem in [0, t] in (24),
so that

Γ1,R1(yn)(t) → Γ1,R1(ȳ)(t).

By the uniqueness of the limit algorithm, we can write

z̄(t) = Γ1,R1(ȳ)(t).

Therefore Γ1,R1(yn) → Γ1,R1(ȳ) in (C([0, t1], E), ‖ · ‖C1). Hence the
graph of Γ1,R1 is closed.

Step 1.5. Considered the function h ∈ L1
+([0, T ]) by (f3) and the constant D

by (6), we can apply Lemma 2.1 with k = 8D, w = h, and choose L large
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enough so that

pL = max
t∈[0,T ]

∫ t

0

8De−L(t−s)h(s) ds < 1. (29)

Then we take the corresponding vectorial MNC νL
1 on C([0, t1], E) de-

fined in (7).
We prove that the integral operator Γ1,R1 is νL

1 -condensing, i.e. that
(I) Γ1,R1(IBR1) is bounded

and
(II) νL

1 (Ω) � νL
1 (Γ1,R1(Ω)) implies νL

1 (Ω) = 02, for every Ω ⊂ IBR1 .
First, by (19) and (25) we have that

Γ1,R1(IBR1) ⊂ B(0, Q1).

Therefore, condition (I) of νL
1 -condensivity is trivially satisfied.

Now, let Ω ⊂ IBR1 be such that

νL
1 (Ω) � νL

1 (Γ1,R1(Ω)). (30)

Recalling that νL
1 (Γ1,R1(Ω)) is a maximum (see (7)), we consider countable

set {zn}n ⊂ Γ1,R1(Ω) which achieves that maximum. Let now {yn}n ⊂ Ω be
a set such that, for every n ∈ N, zn = Γ1,R1(yn), i.e.

zn(t) = T (t, 0)ϕ(0) +
∫ t

0

T (t, s)f(s, yn(s), yn[ϕ]s) ds , t ∈ [0, t1]. (31)

Of course, (30) and (7) provide

(γ1 ({yn}n) , η1 ({yn}n))

� νL
1 (Ω) � νL

1 (Γ1,R1(Ω)) = (γ1 ({zn}n) , η1 ({zn}n)) . (32)

First of all, from the above relation, we have the inequality

γ1 ({yn}n) ≤ γ1 ({zn}n) . (33)

Let us estimate (cf. (7))

γ1 ({zn}n) = sup
t∈[0,t1]

e−Ltχ ({zn(t)}n) . (34)

Now, fixed t ∈ [0, t1], by (f2) and (6) and by means of analogous argu-
ments as above, we have that the set M1

t =
{
T (t, ·)f (·, yn(·), yn[ϕ](·)

)}
n

⊂
L1([0, t], E) is integrably bounded. Then, by Proposition 2.1, we have that
the function χ(M1

t (·)) belongs to L1
+([0, t]) and

χ

(∫ t

0

M1
t (s) ds

)
≤ 4

∫ t

0

χ
(M1

t (s)
)

ds.

So, by (31), (6) and the properties of χ, we have

χ ({zn(t)}n) ≤ χ ({T (t, 0)ϕ(0)}) + 4
∫ t

0

χ ({T (t, s)f(s, yn(s), yn[ϕ]s)}n) ds

≤ 4D

∫ t

0

χ ({f(s, yn(s), yn[ϕ]s)}n) ds. (35)
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Since {yn}n is a subset of Ω ⊂ IBR1 , for every s ∈ [0, t] the sets {yn(s)}n

and {yn[ϕ]s}n are bounded; indeed for s ∈ [0, t1] we have ‖yn(s)‖ ≤ R1

and ‖yn[ϕ]s‖C0 ≤ ‖ϕ‖C0 + R1. Hence, we can apply (f3) and, using also the
definition of γ1 (cf. (7)), for a.e. s ∈ [0, t], we get

χ ({f(s, yn(s), yn[ϕ]s)}n) ≤ h(s)
[
χ({yn(s)}n) + sup

−τ≤θ≤0
χ({yn[ϕ]s(θ)}n)

]

≤ h(s)
[
eLsγ1({yn}n) + sup

−τ≤θ≤0
χ({yn[ϕ]s(θ)}n)

]
.

(36)

Moreover, by (14) and the definition of γ1, we have
if s ≤ τ then

sup
−τ≤θ≤0

χ({yn[ϕ]s(θ)}n) = max

{
sup

−τ≤θ≤−s
χ({ϕ(s + θ)}), sup

−s≤θ≤0
χ({yn(s + θ)}n)

}

= sup
0≤w≤s

χ({yn(w)}n);

if s > τ (and this holds only if τ < t1) then

sup
−τ≤θ≤0

χ({yn[ϕ]s(θ)}n) = sup
−τ≤θ≤0

χ({yn(s + θ)}n) = sup
s−τ≤w≤s

χ({yn(w)}n);

so, in any case, the following estimate holds

sup
−τ≤θ≤0

χ({yn[ϕ]s(θ)}n) ≤ eLsγ1({yn}n).

Therefore, by (36), we have

χ ({f(s, yn(s), yn[ϕ]s)}n) ≤ 2h(s)eLsγ1({yn}n) (37)

and hence (35) provides

χ ({zn(t)}n) ≤ 8Dγ1({yn}n)
∫ t

0

eLsh(s) ds. (38)

We can conclude that, by (34), (38), (29) and (33), the following chain of
inequalities holds:

γ1 ({zn}n) ≤ sup
t∈[0,t1]

e−Lt8Dγ1 ({yn}n)
∫ t

0

eLsh(s) ds

≤ pLγ1 ({yn}n) ≤ pLγ1 ({zn}n) . (39)

Since pL < 1 (cf. (29)) we deduce that the above relation is true only if

γ1({zn}n) = 0. (40)

Now, we show that (cf. (7))

η1({zn}n) = 0. (41)

As a consequence of (39) and (40) we also get

γ1({yn}n) = 0. (42)

By (37) and (42), we get

χ ({f(s, yn(s), yn[ϕ]s)}n) = 0.
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Moreover, by (26) and (27), we know the set {f(·, yn(·), yn[ϕ](·)}n to be semi-
compact. Put G1 : L1([0, t1], E) → C([0, t1], E) given by

G1g(t) =
∫ t

0

T (t, s)g(s)ds, t ∈ [0, t1], g ∈ L1([0, t1], E),

thanks to [9, Theorem 2] we can apply [13, Theorem 5.1.1] so that the set
{G1f(·, yn(·), yn[ϕ](·)}n is relatively compact in C([0, t1], E). Therefore, it is
equicontinuous.

Hence, by modC1

({G1f(·, yn(·), yn[ϕ](·)}n

)
= 0 and (31) we get

modC1({zn}n) = 0, i.e. (41) holds.
Finally, from (40), (41), and (32) we have νL

1 (Γ1,R1(Ω)) = 02. By (30)
we can, therefore, conclude that νL

1 (Ω) = 02.

Step 1.6. We can apply [4, Theorem 2.2] and deduce that Γ1,R1 has a fixed
point in IBR1 , which is of course a fixed point for Γ1 too, i.e. there exists
y1 ∈ IBR1 such that

y1(t) = T (t, 0)ϕ(0) +
∫ t

0

T (t, s)f(s, y1(s), y1[ϕ]s) ds , t ∈ [0, t1]. (43)

The function y1[ϕ] satisfies (12) and hence is a mild solution for (11).

Step 2. Consider now the interval [t1, t2].
We associate to y1[ϕ] the map ϕ1 ∈ C0 defined by

ϕ1(θ) =

{
y1[ϕ]t1(θ), θ ∈ [−τ, 0[
y1[ϕ](t1) + I1(y1[ϕ]t1), θ = 0

(44)

and the corresponding Cauchy problem with functional delay⎧⎨
⎩

y′(t) = A(t)y(t) + f(t, y(t), yt) , t ∈ [t1, t2]

yt1 = ϕ1.
(45)

A mild solution to (45) will be a function y : [t1 − τ, t2] → E such that

y(t) = T (t, t1)ϕ1(0) +
∫ t

t1

T (t, s)f(s, y(s), ys) ds , t ∈ [t1, t2], (46)

yt1 = ϕ1. (47)

Step 2.1. Let us define the integral operator Γ2 : C([t1, t2], E) → C([t1, t2], E)
as

Γ2(y)(t) = T (t, t1)ϕ1(0) +
∫ t

t1

T (t, s)f(s, y(s), y[y1[ϕ]]s) ds ,

t ∈ [t1, t2] , y ∈ C([t1, t2], E), (48)

where the function ϕ1 is defined in (44) and the map y1[ϕ] is the mild solution
of (11) obtained in Step 1.6.

Step 2.2. Put R2 > 0 such that

R2 ≥ D(‖ϕ1(0)‖ + ‖α‖L1 + ‖ϕ‖C0‖α‖L1) + R1

1 − qN
(49)
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and considered the Bielecki norm in C([t1, t2], E), i.e. ‖·‖N2 : C([t1, t2], E) →
R

+
0

‖y‖N2 = max
t∈[t1,t2]

e−Nt‖y(t)‖ , for all y ∈ C([t1, t2], E),

let IBR2 be the closed ball centered in 0 with radius R2 in the space (C([t1, t2],
E), ‖ · ‖N2). We show that

Γ2(IBR2) ⊂ IBR2 . (50)

Indeed, fixed t ∈ [t1, t2], by (48), (f2), (6), we get

e−Nt‖Γ2(y)(t)‖ ≤ D
(∥∥ϕ1(0)

∥∥ + ‖α‖L1

)

+e−NtD

∫ t

t1

α(s)(‖y(s)‖ + ‖y[y1[ϕ]]s‖C0) ds

≤ D
(∥∥ϕ1(0)

∥∥ + ‖α‖L1

)
+ D‖y‖N2

∫ t

t1

α(s)e−N(t−s)ds

+e−NtD

∫ t

t1

α(s)‖y[y1[ϕ]]s‖C0 ds. (51)

Let us consider the last addendum. In the case t > τ > t1, we have the
estimate∫ t

t1

α(s)‖y[y1[ϕ]]s‖C0 ds =
∫ t

t1

α(s)
(

1
τ

∫ s

s−τ

‖y[y1[ϕ]](w)‖dw

)
ds

≤ ‖ϕ‖C0‖α‖L1 +
(‖y1‖N1 + ‖y‖N2

) ∫ t

t1

α(s)eNsds.

In the cases τ ≤ t1 or t ≤ τ is again possible to obtain the same estimate.
Hence, recalling (16), (49), (51), we get

e
−Nt‖Γ2(y)(t)‖ ≤ D

(∥∥∥ϕ
1
(0)

∥∥∥ + ‖α‖L1

)
+ D‖y‖N2

∫ t

t1

α(s)e
−N(t−s)

ds

+e
−Nt

D

(
‖ϕ‖C0‖α‖L1 + ‖y

1‖N1

∫ t

t1

α(s)e
Ns

ds + ‖y‖N2

∫ t

t1

α(s)e
Ns

ds

)

≤ D
(∥∥∥ϕ

1
(0)

∥∥∥ + ‖α‖L1 + ‖ϕ‖C0‖α‖L1

)

+2D‖y
1‖N1

∫ t

0
α(s)e

−N(t−s)
ds + 2D‖y‖N2

∫ t

0
α(s)e

−N(t−s)
ds

≤ D
(∥∥∥ϕ

1
(0)

∥∥∥ + ‖α‖L1 + ‖ϕ‖C0‖α‖L1

)
+ R1qN + R2qN

< D
(∥∥∥ϕ

1
(0)

∥∥∥ + ‖α‖L1 + ‖ϕ‖C0‖α‖L1

)
+ R1 + R2qN ≤ R2,

so ‖Γ2(y)‖N2 ≤ R2. Therefore (50) holds.

Step 2.3. Consider now the map Γ2,R2 : IBR2 → IBR2 .

Obviously IBR2 is closed and convex in the space (C([t1, t2], E), ‖ · ‖N2), so
that it is a closed and convex subset of (C([t1, t2], E), ‖ · ‖C2), where ‖ · ‖C2

is the usual norm in C([t1, t2], E) and is equivalent to ‖ · ‖N2 .

Step 2.4. We show that Γ2,R2 has closed graph.

Let (yn)n be a sequence in IBR2 such that yn → ȳ in (C([t1, t2], E), ‖ · ‖C2) .
Moreover, let (Γ2,R2(yn))n converge to z̄ in (C([t1, t2], E), ‖ · ‖C2).
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Fixed t ∈ [t1, t2], we consider the estimate

‖Γ2,R2(yn)(t) − Γ2,R2(ȳ)(t)‖ ≤ D

∫ t

t1

‖f(s, yn(s), yn[y1[ϕ]]s)

−f(s, ȳ(s), ȳ[y1[ϕ]]s)‖ds. (52)

We show that the sequence
(
f(·, yn(·), yn[y1[ϕ]](·))

)
n

is integrably bounded
in [t1, t]: put Q2 ≥ Q1 (see (25)) such that

IBR2 ⊂ B(0, Q2), (53)

where B(0, Q2) is the ball in (C([t1, t2], E), ‖ · ‖C2), by (f2), (8) and (53), we
get

‖f(s, yn(s), yn[y1[ϕ]]s)‖ ≤ α(s)

(
1 + ‖yn‖C2 +

t1

τ
‖y1‖C1 +

t2 − t1

τ
‖yn‖C2 + ‖ϕ‖C0

)

≤ α(s)

(
1 + Q2 +

t1

τ
Q1 +

t2 − t1

τ
Q2 + ‖ϕ‖C0

)

≤ α(s)

(
1 + Q2 +

t2

τ
Q2 + ‖ϕ‖C0

)
:= α2(t) , for a.e. s ∈ [t1, t],

where α2 ∈ L1
+([t1, t2]).

Then the sequence
(
f(·, yn(·), yn[y1[ϕ]](·))

)
n

pointwise converges in [t1, t].
Indeed, fixed s ∈ [t1, t], the convergence yn → ȳ in (C([t1, t2], E), ‖ · ‖C2) im-
plies yn(s) → ȳ(s) in E. Further, we have

‖yn[y1[ϕ]]s − ȳ[y1[ϕ]]s‖C0 ≤ t2 − t1
τ

‖yn − ȳ‖C2 ,

so yn[y1[ϕ]]s → ȳ[y1[ϕ]]s in C0. Therefore, by the continuity of f(s, ·, ·) in
(ȳ(s), ȳ[ϕ]s), we have

f(s, yn(s), yn[y1[ϕ]]s) → f(s, ȳ(s), ȳ[y1[ϕ]]s) in E.

Hence, by the Lebesgue convergence theorem in [t1, t] applied to (52), we
obtain

Γ2,R2(yn)(t) → Γ2,R2(ȳ)(t).

By the uniqueness of the limit algorithm, we get z̄(t) = Γ2,R2(ȳ)(t).
Therefore, Γ2,R2(yn) → Γ2,R2(ȳ) in (C([t1, t2], E), ‖ · ‖C2). Hence, the graph
of Γ2,R2 is closed.

Step 2.5. We show that Γ2,R2 is νL
2 -condensing, where νL

2 is the MNC on
C([t1, t2], E) defined by (7) and associated with the constant L for which
(29) holds. Indeed, by (50) and (53), we have Γ2,R2(IBR2) ⊂ B(0, Q2).
Let Ω ⊂ IBR2 be such that

νL
2 (Ω) � νL

2 (Γ2,R2(Ω)).

As in Step 1.5, to obtain νL
2 (Ω) = 02 will be enough to get νL

2 (Γ2,R2(Ω)) = 02.
By (7), let us consider the countable set {zn}n ⊂ Γ2,R2(Ω) such that

νL
2 (Γ2,R2(Ω)) = (γ2({zn}n), η2({zn}n))
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and the set {yn}n ⊂ Ω such that, for every n ∈ N, zn = Γ2,R2(yn), i.e.

zn(t) = T (t, t1)ϕ1(0) +
∫ t

t1

T (t, s)f(s, yn(s), yn[y1[ϕ]]s) ds , t ∈ [t1, t2].

Clearly,

(γ2 ({yn}n) , η2 ({yn}n)) � νL
2 (Ω) � (γ2 ({zn}n) , η2 ({zn}n)) .

Hence

γ2 ({yn}n) ≤ γ2 ({zn}n) . (54)

We estimate

γ2 ({zn}n) = sup
t∈[t1,t2]

e−Ltχ ({zn(t)}n) . (55)

Fixed t ∈ [t1, t2] and put M2
t =

{
T (t, ·)f (·, yn(·), yn[y1[ϕ]](·)

)}
n
, by Propo-

sition 2.1 we have χ
(∫ t

t1
M2

t (s) ds
)

≤ 4
∫ t

t1
χ
(M2

t (s)
)

ds, so

χ ({zn(t)}n) ≤ χ
({T (t, t1)ϕ

1(0)}) + 4

∫ t

t1

χ
({T (t, s)f(s, yn(s), yn[y1[ϕ]]s)}n

)
ds

≤ 4D

∫ t

t1

χ
({f(s, yn(s), yn[y1[ϕ]]s)}n

)
ds. (56)

Now, {yn}n is a subset of Ω ⊂ IBR2 , then for every s ∈ [t1, t] the sets {yn(s)}n

and {yn[ϕ]s}n are bounded; in fact for s ∈ [t1, t2] we have ‖yn(s)‖ ≤ R2 and
‖yn[y1[ϕ]]s‖C0 ≤ ‖ϕ‖C0 +R1 +R2. Hence, by (f3) and the definition of γ2 (cf.
(7)), for a.e. s ∈ [t1, t], we get

χ
(
{f(s, yn(s), yn[y1[ϕ]]s)}n

)
≤ h(s)

[
eLsγ2({yn}n) + sup

−τ≤θ≤0
χ({yn[y1[ϕ]]s(θ)}n)

]

≤ h(s)

[
eLsγ2({yn}n) + sup

t1≤w≤s
χ({yn(w)}n)

]

≤ 2h(s)eLsγ2({yn}n).

Therefore, (56) provides

χ ({zn(t)}n) ≤ 8Dγ2({yn}n)
∫ t

t1

h(s)eLs ds. (57)

Hence, by (55), (57), (29) and (54), we obtain

γ2 ({zn}n) ≤ sup
t∈[t1,t2]

e−Lt8Dγ2 ({yn}n)
∫ t

t1

eLsh(s) ds

≤ pLγ2 ({yn}n) ≤ pLγ2 ({zn}n) .

Therefore (recall pL < 1),

γ1({zn}n) = 0. (58)

Further, by means of the same arguments used in Step 1.5 to prove that
η1({zn}n) = 0, we can say that

η2({zn}n) = 0. (59)

Finally, from (58) and (59), we conclude that νL
2 (Γ2,R2(Ω)) = 02.
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Step 2.6. By [4, Theorem 2.2] the solution operator Γ2,R2 has a fixed point
y2 ∈ IBR2 ,

y2(t) = T (t, t1)ϕ1(0) +
∫ t

t1

T (t, s)f(s, y2(s), y2[y1[ϕ]]s) ds , t ∈ [t1, t2].

(60)

Consider now the function y2[y1[ϕ]] : [−τ, t2] → E. First of all, y2[y1[ϕ]]| ]t1,t2]

= y2
| ]t1,t2]

, so y2[y1[ϕ]] satisfies (46); moreover, by (44) we get y2[y1[ϕ]]t1 =
ϕ1, so (47) is satisfied as well; hence, y2[y1[ϕ]]| [t1−τ,t2] is a mild solution to
(45).

Step 3. Now, we can provide the mild solution to our problem (5).

Step 3.a. First, let us suppose that t2 = T (i.e. the case p = 1 in (5)).

In this setting the function y2[y1[ϕ]] ∈ S([−τ, t2], E) is a mild solution to (5).
In fact:

(i) if t ∈ [0, t1]: since by (8) we have y2[y1[ϕ]](t) = y1(t), using (43) we
obtain

y2[y1[ϕ]](t) = T (t, 0)ϕ(0) +
∫ t

0

T (t, s)f(s, y2[y1[ϕ]](s), y2[y1[ϕ]]s) ds;

if t ∈]t1; t2]: by (8) we have y2[y1[ϕ]](t) = y2(t), so by (60), (44), and
(43) we get

y2[y1[ϕ]](t) = T (t, t1)ϕ1(0) +
∫ t

t1

T (t, s)f(s, y2[y1[ϕ]](s), y2[y1[ϕ]]s) ds

= T (t, t1)[y1[ϕ](t1) + I1(y1[ϕ]t1)]

+
∫ t

t1

T (t, s)f(s, y2[y1[ϕ]](s), y2[y1[ϕ]]s) ds;

now, by applying (44), (8), and (43), we deduce

y2[y1[ϕ]](t) = T (t, t1)

[
T (t1, 0)ϕ(0) +

∫ t1

0

T (t1, s)f(s, y1[ϕ](s), y1[ϕ]s)

]

+T (t, t1)I1(y
1[ϕ]t1) +

∫ t

t1

T (t, s)f(s, y2[y1[ϕ]](s), y2[y1[ϕ]]s) ds

= T (t, 0)ϕ(0) +

∫ t1

0

T (t, s)f(s, y2[y1[ϕ]](s), y2[y1[ϕ]]s)

+T (t, t1)I1(y
2[y1[ϕ]]t1) +

∫ t

t1

T (t, s)f(s, y2[y1[ϕ]](s), y2[y1[ϕ]]s) ds;

therefore,

y2[y1[ϕ]](t) = T (t, 0)ϕ(0) + T (t, t1)I1(y2[y1[ϕ]]t1)

+
∫ t

0

T (t, s)f(s, y2[y1[ϕ]](s), y2[y1[ϕ]]s) ds;



91 Page 18 of 26 T. Cardinali and P. Rubbioni MJOM

(ii) by (8) we can write y2[y1[ϕ]](t+1 ) = y2(t1), hence recalling (60), (44),
and (8) we have

y2(t1) = ϕ1(0) = y1[ϕ](t1) + I1(y1[ϕ]t1)
= y2[y1[ϕ]](t1) + I1(y2[y1[ϕ]]t1)

so that

y2[y1[ϕ]](t+1 ) = y2[y1[ϕ]](t1) + I1(y2[y1[ϕ]]t1);

(iii) it is immediate to see that (cf. (8))

y2[y1[ϕ]]t0 = ϕ.

Hence, if p = 1 the theorem is proved.

Step 3.b. In the case p > 1, by iteration a mild solution to (5) will be the
function yp+1[...y1[ϕ]...] ∈ S([−τ, T ], E). �

3. Hereditary Evolutionary Processes Under External
Instantaneous Actions

Using the theory developed in Sect. 2, we can provide the existence of heredi-
tary dynamics of two models driven respectively by the parametric differential
equation (1) and a parabolic partial differential equation (4) with memory
effects, regulated by external instantaneous actions.

3.1. The Population Dynamics Model

We consider the parametric differential equation

∂

∂t
u(t, x) = −b(t, x)u(t, x) + g

(
t, u(t, x),

∫ 0

−τ

u(t + θ, x)dθ

)
,

t ∈ [0, T ] , x ∈ [0, 1],

which represents the dynamics of a population where: u(t, x) is the population
density at time t and place x; −b(t, x) is the removal coefficient given by
the death rate and the displacement of the population; g is the population
development law involving a memory term expressed by the integral

∫ 0

−τ
u(t+

θ, x)dθ.
In a modeling process it is necessary to introduce memory terms when-

ever the past state of the system influences its future evolution. An example
can be found in the study of some pests in which the maturation time of the
individual is not negligible. The initial past is known and given by a function
ψ : [−τ, 0] × [0, 1] → R such that

u(θ, x) = ψ(θ, x) , θ ∈ [−τ, 0] , x ∈ [0, 1].

Here we normalize the spatial environment to the interval [0, 1]. In the model
under examination, possible external actions aimed at regulating the popula-
tion (like a pesticide or a drug administration) taking place at pre-established
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times are formalized. In details, we set

u(t+i , x) = u(ti, x) + Ii

(∫ 0

−τ

u(ti + θ, x)dθ

)
, x ∈ [0, 1] , i = 1, . . . , p,

where: 0 = t0 < t1 < · · · < tp < tp+1 = T ; for every i = 1, . . . , p, Ii : R → R;
u(t+i , ·) = lims→t+i

u(s, ·).
We treat the model as a particular case of the abstract problem (5),

taking E = L2([0, 1]) and u : [−τ, T ]× [0, 1] → R such that u(t, ·) ∈ L2([0, 1])
for every t ∈ [0, T ].

We assume that the map b : [0, T ] × [0, 1] → R satisfies the conditions

(b.1) b is measurable;
(b.2) there exists s ∈ L1

+([0, T ]) such that

0 < b(t, x) ≤ s(t) , for every t ∈ [0, T ], a.e. x ∈ [0, 1];

(b.3) for every x ∈ [0, 1], the function b(·, x) : [0, T ] → R is continuous.

On the map g : [0, T ] × R × R → R we suppose that the following
properties hold:

(g1) g
(
t, v(·), ∫ 0

−τ
w(θ)(·)dθ

)
∈ L2([0, 1]), for every t ∈ [0, T ], v ∈ L2([0, 1]),

w ∈ C0
L2

;
(g2) there exists l ∈ L1

+([0, 1]) such that∣∣∣∣g
(

t, p1,

∫ 0

−τ

w1(θ)(·)dθ

)
− g

(
t, p2,

∫ 0

−τ

w2(θ)(·)dθ

)∣∣∣∣
≤ l(t)

[
|p1 − p2| + ‖w1 − w2‖C0

L2

]
,

for a.e. t ∈ [0, T ] and every p1, p2 ∈ R, w1, w2 ∈ C0
L2

;
(g3) for every y ∈ S([−τ, T ], L2([0, 1])), the map t �→ g

(
t, y(t)(·), ∫ 0

−τ
y(t+ θ)

(·)dθ
)

is measurable;
(g4) g(·, 0, 0) ∈ L1([0, T ]);
(g5) there exists h ∈ L1

+([0, 1]) such that

χL2

(
g

(
t,Ω1(·),

∫ 0

−τ

Ω2(θ)(·)dθ

))
≤ h(t)

[
χL2(Ω1) +

1
τ

∫ 0

−τ

χL2 (Ω2(θ)) dθ

]
,

for a.e. t ∈ [0, T ] and every bounded sets Ω1 ⊂ L2([0, T ]), Ω2 ⊂ C0
L2

;
χL2 is the Hausdorff measure of noncompactness in L2([0, T ]).

On the initial function ψ : [−τ, 0] × [0, 1] → R we assume that

(ψ1) ψ(θ, ·) ∈ L2([0, 1]), for every θ ∈ [−τ, 0];
(ψ2) for every x ∈ [0, 1], the map ψ(·, x) is piecewise continuous with a finite

number of discontinuity points not depending on x.

Now, we define the following functions:

• v : [0, T ] → L2([0, 1]),

v(t)(x) = u(t, x), t ∈ [0, T ], x ∈ [0, 1]; (61)
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• vt : [−τ, 0] → L2([0, 1]),

vt(θ)(x) = u(t + θ, x), θ ∈ [−τ, 0], x ∈ [0, 1], t ∈ [0, T ]; (62)

• A(t) : L2([0, 1]) → L2([0, 1]), t ∈ [0, T ]

A(t)z(x) = −b(t, x)z(x), z ∈ L2([0, 1]), x ∈ [0, 1]; (63)

• f : [0, T ] × L2([0, 1]) × C0
L2 → L2([0, 1])

f(t, z, w)(x) = g

(
t, z(x),

∫ 0

−τ

w(θ)(x)dθ

)
,

t ∈ [0, T ], z ∈ L2([0, 1]), w ∈ C0
L2

, x ∈ [0, 1]; (64)

• Ii : C0
L2 → L2([0, 1]), i = 1, . . . , p,

Ii(w)(x) = Ii

(∫ 0

−τ

w(θ)(x) dθ

)
, w ∈ C0

L2
, x ∈ [0, 1]; (65)

• ϕ : [−τ, 0] → L2([0, 1])

ϕ(θ)(x) = ψ(θ, x), θ ∈ [−τ, 0], x ∈ [0, 1]. (66)

To state and prove the existence theorem for the model, we establish the next
proposition, which combines the results described in [15, Section 3.1] and in
[10, Proposition 3.2 and Remark 3.1].

Proposition 3.1. Under assumptions (b1)–(b3), the next properties hold:
[A1] for every t ∈ [0, T ], the map A(t) : L2([0, 1]) → L2([0, 1]) defined by (63)

is a well-posed linear operator;
[A2] the family {A(t)}t∈[0,T ] generates the noncompact evolution system {T (t,

s)}0≤s≤t≤T of bounded linear operators T (t, s) : L2([0, 1]) → L2([0, 1]),
0 ≤ s ≤ t ≤ T , defined by

[T (t, s)v](x) = e
∫ t
s

−b(σ,x)dσv(x) , x ∈ [0, 1], v ∈ L2([0, 1]).

Further, we need the following result on function f .

Proposition 3.2. Under assumptions (g1)–(g5), the function f is well-defined
and satisfies properties (f1)–(f3).

Proof. It is easy to see that f is well-defined (see (64) and (g1)).

[f1] Fix t ∈ [0, T ], (z̄, w̄) ∈ L2([0, 1])×C0
L2

and consider (zn, wn) −→ (z̄, w̄)
in L2([0, 1]) × C0

L2
.

By (g2), we have

‖f(t, zn, wn) − f(t, z̄, w̄)‖2
L2

=

∫ 1

0

∣∣∣∣g
(

t, zn(x),

∫ 0

−τ

wn(θ)(x)dθ

)
− g

(
t, z̄(x),

∫ 0

−τ

w̄(θ)(x)dθ

)∣∣∣∣
2

dx

≤
∫ 1

0

[
l(t)

(
|zn(x) − z̄(x)| + ‖wn − w̄‖C0

L2

)]2
dx

≤ l2(t)

(
‖zn − z̄‖2

L2 + ‖wn − w̄‖2
C0

L2 + 2‖wn − w̄‖C0
L2

∫ 1

0
|zn(x) − z̄(x)|dx

)
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≤ l2(t)
(
‖zn − z̄‖2

L2 + ‖wn − w̄‖2
C0

L2 + 2‖wn − w̄‖C0
L2 ‖zn − z̄‖L2

)

= l2(t)
(
‖zn − z̄‖L2 + ‖wn − w̄‖C0

L2

)2 −→n→+∞ 0

so that f(t, ·, ·) is continuous in (z̄, w̄). By the arbitrariness of (z̄, w̄) we
get the continuity of f(t, ·, ·) in L2([0, 1]) × C0

L2
.

Further, by (g3) the measurability of f(·, y(·), y(·)) for every y ∈ S([−τ, T ],
L2([0, 1])) follows.
Hence (f1) holds.

[f2] Let us fix (t, z, w) ∈ [0, T ] × L2([0, 1]) × C0
L2

. By (g2) and (g4), we get

α(·) := |g(·, 0, 0)| + l(·) ∈ L1
+([0, T ])

and

‖f(t, z, w)‖L2 ≤
[∫ 1

0

(
|g(t, 0, 0)| + l(t)|z(x)| + l(t)‖w‖C0

L2

)2

dx

]1/2

≤ α(t)
[∫ 1

0

(
1 + |z(x)| + ‖w‖C0

L2

)2

dx

]1/2

≤ α(t)
(
1 + ‖z‖L2 + ‖w‖C0

L2

)
;

therefore, (f2) holds too.
[f3] Fixed a.e. t ∈ [0, T ] for which (g5) holds, for every bounded Ω1 ⊂

L2([0, 1]), Ω2 ⊂ C0
L2

, we have (see (g5))

χL2(f(t,Ω1,Ω2) = χL2

(
g

(
t,Ω1(·),

∫ 0

−τ

Ω2(θ)(·)dθ

))

≤ h(t)
[
χL2(Ω1) +

1
τ

∫ 0

−τ

χL2(Ω2(θ))dθ

]
,

so property (f3) is satisfied.

�

We prove now the existence theorem for the following population dynamics
model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u(t, x) = −b(t, x)u(t, x) + g

(
t, u(t, x),

∫ 0

−τ

u(t + θ, x)dθ

)
, t ∈ [0, T ] , x ∈ [0, 1],

t �= ti , i = 1, . . . , p,

u(t+i , x) = u(ti, x) + Ii

(∫ 0
−τ

u(ti + θ, x)dθ
)

, x ∈ [0, 1] , i = 1, . . . , p,

u(θ, x) = ψ(θ, x) , θ ∈ [−τ, 0] , x ∈ [0, 1].

(67)
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Theorem 3.1. Under assumptions (b1)–(b.3), (g1)–(g5), (ψ1)–(ψ2), the model
(67) has at least one hereditary impulsive mild solution, i.e. a function u :
[−τ, T ] × [0, 1] → R such that u(t, ·) ∈ L2([0, 1]) for every t ∈ [0, T ] and

u(t, x) = e
∫ t
0 −b(σ,x)dσψ(0, x) +

∑
0<ti<t e

∫ t
ti

−b(σ,x)dσIi

(∫ 0
−τ

u(ti + θ, x)dθ
)

+
∫ t
0 e

∫ t
s

−b(σ,x)dσg
(
s, u(s, x),

∫ 0
−τ

u(s + θ, x)dθ
)

ds, t ∈ [0, T ], x ∈ [0, 1];

u(t+i , x) = u(ti, x) + Ii

(∫ 0
−τ

u(ti + θ, x)dθ
)

, x ∈ [0, 1] , i = 1, . . . , p;

u(θ, x) = ψ(θ, x) , θ ∈ [−τ, 0] , x ∈ [0, 1].

Proof. Bearing in mind that (cf. (61) and (62))

g

(
t, u(t, x),

∫ 0

−τ

u(t + θ, x)dθ

)
= g

(
t, v(t)(x),

∫ 0

−τ

vt(θ)(x)dθ

)
,

recalling the setting (61)–(66) and that u(θ, x) = v(θ)(x) = v(0 + θ)(x) =
vt0(θ)(x), the process (67) can be rewritten as follows:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v′(t)(x) = A(t)v(t)(x) + f (t, v(t), vt) (x) , t ∈ [0, T ], t �= ti , i = 1, . . . , p,

v(t+i )(x) = v(ti)(x) + Ii (vti
) (x) , i = 1, . . . , p,

vt0(·)(x) = ϕ(·)(x),

for every x ∈ [0, 1]. Clearly, it leads to a problem of type (5) in the space
E = L2([0, 1]).

Notice that by (ψ2) we can say that ψ(·, x) ∈ C0
R for every x ∈ [0, 1],

so that ϕ ∈ C0
L2

. Moreover, by Proposition 3.1 immediately follows that the
family {A(t)}t∈[0,T ] satisfies property (A); further, Proposition 3.2 holds as
well, so that all the assumptions of Theorem 2.1 are satisfied.

We can, therefore, conclude that there exists a delayed impulsive mild
solution of the abstract problem, i.e. a function v̄ ∈ S([−τ, T ], L2([0, 1])) such
that:

v̄(t) = e
∫ t
0 −b(σ,·)dσϕ(0) +

∑
0<ti<t

e
∫ t
ti

−b(σ,·)dσ
Ii(v̄ti

)

+
∫ t

0

e
∫ t
s

−b(σ,·)dσf(s, v̄(s), v̄s) ds , t ∈ [0, T ];

v̄(t+i ) = v̄(ti) + Ii(v̄ti
) , i = 1, · · · , p;

v̄t0 = ϕ.
Hence, the function

ū(t, x) := v̄(t)(x), t ∈ [0, T ], x ∈ [0, 1]

is a hereditary impulsive mild solution for (67). �
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3.2. The Nonlinear Reaction–Diffusion Model

Here we consider the nonlinear impulsive reaction–diffusion model with mem-
ory⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + g

(
t, u(t, x),

∫ 0

−τ

u(t + θ, x)dθ

)
, t ∈ [0, T ] , x ∈ [0, 1],

t �= ti , i = 1, . . . , p,

u(t, 0) = u(t, 1) = 0 , t ∈ [0, T ],

u(t+i , x) = u(ti, x) + Ii

(∫ 0
−τ

u(ti + θ, x)dθ
)

, x ∈ [0, 1] , i = 1, . . . , p,

u(θ, x) = ψ(θ, x) , θ ∈ [−τ, 0] , x ∈ [0, 1].

Clearly, analogously as in Sect. 3.1, the parabolic partial differential equation
with memory driving the system can be rewritten as the ordinary differential
equation with functional delay

v′(t) = A(t)v(t) + f (t, v(t), vt) , t ∈ [0, T ].

Indeed, we use (61), (64), and A(t) = A for every t ∈ [0, T ], where A :
D(A) → L2([0, 1]) is the linear operator

Az = z′′, z ∈ D(A),

and D(A) is the dense subset of L2([0, 1]) given by

D(A) = {z ∈ L2([0, 1]) : z, z′ absolutely continuous, z′′ ∈ L2([0, 1]),
z(0) = z(1) = 0}.

Note that A generates a compact analytic semigroup {U(t)}t∈[0,T ] on L2([0, 1])
(cf. e.g. [5,17]). Then, taking the family of linear operators {A(t) = A}t∈[0,T ],
it is well defined the corresponding evolution system {T (t, s) = U(t −
s)}0≤s≤t≤T (see, e.g. [7, Remark 1]). This yields that property (A) is sat-
isfied.

Now, assuming that g : [0, T ]×R×R → R satisfies properties (g1)-(g5)
and that ψ : [−τ, 0] × R → R satisfies (ψ1)-(ψ2) (cf. Sect. 3.1), we can claim
that a hereditary impulsive mild solution for the model exists.
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Appendix: List of Symbols and Definitions

• E: real Banach space endowed with the norm ‖ · ‖;
• C(J,E): the space of E-valued continuous functions on a closed bounded

interval J ⊂ R;
• Lp(J,E): the space of all E-valued functions on J such that their p-

power is Bochner integrable with norm ‖v‖Lp =
[∫

J
‖v(z)‖p dz

] 1
p (shortly,

Lp(J) if E = R), p = 1, 2;
• L1

+(J) = {f ∈ L1(J) : f(t) ≥ 0, for a.a. t ∈ J};
• {T (t, s)}(t,s)∈Δ: evolution system (see, e.g., [17]),

i.e. T (t, s) : E → E is a bounded linear operator, (t, s) ∈ Δ = {(t, s) ∈
[0, T ] × [0, T ] : s ≤ t}, and the following properties hold
(T1) T (s, s) = I, T (t, r)T (r, s) = T (t, s) for 0 ≤ s ≤ r ≤ t ≤ T ;
(T2) (t, s) �→ T (t, s) is strongly continuous on Δ (i.e. the map ξx :

(t, s) �→ T (t, s)x is continuous on Δ, for every x ∈ E);
• {A(t)}0≤t≤T : a family of linear operators A(t) : D(A) ⊂ E → E, t ∈

[0, T ], D(A) dense subset of a Banach space E, generating an evolution
system {T (t, s)}0≤s≤t≤T ,
i.e. each operator T (t, s) is strongly differentiable relative to t and s,
while

∂T (t, s)
∂t

=A(t)T (t, s) and
∂T (t, s)

∂s
=−T (t, s)A(s), 0≤s≤ t ≤ T.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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• γ: vectorial measure of noncompactness (MNC, for short),
i.e. function defined on the family of bounded subsets of E and taking
values on R

n
0,+ such that, for every bounded Ω ⊂ E, it holds that:

(γ1) γ(Ω) = 0n if and only if Ω is compact;
(γ2) γ(co(Ω)) = γ(Ω);

• χ: scalar Hausdorff measure of noncompactness in E; it satisfies the
properties of: monotonicity; nonsingularity; algebraic subadditivity; clo-
sure invariance (see [1]);

• Γ : D → E, ∅ �= D ⊂ E, is condensing with respect to a measure of
noncompactness γ if
(I) Γ(D) is bounded;

(II) γ(B) � γ(Γ(B)) implies γ(B) = 0n, for all bounded subsets B of
D

or equivalently
(II)’ 0n ≺ γ(B) implies γ(B) �� γ(Γ(B)), for all bounded subsets B of

D
(where �� means that or γ(Γ(B)) ≺ γ(B) is true or γ(Γ(B)) and
γ(B) are not comparable).
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